陳 娟,崔節(jié)達(dá),郭曉桐,劉鮮艷,張 紅△
慢性阻塞性肺疾病小氣道NOX4、TGF-β的表達(dá)與氣道重塑的關(guān)系*
陳 娟1,崔節(jié)達(dá)2,郭曉桐1,劉鮮艷3,張 紅1△
(1.寧夏醫(yī)科大學(xué)總醫(yī)院呼吸與危重癥醫(yī)學(xué)科,銀川750004;2.寧夏醫(yī)科大學(xué),銀川750004;3.山東省濱州市人民醫(yī)院,濱州256600)
目的:探討煙酰胺腺嘌呤二核苷酸磷酸氧化酶4(NOX4)、轉(zhuǎn)化生長(zhǎng)因子β(TGF-β)的表達(dá)與慢性阻塞性肺疾病(COPD)小氣道重塑的關(guān)系。方法:收集55例因肺部腫瘤行肺葉切除的患者,根據(jù)臨床資料及術(shù)前肺功能分為COPD組(36例)及對(duì)照組(19例),術(shù)中留取病變遠(yuǎn)端正常的肺組織標(biāo)本。采用HE染色觀察COPD組及對(duì)照組小氣道形態(tài)學(xué)變化;采用免疫組織化學(xué)法、免疫熒光雙染法及免疫印跡檢測(cè)小氣道組織NOX4、TGF-β、α-SMA及膠原蛋白Ⅳ的表達(dá)情況,并分析其與肺功能氣流受限嚴(yán)重程度的相關(guān)性。結(jié)果:①COPD組小氣道平滑肌厚度占?xì)獾劳鈴降陌俜直龋╓T%)、小氣道平滑肌面積占支氣管斷面面積百分比(WA%)明顯高于對(duì)照組(p<0.05);WT%和WA%在不同肺功能分級(jí)的COPD組間比較,差別均有統(tǒng)計(jì)學(xué)意義(p<0.05)。②COPD組上皮細(xì)胞增生明顯,部分上皮細(xì)胞表達(dá)間質(zhì)細(xì)胞表型α-SMA及膠原蛋白Ⅳ。COPD組上皮細(xì)胞α-SMA及Ⅳ型膠原蛋白免疫染色強(qiáng)度明顯強(qiáng)于對(duì)照組(p<0.05)。③NOX4在COPD組小氣道平滑肌及上皮細(xì)胞中的表達(dá)明顯高于對(duì)照組(p<0.05),NOX4的表達(dá)在不同肺功能分級(jí)的COPD組間比較,差別均有統(tǒng)計(jì)學(xué)意義(p<0.05)。④TGF-β在COPD組小氣道平滑肌細(xì)胞及氣道上皮細(xì)胞的表達(dá)均高于對(duì)照組(p<0.05)。⑤COPD小氣道平滑肌WT%、WA%與肺功能FEV1%pred、FEV1/FVC%呈負(fù)相關(guān)(p<0.05);小氣道平滑肌細(xì)胞NOX4的表達(dá)與肺功能 FEV1%pred、FEV1/FVC%呈負(fù)相關(guān)(p<0.05)。結(jié)論:COPD存在以小氣道平滑肌增生及細(xì)胞外基質(zhì)沉積為主要表現(xiàn)的氣道重塑,且氣道重塑的程度與氣流受限嚴(yán)重程度呈正相關(guān),COPD小氣道上皮細(xì)胞和小氣道平滑肌細(xì)胞表達(dá)NOX4、α-SMA和TGF-β明顯增高,NOX4、α-SMA、TGF-β的表達(dá)與COPD氣流受限嚴(yán)重程度呈負(fù)相關(guān),提示TGF-β、NOX4信號(hào)機(jī)制可能參與 COPD氣道重塑的發(fā)生發(fā)展。
慢性阻塞性肺疾??;氣道重塑;煙酰胺腺嘌呤二核苷酸磷酸氧化酶;轉(zhuǎn)化生長(zhǎng)因子β
慢性阻塞性肺疾?。╟hronic obstructive pulmonary disease,COPD)是一種常見的可以預(yù)防和治療的疾病,其特點(diǎn)是持續(xù)存在的氣流受限,氣流受限呈進(jìn)行性發(fā)展,伴有氣道和肺對(duì)有害顆?;驓怏w所致慢性炎癥反應(yīng)的增加,急性加重和合并癥影響整體疾病的嚴(yán)重程度[1]。據(jù)統(tǒng)計(jì)COPD已經(jīng)成為全球公共健康問題的主要疾?。?-6]。
氣道重塑會(huì)導(dǎo)致管腔狹窄甚至閉塞,小氣道阻力明顯升高從而導(dǎo)致氣流受限,誘發(fā)呼吸困難和COPD的臨床癥狀[7,8],因此,氣道重塑是 COPD患者主要的病理特征也是引起COPD患者持續(xù)存在的氣流受限的主要原因[9,10]。COPD小氣道重塑的機(jī)制尚不明確,研究發(fā)現(xiàn):上皮細(xì)胞間質(zhì)表型轉(zhuǎn)分化(epithelial-mesenchymal transition,EMT)以及平滑肌細(xì)胞異常增生、肥大是氣道重塑的核心病理變化[11-13]。當(dāng)上皮細(xì)胞穿過斷裂的基底膜進(jìn)入黏膜固有層,逐漸失去上皮細(xì)胞間粘附功能,演變?yōu)楦哂虚g質(zhì)細(xì)胞特點(diǎn)的細(xì)胞,表達(dá)α平滑肌肌動(dòng)蛋白(α-small muscle actin,α-SMA)和波形蛋白等并促進(jìn)細(xì)胞外基質(zhì)如膠原蛋白Ⅳ、纖維連接蛋白的沉積,此外,氣道平滑肌細(xì)胞異常增生、肥大致使氣道平滑肌層明顯增厚,收縮功能增強(qiáng),從而引起COPD一系列的病理改變。轉(zhuǎn)化生長(zhǎng)因子 (transforming growth factor-β,TGF-β)信號(hào)分子密切參與COPD的發(fā)生發(fā)展。研究發(fā)現(xiàn)TGF-β基因單核苷酸多態(tài)性與COPD易感性密切相關(guān)[14];在 COPD患者氣道組織中 TGF-β1表達(dá)明顯增加,并與COPD患者小氣道的阻塞成正比[11-13]。進(jìn)一步研究發(fā)現(xiàn)TGF-β1可以誘導(dǎo)氣道平滑肌細(xì)胞增生、肥大,參與上皮細(xì)胞間質(zhì)轉(zhuǎn)化[15,16];提示 TGF-β信號(hào)分子可能是參與COPD氣道重塑的重要信號(hào)分子。
