亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Compact Spaclike Hypersurfaces of Lorent Space:New Integral Formulas and r-Mean Curvature

        2017-12-23 04:30:56WANGQi
        關(guān)鍵詞:數(shù)學(xué)

        WANG Qi

        (School of Mathematics and Information Science, Guiyang University, Guiyang 55005, China)

        Compact Spaclike Hypersurfaces of Lorent Space:New Integral Formulas and r-Mean Curvature

        WANG Qi

        (School of Mathematics and Information Science, Guiyang University, Guiyang 55005, China)

        LetMbe an oriented and compact spacelike hypersurface without boundary in the Lorentz spaceLn+1. In this work, we firstly attain a class of new integral formulas. Then we apply these integral formulas to prove thatMis totally umbilical if there exists an integerr(1≤r≤n-1) such that thei-mean curvatureHi>0,i=1,2,…,randHris constant.

        Lorentz space; compact spacelike hypersurface; integral formula;r-mean curvature; totally umbilical property

        In this paper we study oriented and compact spacelike hypersurfaces without boundary in the Lorentz spaceLn+1. Firstly, we establish a class of new integral formulas, that is the following Theorem A.

        TheoremALetMbe ann-dimensional, oriented and compact Riemann manifold without boundary. Letφ:M→Ln+1be a spacelike isometric immersion map. Then the following integral formulas hold.

        HereNis the timelike unit normal vector field ofM,Hi(i=1,2,…,n) is thei-mean curvature ofManddVis the Riemann volume element ofM.

        Then we apply the integral formulas of Theorem A to the case of constantr-mean curvature and we prove a new result, that is the following Theorem B.

        We feel amazing for the symmetry among Theorem 1, Theorem 2 and our Theorem B.

        TheoremBLetMbe ann-dimensional, oriented and compact spacelike hypersurface without boundary inLn+1. ThenMis totally umbilical if thei-mean curvatureHi>0,i=1,2,…,randHris constant for some integerr,r=1,2,…,n-1.

        1 Preliminaries and proof of Theorem A

        Denote byRn+1the (n+1)-dimensional Euclidean space and letRn+1be equipped with the following Lorentz metric[1-6],

        〈,〉=-(dx0)2+(dx1)2+…+(dxn)2.

        Here (x0,x1,…,xn) is the natural global coordinate forRn+1. Then we have the (n+1)-dimensional Lorentz spaceLn+1with negative index one.

        Denote by (M,g) an-dimensional Riemann manifold and byφ:M→Ln+1an immersion map.

        Ifg=φ*(〈,〉) holds, then we say thatMorφ(M) is a spacelike hypersurface isometricly immersed intoLn+1. Here 〈,〉 is the Lorentz metric ofLn+1.

        Hereafter, we discuss integral formulas. Following the ideas in references [7,8], we study spacelike hypersurfaces isometricly immersed into the Lorentz spaceLn+1. We will give the following Lemma 1 indicating our Theorem A. For our purpose we firstly recall several basic concepts and conclusions.

        LetMbe a Riemann manifold andSbe a tensor field of type (k,k) overM. When both the covariant components and the contra-variant components ofSare alternating, then we writeS∈Γ(EndΛk(TM)). ForS∈Γ(EndΛk(TM)),T∈Γ(EndΛj(TM)). We also considerS*T∈Γ(EndΛk+j(TM)), which have its covariant component as the exterior product of the covariant components inSandTrespectively, and its contra-variant component as the exterior product of contra-variant components inSandTrespectively.

        We know that the operation * is associative and commutative ( see [7,8] ).

        Definition1( Codazzi Tensor Field, [7,8] ) LetMbe a Riemann manifold and letS∈Γ(EndΛk(TM)). Then we say thatSis a Codazzi tensor field of type (k,k) overMif, for arbitrary smooth tangent vector fieldsX1,X2,…,Xk+1∈Γ(TM), the following formula

        0=∑(-1)j+1(▽XjS)(X1∧X2∧…∧Xj-1∧Xj+1∧…∧Xk+1),

        holds. Here ▽ is the Levi-Civita connection ofM.

