亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        下調(diào)大鼠血管平滑肌細(xì)胞血管緊張素轉(zhuǎn)換酶的表達(dá)

        2017-12-19 09:44:31,,,,

        ,,, ,

        下調(diào)大鼠血管平滑肌細(xì)胞血管緊張素轉(zhuǎn)換酶的表達(dá)

        周華,張翠芳,陳瑞瑞,高奮,楊志明

        目的構(gòu)建腺病毒載體使其攜帶血管緊張素轉(zhuǎn)換酶(ACE)基因短發(fā)夾RNA(shRNA),觀察選擇性下調(diào)大鼠血管平滑肌細(xì)胞ACE表達(dá)。方法從之前構(gòu)建的真核表達(dá)載體p-ACE-shRNA中擴(kuò)增ACE-shRNA片段,采用RT-PCR法并克隆進(jìn)穿梭質(zhì)粒pDC316中,將構(gòu)建好的pDC316-ACE-shRNA穿梭質(zhì)粒載體和pBHGlox-E1,3Cre骨架病毒共轉(zhuǎn)染293細(xì)胞,進(jìn)行病毒顆粒包裝重組、滴度測(cè)定和純化。隨后進(jìn)行原代培養(yǎng)大鼠血管平滑肌細(xì)胞轉(zhuǎn)染,通過實(shí)時(shí)熒光定量PCR分別在轉(zhuǎn)染前及轉(zhuǎn)染后24 h、48 h、72 h檢測(cè)ACE mRNA的表達(dá)。結(jié)果經(jīng)PCR檢測(cè)證實(shí)攜帶ACE-shRNA重組腺病毒載體構(gòu)建成功并制備出了高滴度重組病毒,大鼠血管平滑肌細(xì)胞被轉(zhuǎn)染后24 h,ACE mRNA表達(dá)無明顯變化;被轉(zhuǎn)染后48 h,ACE mPNA表達(dá)顯著降低,差異有統(tǒng)計(jì)學(xué)意義(P<0.05);被轉(zhuǎn)染后72 h時(shí)ACE mRNA表達(dá)更低。結(jié)論本實(shí)驗(yàn)成功構(gòu)建重組腺病毒載體其攜帶ACE-shRNA片段,同時(shí)證實(shí)shRNA可選擇性下調(diào)原代培養(yǎng)大鼠血管平滑肌細(xì)胞上ACE表達(dá),可能為心血管病基因治療提供新思路。

        RNA干擾;平滑肌細(xì)胞;血管緊張素轉(zhuǎn)換酶

        平滑肌細(xì)胞(VSMC)的增殖、遷移、收縮、凋亡,基質(zhì)重塑、內(nèi)質(zhì)網(wǎng)應(yīng)激、胰島素抵抗參與了動(dòng)脈粥樣硬化等多種心血管疾病的病理生理過程[1]。血管緊張素Ⅱ作為腎素-血管緊張素-醛固酮系統(tǒng)(RAAS)生物活性最強(qiáng)、作用范圍最廣的活性肽,通過激活血管平滑肌細(xì)胞上PI3K/Akt 、MAPK 等信號(hào)轉(zhuǎn)導(dǎo)通路促進(jìn)上述病理過程發(fā)生[2]。然而,傳統(tǒng)的治療是對(duì)血管緊張素轉(zhuǎn)換酶(ACE)的非循環(huán)特異阻斷、組織特異、血管壁特異,因?yàn)椴煌课籄CE介導(dǎo)的病理過程有其特殊性,局部ACE阻斷越來越受到科研工作者的重視[3]。本研究通過構(gòu)建腺病毒載體使其含有ACE-shRNA,在原代培養(yǎng)大鼠血管平滑肌細(xì)胞利用RNAi技術(shù)下調(diào)ACE基因表達(dá),旨在探索RNAi技術(shù)選擇性阻斷平滑肌細(xì)胞上的ACE在動(dòng)脈粥樣硬化等心血管疾病基因治療中的應(yīng)用前景。