煙酰胺腺嘌呤二核苷酸磷酸氧化酶(nicotinamide adenine dinucleotide phosphate oxidase,NADPH)是一類質(zhì)膜相關(guān)的酶蛋白家族,其主要通過電子呼吸鏈介導(dǎo)細(xì)胞活性氧(reactive oxygen species,ROS)的產(chǎn)生[17]。研究發(fā)現(xiàn):TGF-β介導(dǎo)的細(xì)胞內(nèi) NADPH氧化酶活化繼而誘導(dǎo)細(xì)胞內(nèi)ROS的產(chǎn)生,是細(xì)胞內(nèi)源性氧化應(yīng)激的重要來源。因此,我們推測(cè):TGF-β介導(dǎo)的NADPH氧化酶相關(guān)信號(hào)通路,可能通過介導(dǎo)上皮細(xì)胞上皮間質(zhì)轉(zhuǎn)分化以及平滑肌細(xì)胞增生、肥大的機(jī)制參與COPD的氣道重塑。
本研究通過觀察COPD患者小氣道重塑的情況,觀察小氣道上皮細(xì)胞和氣道平滑肌細(xì)胞TGF-β、NDAPH氧化酶表達(dá)的情況,探討 TGF-β、NDAPH氧化酶(NOX4)的氣道表達(dá)與氣道阻塞嚴(yán)重程度之間的相互關(guān)系,為闡明TGF-β、NDAPH氧化酶參與氣道重塑的作用和可能的機(jī)制提供理論依據(jù),為尋求防治其措施提供新思路。
經(jīng)倫理委員會(huì)批準(zhǔn),獲得患者知情同意后,收集2015年1月至2016年12月因肺部腫瘤行肺葉切除的患者共49例(其中腺癌19例,鱗癌22例,良性腫瘤8例),肺減容手術(shù)者6例。根據(jù)術(shù)前納入者臨床資料、胸部影像學(xué)檢查及常規(guī)肺功能檢查將納入患者分為COPD組(吸入支氣管擴(kuò)張劑后第1秒用力呼氣量與用力肺活量之比,即FEV1/FVC的百分比<70%及FEV1%pred<80%)組及肺功能正常的對(duì)照組。在納入者常規(guī)肺部手術(shù)治療過程中選取病變遠(yuǎn)端正常的肺組織標(biāo)本進(jìn)行檢測(cè)。納入者中COPD組36例,年齡37~72歲,男27例,女9例,平均年齡(57±9)歲;根據(jù)GOLD指南肺功能分級(jí)標(biāo)準(zhǔn)分組為輕度16例、中度14例、重度6例。對(duì)照組19例,年齡42~68歲,男10例、女9例,平均年齡(57±7)歲。排除標(biāo)準(zhǔn):(1)合并支氣管哮喘、睡眠呼吸暫停低通氣綜合征、支氣管擴(kuò)張、肺結(jié)核纖維化病變、間質(zhì)性肺疾病等其他慢性肺部疾??;(2)合并糖尿病、冠心病、高血壓、腦血管疾病、結(jié)締組織疾病、肝炎、自身免疫性疾病等可能引起加重氧化應(yīng)激的疾病。
山羊來源α-SMA抗體(ab21027,abcam),兔來源NOX4抗體(NB110-58849,novus),小鼠來源 TGFβ抗體 (ab27969,abcam),兔 來 源 CollagenⅣ 抗 體(ab19808,abcam),GAPDH(10494-1-AP,proteintech)。超敏二步法免疫組化檢測(cè)試劑及DAB顯色試劑(PV-9001,PV-9002,PV-9003,北京中杉金橋)。組織總蛋白提取試劑盒(Active Motif公司),BCA法蛋白含量測(cè)定試劑盒(南京凱基生物公司)。
患者術(shù)前進(jìn)行肺功能檢測(cè),患者吸入支氣管擴(kuò)張劑(沙丁胺醇?xì)忪F劑)15 min后使用MasterCreen肺功能測(cè)定儀(德國(guó)耶格)測(cè)定一秒容積(forced expiratory volume in one second,F(xiàn)EV1)、一秒容積占預(yù)計(jì)值的百分比(forced expiratory volume in one second total predicted value,F(xiàn)EV1%pred)、第一秒用力呼氣容積與用力肺活量比值(forced expiratory volume in one second forced vital capacity,F(xiàn)EV1/FVC%)、用力肺活量(forced vital capacity,F(xiàn)VC)。