        When bothS∈Γ(EndΛk(TM)) andT∈Γ(EndΛj(TM)) are Codazzi tensor field overM, respectively of type (k,k) and of type (j,j), thenS*Tis also a Codazzi tensor field of type (k+j,k+j) overM( see [7,8] ). Denote by (M,g) ann-dimensional Riemann manifold and byφ:M→Ln+1a spacelike isometric immersion map. We need to define a symmetric tensor fieldAof type (1,1) overMby the following formula

        g(A(X),Z)=g(A(Z),X)=〈II(X,Z),Y〉=〈II(X,Z),φ〉,X,Z∈Γ(TM).

        Here 〈,〉 is Lorentz metric ofLn+1andYis the position vector ofφ(M) inLn+1.

        Lemma1LetMbe ann-dimensional, orientable and compact Riemann manifold without boundary andφ:M→Ln+1be a spacelike isometric immersion. Assume thatSis a Codazzi tensor field of type (k,k) overM. Then the following integral formulas hold.

        (1)

        HeredVis the Riemman volume element ofMandAis a symmetric tensor field of type (1,1) as defined above in this section.

        ProofDenote bydVthe volume element of M, then the following formulas

        α(X1,X2,…,Xn-1)=(dV)(Ytan,X1,X2,…,Xn-1), ?X1,X2,…,Xn-1∈Γ(TM).

        can determinea(n-1) exterior differential form on M and we write it as

        HereYtanis the tangent component of the position vectorYofφ(M) inLn+1.

        Noticing that the timelike unit normal vector fieldNofMsatisfies 〈N,N〉≡-1, we have

        (2)

        Firstly, we consider the case thatSis a Codazzi tensor field of type (n-1,n-1) overM.

        Lete1,e2,…,enbe any one of local unity orthogonal frame fields ofMand we write

        Ej=e1∧…∧ej-1∧ej+1∧…∧en,j=1,2,…,n,E=e1∧e2∧…∧en.

        We can considerω=α°Sas aΓ(EndΛn-1(TM))-valued (n-1) form, and we have

        dω(e1,e2,…,en)=∑(-1)j+1(▽ejω)(Ej)=

        ∑(-1)j+1(▽ejα)°S(Ej)+α°∑(-1)j+1(▽ejS)(Ej).

        SinceSis a Codazzi tensor field, the second term of the above formula is zero. Thus from equation (2) we have

        ∑(-1)j+1〈ej∧S(Ej),E〉-∑(-1)j+1〈A(ej)∧S(Ej,E)〉=

        ∑〈ej∧S(Ej),ej∧Ej〉-∑〈A(ej)∧S(Ej),ej∧Ej〉=trace(S)-trace(S*A).

        Now we assume thatSis a Codazzi tensor field of type (k,k). And Let be the identity element ofΓ(EndΛn-k-1(TM)).

        SinceIis parallel,S*Iis a Codazzi tensor field of type (n-1,n-1) overMand we have

        Finally, we have ( see [7,8] )

        trace(S*I)=(n-k)trace(S), trace(S*A*I)=trace(S*A),

        and we already finish the proof of Lemma 1.

        Now we are in the position to prove our Theorem A.

        TheoremALetMbe ann-dimensional, oriented and compact Riemann manifold without boundary. Letφ:M→Ln+1be a spacelike isometric immersion map. Then the following integral formulas hold.

        HereNis the timelike unit normal vector field ofM,Hi(i=1,2,…,n) is thei-mean curvature ofManddVis the Riemann volume element ofM.

        ProofFirstly, sinceMis an orientable and compact spacelike hypersurface,Mhas a global timelike unit normal vector fieldN.

        LetTbe the shape operator ofM,that isTa tensor field of type (1,1) overMdefined by

        Denote byλ1,λ2,…,λnthe characteristic values ofTand byσkthek-th element symmetric poly-nomial ofλ1,λ2,…,λn. LetS=Tk=T***T(*productk-times ). Following the computation of references [7,8], we have

        trace(S)=k!σk.