肺部手術(shù)切除過程中,取病變遠(yuǎn)端(>5cm)目測(cè)正常的、約0.5 cm2×0.5 cm大小新鮮標(biāo)本,使用預(yù)冷生理鹽水沖洗2遍后,迅速置入液氮中快速冷凍,后期提取蛋白進(jìn)行Western blot檢測(cè);另取一份標(biāo)本進(jìn)行固定、石蠟包埋,應(yīng)用HE及免疫組化、熒光檢測(cè)目的蛋白的表達(dá)。
選取橫斷面氣道外徑在500~1000μm的小氣道,作為研究對(duì)象。每張玻片于200×視野下3個(gè)隨機(jī)區(qū)域采用 IPP(Image-Pro Plus 6.0,Media Cybernetics,Silver Spring,MD)圖像分析軟件測(cè)量小氣道平滑肌的厚度,氣道外徑,小氣道平滑肌厚度與氣道外徑的百分比(the percentage of the area of airway smooth muscle/transverse airway of small airway,WT%),小氣道平滑肌面積占支氣管斷面總面積的百分比(the thickness of airway smooth muscle/external diameter of small airway,WA%)。
取肺組織蠟塊切片(厚度4μm)經(jīng)酒精脫水、烘干、脫蠟等處理后根據(jù)實(shí)驗(yàn)需要加入一抗(兔抗人α-SMA抗體,稀釋濃度1∶500;兔來源NOX4抗體,稀釋濃度 1∶200;小鼠來源 TGF-β抗體,稀釋濃度 1∶200;兔來源 CollagenⅣ抗體,稀釋濃度 1∶500;兔來源GAPDH稀釋濃度 1∶1 000),4℃過夜。PBS沖洗 3次;加入二抗,37℃孵育1 h,PBS沖洗,DAB顯色10 min;自來水沖洗3次,蘇木精液染色7 min,水洗數(shù)次,1%鹽酸酒精分化液分化1 s,自來水水洗3次,80%乙醇 30 s,95%乙醇 30 s,無水乙醇Ⅰ2 min,無水乙醇Ⅱ4 min,二甲苯Ⅰ2 min,二甲苯Ⅱ4 min,中性樹膠封片。以PBS代替一抗作為陰性對(duì)照。結(jié)果判定:以細(xì)胞漿內(nèi)出現(xiàn)棕黃色顆粒為陽性反應(yīng)。采集圖片并進(jìn)行圖像分析。
提取總蛋白測(cè)定蛋白含量,取60μg組織蛋白通過10%聚丙烯酰胺凝膠SDS-PAGE轉(zhuǎn)移至PVDF膜,經(jīng)奶粉封閉1 h后加入目的蛋白的抗體(兔抗人α-SMA抗體,稀釋濃度1∶1 000;兔來源NOX4抗體,稀釋濃度1∶500,小鼠來源TGF-β抗體,稀釋濃度1∶500,兔來源GAPDH稀釋濃度1∶2 000)一抗4℃孵育過夜,PBS清洗后加入辣根過氧化物酶標(biāo)記的山羊抗目的蛋白IgG(1∶5 000),室溫孵育1 h后進(jìn)行化學(xué)發(fā)光。應(yīng)用ChemiDoc MP Imaging System分析系統(tǒng)曝光、掃描、保存圖片。
正態(tài)分布數(shù)據(jù)用均數(shù)±標(biāo)準(zhǔn)差(ˉx±s)表示,采用SPSS17.0版本軟件進(jìn)行統(tǒng)計(jì)學(xué)分析,使用Graph-Pad Prism6.0版本軟件進(jìn)行統(tǒng)計(jì)圖表的制作。兩樣本間均數(shù)比較采用獨(dú)立樣本 t檢驗(yàn)。
COPD組及對(duì)照組在性別、年齡及吸煙史間比較差異無統(tǒng)計(jì)學(xué)意義(P>0.05),COPD組肺功能指標(biāo) FEV1、FVC、FEV1 FVC%、FEV1%pred均明顯低于對(duì)照組(表1)。
Tab.1 Demographics of patients with COPD and non-COPD control subjects(ˉx±s)
常規(guī)HE染色觀察兩組小氣道形態(tài)改變:COPD組氣道上皮細(xì)胞增生明顯,部分上皮細(xì)胞鱗狀化生,小氣道平滑肌細(xì)胞增生肥大,小氣道上皮細(xì)胞平滑肌束較對(duì)照組明顯增厚(圖1,見彩圖頁Ⅰ)。
Fig. 1 Morphological characterization of airway smooth muscle mass in small airway of control group and COPD group(HE ×200)A:Control group;B:COPD group;COPD:Chronic obstructive pulmonary disease
2.3.1 COPD組與對(duì)照組小氣道平滑肌細(xì)胞重塑改變的比較 用平滑肌標(biāo)志性抗體α-SMA標(biāo)記小氣道平滑肌,計(jì)算WT%及WA%,結(jié)果顯示:COPD輕、中、重組的WT%和WA%均明顯高于對(duì)照組(p<0.05,圖2,表2,圖2見彩圖頁Ⅰ)。COPD不同肺功能分級(jí)輕、中、重組間比較,WA%和WT%差別均有顯著性(p<0.05,表 2)
Fig. 2 Immunohistological feature of ASM mass determined by IHC using anti-α-SMA antibody between control and COPD group(×200)A:Control group;B:COPD mild group;C:COPD moderate group;D:COPD severe group;α-SMA:α-smooth muscle actin;COPD:Chronic obstructive pulmonary disease;ASM:Airway smooth muscle;IHC:Immunohistochemistry
Tab.2 Comparison of WT%and WA%between control group and COPD group(ˉx±s)
2.3.2 COPD組與對(duì)照組小氣道上皮細(xì)胞上皮間質(zhì)轉(zhuǎn)分化改變的比較 用α-SMA及細(xì)胞外基質(zhì)膠原蛋白Ⅳ作為上皮細(xì)胞間質(zhì)轉(zhuǎn)化的標(biāo)記蛋白,檢測(cè)COPD組和對(duì)照組上皮細(xì)胞EMT的情況,結(jié)果顯示:COPD組與對(duì)照組相比,上皮細(xì)胞增生明顯,部分上皮細(xì)胞表達(dá)α-SMA及 CollagenⅣ(圖3,見彩圖頁Ⅰ)。COPD組上皮細(xì)胞α-SMA及CollagenⅣ免疫染色平均光密度(AOD)分別為(0.12±0.06、0.22±0.13)明顯高于對(duì)照組(0.04±0.02、0.09±0.04,P均 <0.01)。
Fig. 3 Expressions of α-SMA and collagen Ⅳ in small airway epithelial cells derived from control group and COPD group α-SMA:α-smooth muscle actin
2.4.1 小氣道平滑肌細(xì)胞及上皮細(xì)胞NOX4的表達(dá) 結(jié)果通過免疫組織化學(xué)技術(shù)及免疫熒光雙染法發(fā)現(xiàn)NOX4在小氣道上皮細(xì)胞、氣道平滑肌細(xì)胞、成纖維細(xì)胞的細(xì)胞質(zhì)中均有表達(dá)(圖4,圖5,見彩圖頁Ⅱ),NOX4在COPD組及對(duì)照組小氣道平滑肌及氣道上皮細(xì)胞中的表達(dá)明顯高于對(duì)照組(p<0.05,圖4、5,表3);COPD不同肺功能分級(jí)輕、中、重組間比較,NOX4的表達(dá)差別均有顯著性(表3);Western blot法檢測(cè)發(fā)現(xiàn) COPD組 NOX4蛋白表達(dá)量(1.53±0.23)明顯高于對(duì)照組(0.86±0.34)(p<0.05,圖6)。
Fig. 4 Expression of TGF-β and NOX4 in small airway derived from control group and COPD group(×200)a-d:Immunohistochemical results of NOX4;a:Control group,b:COPD mild group,c:COPD moderate group,d:COPD severe group;e-f:Immunohistochemical results of TGF-β;e:Control group;f:COPD group;COPD:Chronic obstructive pulmonary disease;NOX4:Nicotinamide adenine dinucleotide phosphate oxidase 4;TGF-β:Transforming growth factor-β
Fig. 5 NOX4 and α-SMA expressions in small airway derived from control group and COPD group were determined by immunofluorescent assay(×200)a:Control group;b:COPD group;NOX4:Nicotinamide adenine dinucleotide phosphate oxidase 4;α-SMA:α-smooth muscle actin
2.4.2 小氣道平滑肌細(xì)胞及上皮細(xì)胞TGFβ的表達(dá)結(jié)果通過免疫組織化學(xué)技術(shù)發(fā)現(xiàn)TGF-β廣泛表達(dá)于小氣道上皮細(xì)胞、氣道平滑肌細(xì)胞甚至網(wǎng)狀基底膜,TGF-β在COPD組小氣道平滑肌細(xì)胞和氣道上皮細(xì)胞的表達(dá)均高于對(duì)照組(p<0.05,圖 4,表 3);COPD不同肺功能分級(jí)輕、中、重組間比較,TGF-β的表達(dá)差別均有顯著性(表3)。Western blot法檢測(cè)發(fā)現(xiàn) COPD組 TGF-β蛋白表達(dá)量(3.06±0.83)明顯高于對(duì)照組(1.19±0.18)(p<0.05,圖 6)。