        (3)

        Denote byh=h(x)=〈φ(x),N(x)〉,x∈M, the support function ofM. Then it is easy to know

        A=-hT.

        By direct computation similar to that for equation (3) we have

        trace(S*A)=-h(k+1)!σk+1.

        (4)

        2 Proof of Theorem B

        For expression convenience of our proof for Theorem B, here we state Theorem B in the following equivalent form.

        TheoremBLetMbe ann-dimensional, oriented and compact Riemann manifold without boundary. Letψ:M→Ln+1be a spacelike isometric immersion map. ThenMis totally umbilical if thei-mean curvatureHi>0,i=1,2,…,randHris constant for some integerr,r=1,2,…,n-1.

        ProofWe need the following well-known algebraic inequalities[1,2,4,10]

        (5)

        And any one of the equality signs in (5) holds if and only if at an umbilical point ofM.

        Take an arbitrarily fixed vectora∈Ln+1and we consider the mapφ:M→Ln+1defined as

        φ(x)=ψ(x)+a,x∈M.

        (6)

        Since the tangent mapdφ=dψ, we know thatφ(M) andψ(M) have the same tangent space at a pair of corespondent points. And soφ(M) is also a compact spacelike hypersurface ofLn+1.

        Still denote byNthe timelike unit normal vector field ofφ(M). Using the integral formulas of Theorem A forφ(M), we have

        (7)

        (8)

        SinceHris a nonzero constant, from (7) we have

        (9)

        Combining (8) and (9), we have

        (10)

        Noticing (5) and our assumption thatH1>0,H2>0,…,Hr>0, we have

        (11)

        and so we have

        H1Hr-Hr+1≥0, ?x∈M.

        (12)

        We can select a suitable fixed vectora∈Ln+1in (6) such thatφ(M) completely lies in the interior of the light cone ofa∈Ln+1.

        Since the Lorentz inner product of any two timelike vectors can not be zero and we generally assume thatMis connected, the Lorentz inner product 〈φ,N〉 does not change its sign overM. Then, without loss of generality, we can assume

        〈φ,N〉=〈φ(x),N(x)〉>0, ?x∈M.

        (13)

        Now, combining (9), (12) and (13) we have

        H1Hr-Hr+1=0, ?x∈M.

        (14)

        Finally, by combining (11) and (14) we know that each one of inequality signs in (11) actually reaches equality sign at each point ofM.

        Thus from the condition of any one of the inequality signs in (5) reaching equality sign, we conclude thatφ(M) is totally umbilical.

        On the other hand, it is obvious that the totally umbilical property is invariant under any one translation inLn+1.

        And so we already prove thatψ(M) is totally umbilical.

        [1] LI H Z, CHEN W H. Integral formulas for compact spacelike hypersurfaces in de Sitter space and their applications to Goddard’s conjecture [J]. Acta Math Sin, 1998, 14 (2), 285-288.

        [2] 徐森林,胡自勝.Anti de Sitter 空間中緊致類空超曲面的積分公式及其在稿件平均曲率下的應(yīng)用[J].數(shù)學(xué)物理學(xué)報, 2007,27A (2):302-308.

        [3] 聶昌雄,吳傳喜.共形空間中平行的第二基本形式的類空超曲面[J].數(shù)學(xué)學(xué)報,2008,51(4):685-692.

        [4] 聶昌雄,于艷梅,鄭立荷.具有平行的第二基本形式的類時超曲面[J].數(shù)學(xué)學(xué)報,2015,58(6):897-910.

        [5] 張遠(yuǎn)征. Lorentz 空間中常平均曲率類空超曲面[J]. 數(shù)學(xué)學(xué)報,2002,45(3):571-574.

        [6] 張遠(yuǎn)征.有界 F-支撐函數(shù)和類空 Wulff 形[J]. 數(shù)學(xué)學(xué)報,2016,59(1):37-46.

        [7] BIVENS I. Codazzi tensors and reducible submanifolds [J].Trans Am Math Soc, 1981, 268 (1): 231-246.

        [8] BIVENS I. Integral formulas and hypersurfaces in a simply connected space form [J]. Proc Am Math Soc, 1983,88(1):113-118.

        [9] 王 琪. Anti de Sitter 空間中全臍類空超曲面與高階平均曲率[J].山西大學(xué)學(xué)報(自然科學(xué)版),2016,39(3):403-405.

        [10] ALENCAR H, ROSENBERG H, SANTOS W. On the Gauss map of hypersurfaces with constant scalar curvature in spheres [J]. Proc Am Math Soc, 2004,132(12):3731-3739.

        2016-10-28

        貴州省科學(xué)技術(shù)基金資助項(xiàng)目(黔科合LH字[2015]7298)*通訊作者,E-mail:wangqihn@126.com

        O186.16

        A

        1000-2537(2017)06-0066-05

        洛倫茲空間中緊致類空超曲面:新積分公式與高階平均曲率

        王 琪*

        (貴陽學(xué)院數(shù)學(xué)與信息科學(xué)學(xué)院,中國 貴陽 550005)

        設(shè)M是洛倫茲空間Ln+1中緊致無邊定向類空等距浸入超曲面.首先得到一類新的積分公式.然后,通過應(yīng)用這些積分公式,證明了:如果存在一個整數(shù)r(1≤r≤n-1)使得高階平均曲率Hi>0,i=1,2,…,r,而且Hr是常數(shù), 則M是全臍的.

        洛倫茲空間;緊致類空超曲面;積分公式;高階平均曲率;全臍性質(zhì)

        10.7612/j.issn.1000-2537.2017.06.011

        (編輯 HWJ)

        猜你喜歡
        數(shù)學(xué)
        中等數(shù)學(xué)
        中等數(shù)學(xué)
        中等數(shù)學(xué)
        中等數(shù)學(xué)
        中等數(shù)學(xué)
        我們愛數(shù)學(xué)
        我為什么怕數(shù)學(xué)
        新民周刊(2016年15期)2016-04-19 18:12:04
        數(shù)學(xué)到底有什么用?
        新民周刊(2016年15期)2016-04-19 15:47:52
        我難過,因?yàn)槲铱吹綌?shù)學(xué)就難過
        錯在哪里
        av一区二区三区观看| 无码专区无码专区视频网址| 精品国产亚欧无码久久久| 国产成人综合日韩精品无| 亚洲一区丝袜美腿在线观看| 国产内射视频在线观看| 日本在线观看三级视频| 一区二区三区日本伦理| 亚洲国产黄色在线观看| 亚洲国产91高清在线| 风韵丰满熟妇啪啪区老熟熟女| 国99久9在线 | 免费| 国产精品毛片久久久久久久| 久久综合精品国产丝袜长腿| 精品人无码一区二区三区 | 天天躁人人躁人人躁狂躁| 国产精品亚洲专区无码web| A亚洲VA欧美VA国产综合| 在线视频亚洲一区二区三区| 一区二区三区四区黄色av网站 | 亚洲精品aⅴ无码精品丝袜足| 亚洲av手机在线一区| 精品国产一区二区三区av麻| 大地资源中文第3页| 人人妻人人澡人人爽欧美二区| 美女黄18以下禁止观看| 国产亚洲精品综合一区| 玩弄极品少妇被弄到高潮| 蜜桃尤物在线视频免费看| 久人人爽人人爽人人片av| 中文字幕一区二区人妻性色| 国产激情з∠视频一区二区| 精品福利一区| 国产夫妻自偷自拍第一页| 内射爆草少妇精品视频| 波多野结衣中文字幕一区二区三区| 色噜噜狠狠狠综合曰曰曰| 日本夜爽爽一区二区三区| 亚洲精品国产主播一区二区| 精品少妇白浆一二三区| 日韩人妻系列在线观看|