結(jié)果表明,小氣道平滑肌WT%與肺功能FEV1/FVC%,F(xiàn)EV1%pred呈負(fù)相關(guān)(r=-0.645及-0.714,P均 <0.01)、WA%與肺功能 FEV1/FVC%,F(xiàn)EV1%pred呈負(fù)相關(guān)(r=-0.645及-0.692,P均 <0.01)小氣道平滑肌細(xì)胞 NOX4的表達(dá)與肺功能 FEV1/FVC%,F(xiàn)EV1%pred呈負(fù)相關(guān)(r=-0.821及-0.808,P均 <0.01)
Tab.3 The results of average optical density measure of NOX4 and TGF-βdetermined by immunohistochemistry in control group andCOPD group
Fig.6 The protein expressions of NOX4,TGF-βandα-SMA protein in lung tissues of control group and COPD group were determined by immunoblotting analysis
氣道重塑是引起氣道狹窄和氣流受限的主要原因,其主要涉及氣道上皮、黏液腺、及平滑肌等氣道結(jié)構(gòu)細(xì)胞的改變,隨著氣道結(jié)構(gòu)細(xì)胞功能的改變最終可能導(dǎo)致氣流受限及病情的進(jìn)行性進(jìn)展。一直以來,關(guān)于氣道平滑肌的重塑多集中于哮喘,大量研究表明氣道平滑肌的增生與哮喘疾病的嚴(yán)重性及病情的進(jìn)展存在一定的相關(guān)性[18-20]。由于COPD的氣道重塑主要發(fā)生于小氣道(氣道外徑<2 mm),而小氣道取材相對(duì)困難,因此有關(guān)小氣道平滑肌重塑在慢阻肺中的作用研究較少。
本研究選取人體氣道外徑在500~1000μm的小氣道作為研究對(duì)象。我們的結(jié)果顯示:COPD組小氣道平滑肌的厚度較正常對(duì)照組明顯增高,小氣道平滑肌厚度與氣道外徑的百分比(WT%)及小氣道平滑肌面積占支氣管斷面總面積的百分比(WA%)明顯高于對(duì)照組,且與氣流受限嚴(yán)重程度呈正相關(guān),提示COPD患者存在小氣道平滑肌的重塑,且COPD小氣道平滑肌的重塑與氣流受限嚴(yán)重程度相關(guān),此研究結(jié)果與國(guó)外研究一致[21]。
細(xì)胞外基質(zhì)(extracellular matrix,ECM)是一種由細(xì)胞分泌到細(xì)胞外間質(zhì)的大分子物質(zhì),其構(gòu)成復(fù)雜的網(wǎng)架結(jié)構(gòu),具有支持并連接組織結(jié)構(gòu)、調(diào)節(jié)細(xì)胞功能的作用。ECM蛋白的沉積是氣道重塑的另一重要特征,有研究表明氣道平滑肌有分泌ECM和致使ECM蛋白沉積的作用[22-24],異常的 ECM沉積可以反過來影響平滑肌的合成和收縮功能[25-27]。本研究發(fā)現(xiàn):COPD患者不僅存在平滑肌細(xì)胞的增生,還伴有細(xì)胞外基質(zhì)CollagenⅣ蛋白的異常沉積,提示COPD患者不僅存在平滑肌增生異常,還可能存在分泌功能亢進(jìn)的現(xiàn)象導(dǎo)致ECM的異常沉積,且ECM蛋白的沉積可能促進(jìn)了慢阻肺氣道重塑的進(jìn)展,由此形成惡性循環(huán)。
COPD氣道重塑過程中,除了以氣道平滑肌細(xì)胞增生功能異常為主的平滑肌細(xì)胞重塑,上皮細(xì)胞功能異常促發(fā)上皮間質(zhì)轉(zhuǎn)化亦是COPD氣道重塑的新發(fā)機(jī)制。新近研究顯示:COPD患者其小氣道網(wǎng)狀基底膜出現(xiàn)斷裂,上皮細(xì)胞穿過斷裂的基底膜進(jìn)入黏膜固有層,逐漸失去上皮細(xì)胞特性如細(xì)胞間粘附功能逐漸喪失演變?yōu)楦哂屑≡?xì)胞特點(diǎn)的細(xì)胞,表達(dá)α-SMA、膠原蛋白、波形蛋白等并促進(jìn)細(xì)胞外基質(zhì)如膠原蛋白及纖維連接蛋白的沉積并最終分化成為肌成纖維細(xì)胞,參與氣道重塑的發(fā)生[11-15]。我們的研究也發(fā)現(xiàn):COPD患者存在小氣道網(wǎng)狀基底膜增厚、新生血管形成,細(xì)胞外基質(zhì)CollagenⅣ的明顯沉積,上皮細(xì)胞增生的同時(shí)部分表達(dá)α-SMA,提示COPD患者存在明顯的上皮細(xì)胞間質(zhì)轉(zhuǎn)化,上皮細(xì)胞EMT的發(fā)生促進(jìn)COPD氣道重塑的發(fā)生、發(fā)展。
氧化應(yīng)激是COPD重要的發(fā)病機(jī)制,研究表明:氧化應(yīng)激會(huì)導(dǎo)致小鼠氣道壁膠原沉積、氣道壁增厚,出現(xiàn)氣道重塑及肺氣腫的病理改變[28]。此外,氧化應(yīng)激是啟動(dòng)上皮細(xì)胞出現(xiàn)EMT的重要因素,研究表明:過氧化氫可以誘導(dǎo)A549細(xì)胞表達(dá)vimentin與α-SMA等間質(zhì)表型蛋白,減少E-cadherin等上皮表型蛋白的表達(dá),即出現(xiàn)EMT[29];氧化應(yīng)激除了外界來源之外,ROS亦是細(xì)胞內(nèi)源性氧化應(yīng)激的重要來源。NADPH氧化酶是細(xì)胞內(nèi)ROS的主要來源之一[30]。NADPH氧化酶通過質(zhì)膜傳遞電子產(chǎn)生ROS[30]。我們的研究結(jié)果顯示:NADPH氧化酶4(NOX4)廣泛表達(dá)于氣道上皮細(xì)胞、平滑肌細(xì)胞及纖維細(xì)胞,免疫組化及免疫印跡結(jié)果證實(shí)COPD氣道上皮細(xì)胞和平滑肌細(xì)胞NOX4的表達(dá)明顯高于對(duì)照組。NOX4的表達(dá)量與COPD氣流受限的嚴(yán)重程度呈正相關(guān),提示NADPH氧化酶參與COPD氣道重塑的發(fā)生、發(fā)展。我們推測(cè):COPD患者NOX4表達(dá)異常,產(chǎn)生多量?jī)?nèi)源性ROS,一方面促進(jìn)平滑肌細(xì)胞增生、肥大導(dǎo)致平滑肌重塑;另一方面促進(jìn)上皮細(xì)胞間質(zhì)轉(zhuǎn)化和細(xì)胞外基質(zhì)膠原蛋白Ⅳ的沉積,共同參與氣道重塑的發(fā)生。
TGF-β超家族是參與COPD氣道重塑的發(fā)生發(fā)展的重要信號(hào)分子。眾多證據(jù)表明:TGF-β通過促進(jìn)氣道基質(zhì)及腎臟基質(zhì)成分膠原蛋白的合成和基底膜的增厚[31,32],誘導(dǎo)氣道平滑肌細(xì)胞的增生[33]、誘導(dǎo)成纖維細(xì)胞轉(zhuǎn)分化為肌成纖維細(xì)胞[34]等途徑,廣泛參與COPD氣道重塑的發(fā)生。新近研究發(fā)現(xiàn):TGF-β可以明顯誘導(dǎo)人肺泡上皮細(xì)胞向間質(zhì)細(xì)胞表型轉(zhuǎn)化[29,35],但具體機(jī)制不明。我們的結(jié)果顯示:COPD患者氣道內(nèi)TGF-β廣泛表達(dá)于上皮細(xì)胞、平滑肌細(xì)胞及網(wǎng)狀基底膜,免疫組化及免疫印跡結(jié)果證實(shí)COPD組氣道上皮細(xì)胞和平滑肌細(xì)胞TGF-β的表達(dá)明顯高于對(duì)照組。TGF-β的表達(dá)量與COPD氣流受限的嚴(yán)重程度呈正相關(guān),提示TGF-β信號(hào)分子亦參與COPD氣道重塑的發(fā)生。有研究顯示TGF-β可以誘導(dǎo)纖維細(xì)胞內(nèi)NOX4的活化導(dǎo)致細(xì)胞內(nèi)ROS產(chǎn)生增多進(jìn)而引起纖維化,我們的研究尚無法證明兩者的因果關(guān)系。
總之,本研究通過獲取慢阻肺患者肺組織,對(duì)COPD小氣道重塑及其相關(guān)機(jī)制進(jìn)行多靶點(diǎn)的研究,我們的研究結(jié)果證實(shí)COPD患者存在明顯以氣道上皮細(xì)胞間質(zhì)轉(zhuǎn)化和平滑肌細(xì)胞異常增生為主的氣道重塑,TGF-β和NOX4參與上皮及平滑肌細(xì)胞功能異常。我們的研究提出:TGF-β和NOX4可能通過誘導(dǎo)平滑肌細(xì)胞增生肥大為主的平滑肌重塑以及上皮細(xì)胞間質(zhì)轉(zhuǎn)化的機(jī)制參與慢阻肺氣道重塑的發(fā)生。為慢阻肺機(jī)制研究及臨床藥物治療靶點(diǎn)的選擇提供良好的實(shí)驗(yàn)依據(jù)。
[1] Vestbo J,Hurd SS,Rodriguez-Roisin R.The 2011 revision of the global strategy for the diagnosis,management and prevention of COPD—why and what[J].Clin Respir J,2012,6(4):208-214.
[2] Salomon JA,Vos T,Hogan DR,et al.Common values in assessing health outcomes from disease and injury:disability weights measurement study for the Global Burden of Disease Study 2010[J].Lancet,2012,380(9859):2129-2143.
[3] Lopez AD,Shibuya K,Rao C,et al.Chronic obstructive pulmonary disease:current burden and future projections[J].Eur Respir J,2006,27(2):397-412.
[4] Trupin L,Earnest G,San Pedro M,et al.The occupational burden of chronic obstructive pulmonary disease[J].Eur Respir J,2003,22(3):462-469.
[5] Zhong N,Wang C,Yao W,et al.Prevalence of chronic obstructive pulmonary disease in China:a large,populationbased survey[J].Am J Respir Crit Care Med,2007,176(8):753-760.
[6] 唐文芳,劉日輝,于雅琴,等.2000—2014年中國(guó)40歲以上成人慢性阻塞性肺疾病患病率的Meta分析[J].吉林大學(xué)學(xué)報(bào)(醫(yī)學(xué)版),2015,41(5):961-968.
[7] Hamid Q,Cosio M,Lim S.Inflammation and remodeling in chronic obstructive pulmonary disease[J].J Allergy Clin Immunol,2004,114(6):1479-1481.
[8] Hogg JC,Chu F,Utokaparch S,et al.The nature of smallairway obstruction in chronic obstructive pulmonary disease[J].N Engl J Med,2004,350(26):2645-2653.
[9] Kranenburg AR,Willems-Widyastuti A,Moori WJ,et al.Enhanced bronchial expression of extracellular matrix proteins in chronic obstructive pulmonary disease[J].Am J Clin Pathol,2006,126(5):725-735.
[10]Wright JL,Postma DS,Kerstjens HA,et al.Airway remodeling in the smoke exposed guinea pig model[J].Inhal Toxicol,2007,19(11):915-923.
[11]Mahmood MQ,Sohal SS,Shukla SD,et al.Epithelial mesenchymal transition in smokers:large versus small airways and relation to airflow obstruction[J].Int J Chron Obstruct Pulmon Dis,2015,10:1515-1524.
[12] Sohal SS,Walters EH.Epithelial mesenchymal transition(EMT)in small airways of COPD patients[J].Thorax,2013,68(8):783-784.
[13] Sohal SS,Ward C,Walters EH.Importance of epithelial mesenchymal transition(EMT)in COPD and asthma[J].Thorax,2014,69(8):768.
[14]Wu L,Chau J,Young RP,et al.Transforming growth factor-beta1 genotype and susceptibility to chronic obstructive pulmonary disease[J].Thorax,2004,59(2):126-129.
[15]Xie S,Sukkar MB,Issa R,et al.Mechanisms of induction of airway smooth muscle hyperplasia by transforming growth factorβ[J].Am J Physiol Lung Cell Mol Physiol,2007,293(1):L245-L253.
[16] Konigshoff M,Kneidinger N,Eickelberg O.TGF-beta singnaling in COPD:deciphering genetic and cellular susceptibilities for future therapeutic regimen[J].Swiss Med Wkly,2009,139(39-40):554-563.
[17]Pendyala S,Natarajan V.Redox regulation of NOX proteins[J].Respir Physiol Neurobiol,2010,174(3):265-271.
[18] Bai TR,Cooper J,Koelmeyer T,et al.The effect of age and duration of disease on airway structure in fatal asthma[J].Am J Respir Crit Care Med,2000,162(2 Pt 1):663-669.
[19] James A,Carroll N.Airway smooth muscle in health and disease;methods of measurement and relation to function[J].Eur Respir J,2000,15(4):782-789.
[20]Benayoun L,Druilhe A,Dombret MC,et al.Airway structural alterations selectively associated with severe asthma[J].Am J Respir Crit Care Med,2003,167(10):1360-1368.
[21]Hamid Q,Cosio M,Lim S.Inflammation and remodeling in chronic obstructive pulmonary disease[J].J Allergy Clin Immunol,2004,114(6):1479-1481.
[22]Potter-Perigo S,Baker C,Tsoi C,et al.Regulation of proteoglycan synthesis by leukotriene d4 and epidermal growth factor in bronchial smooth muscle cells[J].Am JRespir Cell Mol Biol,2004,30(1):101-108.
[23]Johnson PR,Black JL,Carlin S,et al.The production of extracellular matrix proteins by human passively sensitized airway smooth muscle cells in culture:the effect of beclomethasone[J].Am J Respir Crit Care Med,2000,162(6):2145-2151.
[24]Moir LM,Burgess JK,Black JL.Transforming growth factor beta 1 increases fibronectin deposition through integrin receptor alpha5 beta1 on human airway smooth muscle[J].JAllergy Clin Immunol,2008,121(4):1034-1039.
[25]Bourke JE,Li X,F(xiàn)oster SR,et al.Collagen remodeling by airway smooth muscle is resistant to steroids andβ2-agonists[J].Eur Respir J,2011,37(1):173-182.
[26]Dekkers BG,Schaafsma D,Tran T,et al.Insulin-induced laminin expression promotes a hypercontractile airway smooth muscle phenotype[J].Am J Respir Cell Mol Biol,2009,41(4):494-504.
[27]Tran T,Halayko AJ.Extracellular matrix and airway smooth muscle interactions:a target for modulating airway wall remodeling and hyperresponsiveness[J].Can J Physiol Pharmacol,2007,85(7):666-671.
[28]Churg A,Tai H,Coulthard T,et al.Cigarette smoke drives small airway remodeling by induction of growth factors in the airway wall[J].Am J Respir Crit Care Med,2006,174(12):1327-1334.
[29]Gorowiec MR,Borthwick LA,Parker SM,et al.Free radical generation induces epithelial to mesenchymal transition in lung epithelium via a TGF-β1-dependent mechanism[J].Free Radic Biol Med,2012,52(6):1024-1032.
[30]Kenyon NJ,Ward RW,McGrew G,et al.TGF-beta1 causes airway fibrosis and increased collagen I and III mRNA in mice[J].Thorax,2003,58(9):772-777.
[31]Shin JH,Shim JW,Kim DS,et al.TGF-beta effects on airway smooth muscle cell proliferation,VEGF release and signal transduction pathways[J].Respirology,2009,14(3):347-353.
[32]Evans RA,Tian YC,Steadman R,et al.TGF-betal-mediated fibroblast myofibroblast terminal differentiation the role of smad proteins[J].Exp Cell Res,2003,282(2):90-100.
[33]陳麗娜,周 剛,吳 樂,等.NADPH氧化酶抑制劑apocynin對(duì)力竭運(yùn)動(dòng)大鼠運(yùn)動(dòng)性蛋白尿的影響[J].中國(guó)應(yīng)用生理學(xué)雜志,2016,32(2):116-120.
[34]Evans RA,Tian YC,Steadman R,et al.TGF-betal-mediated fibroblast myofibroblast terminal differentiation the role of smad proteins[J].Exp Cell Res,2003,282(2):90-100.
[35]Liu Y,Gao W,Zhang D.Effects of cigarette smoke extract on A549 cells and human lung fibroblasts treated with transforming growth factor-beta1 in a coculture system[J].Clin Exp Med,2010,10(3):159-167.
The effects of NOX4 and TGF-βinvolved in airway remodeling of Chronic Obstructive Pulmonary Disease
CHEN Juan1,CUI Jie-da1,2,GUOXiao-tong1,LIU Xian-yan3,ZHANG Hong1
(1.Department of Respiratory and Critical Care Medicine,the General Hospital of Ningxia Medical University,Yinchuan 750004;2.Ningxia Medical University,Yinchuan 750004;3.Binzhou Peoples Hospital,Binzhou 256600,China)
Objective:To investigate the role of nicotinamide adenine dinucleotide phosphate 4(NADPH4,NOX4)and transforming growth factor-beta(TGF-β)involve in pathogenesis of airway remodeling in chronic obstructive pulmonary disease(COPD).Methods:Lung tissues from 36 COPD patients and 19 patients with normal lung function were enrolled in this study.The volume of airway smooth muscle(ASM)mass was evaluated.The expressions of NOX4,collagenⅣ (ColⅣ)and TGF-βwere tested by a semi-quantitative morphological and/or immunohistochemistry staining method and Western blot,and their correlations with pulmonary functions were analyzed.Results:①Index of the percentage of the thickness of ASM/external diameter of small airway(WT%)and the percentage of the area of ASM/transverse area of small airway(WA%)were significantly higher in the COPD group than those in controls(p<0.05).②In COPD patients,epithelial cells metaplasia were found andα-SMA and ColⅣwere expressed in a part of epithelial cells.The expressions ofα-small muscle actin(α-SMA)and ColⅠ were increased in COPD patients in comparison with the patients without obstructive airway disorders(p<0.05).③The expression of NOX4 in ASM and epithelial cells of COPD patients was significantly higher in comparison with the patients without COPD.The expression of NOX4 in ASM of small airway were statistically different among different COPD grade(p<0.05).Correlation analysis demonstrated that the level of NOX4 protein in ASM of small airway was inversely associated with pulmonary functions.④The expression of TGF-βin COPDwas significantly higher than that in patients without COPD.⑤ Correlation analysis demonstrated that the level of NOX4 protein in ASM of small airway,WT%and WA%were inversely associated with pulmonary functions.Conclusion:①The airway remodeling of COPD is characterized by increasing hyperplasia of small airway smooth muscle.②Remodeling of airway smooth muscle associats with severity of airflow limitation in COPD patients.③The expressions of NOX4,TGF-βandα-SMA in COPDepithelial cells and small airway smooth muscle cells are significantly enhanced.The expressions of NOX4,α-SMA and TGF-βare positively correlated with the severity of chronic obstructive pulmonary air flow,suggesting that TGF-βand NOX4 signaling may be involved in the development of chronic obstructive pulmonary disease airway remodeling.
chronic obstructive pulmonary disease(COPD); airway remodeling; nicotinamide adenine dinucleotide phosphate oxidase(NADPH); transforming growth factor-β(TGF-β)
R73-3
A
1000-6834(2017)06-481-09
10.12047/j.cjap.5601.2017.115
國(guó)家自然科學(xué)基金地區(qū)基金(81360004);寧夏回族自治區(qū)科技支撐計(jì)劃項(xiàng)目(2015);寧夏醫(yī)科大學(xué)優(yōu)勢(shì)學(xué)科群建設(shè)科研項(xiàng)目(XY201615);寧夏醫(yī)科大學(xué)校級(jí)科研項(xiàng)目(2015);寧夏自然科學(xué)基金項(xiàng)目(NZ17170)
2017-05-22
2017-10-18
△【通訊作者】Tel:15909512018;E-mail:zhangh9001@163.com