        1 材料與方法

        1.1 主要材料 先期由本研究小組構(gòu)建完成的質(zhì)粒

        p-ACE-shRNA,人源U6啟動(dòng)子與增強(qiáng)綠色熒光蛋白(EGFP)序列,內(nèi)含靶向大鼠ACE shRNA片段、兩個(gè)限制性內(nèi)切酶位點(diǎn)Sac1和EcoR1之間克隆的質(zhì)粒pGenesil-1。腺病毒包裝系統(tǒng)AdMax同時(shí)包括穿梭質(zhì)粒pDC316-EGFP-shRNA-U6、腺病毒骨架質(zhì)粒pBHGlox-E1,3Cre與HEK- 293細(xì)胞(北京本元正陽基因技術(shù)公司)。各種限制性內(nèi)切酶、Taq DNA聚合酶、T4 DNA連接酶、RNase A(TaKaRa)。PCR產(chǎn)物回收純化試劑盒(寧波中鼎生物技術(shù)有限公司)與轉(zhuǎn)染試劑Lipofectamine2000(Gibco)。DMEM、F12培養(yǎng)基 (Gibco)、質(zhì)粒提取試劑盒(QIAGEN)、氯化銫(Sigma)、胎牛血清(Hyclone)。超絕總RNA抽提試劑盒含UNIQ-10柱(上海生工生物工程技術(shù)有限公司)。其他各種試劑均為國(guó)產(chǎn)或進(jìn)口分析純?cè)噭?。探針、引物的合成與設(shè)計(jì)均由上?;瞪锛夹g(shù)工程有限公司完成。

        1.2 目的基因獲取 取1 μL p-ACE-shRNA質(zhì)粒用熱休克法轉(zhuǎn)化入DH-5α感受態(tài)大腸桿菌,挑取一單克隆,接入LB培養(yǎng)基5 mL,37 ℃振蕩培養(yǎng)18 h,取菌液3 mL提取質(zhì)粒。在HindⅢ限制酶和BamHI限制酶的作用下,水浴37 ℃酶切過夜。1%瓊脂糖凝膠進(jìn)行酶切產(chǎn)物電泳,取酶切產(chǎn)物5 μL和1 mL 6×Loading Buffer 混勻上樣,10 V/cm進(jìn)行電泳。

        1.3 pDC316-EGFP-ACE-shRNA-U6重組質(zhì)粒的構(gòu)建 1%的瓊脂糖凝膠進(jìn)行酶切產(chǎn)物電泳,紫外燈下收集質(zhì)粒pDC316-EGFP-shRNA-U6的5.2kb片段酶切產(chǎn)物和質(zhì)粒pACE-shRNA的60bp片段酶切產(chǎn)物,并回收DNA片段。在16 ℃水浴DNA連接酶連接過夜,取連接產(chǎn)物5 μL用熱休克法轉(zhuǎn)化入DH-5α感受態(tài)大腸桿菌,37 ℃下振蕩培養(yǎng)18 h,取菌液3 mL提取質(zhì)粒,用酶切法篩選重組正確質(zhì)粒,重組質(zhì)粒命名為pDC316-EGFP-ACE-shRNA-U6。pDC316-EGFP-ACE-shRNA-U6重組質(zhì)粒行酶切鑒定,送上海英駿生物技術(shù)有限公司進(jìn)行測(cè)序。

        1.4 雙質(zhì)粒共同轉(zhuǎn)染293細(xì)胞,同源重組并且產(chǎn)生重組腺病毒 轉(zhuǎn)染的前1 d,于六孔板中接種293細(xì)胞,每孔有5×105個(gè)細(xì)胞,培養(yǎng)基為胎牛血清DMEM+10% Hyclone,置于37 ℃培養(yǎng)箱含5% CO2培養(yǎng)過夜。待細(xì)胞生長(zhǎng)到80%~90%底面積時(shí),取骨架質(zhì)粒和穿梭質(zhì)粒進(jìn)行共轉(zhuǎn)染。用脂質(zhì)體Lipofectamine2000進(jìn)行轉(zhuǎn)染,轉(zhuǎn)染前先用培養(yǎng)液DMEM進(jìn)行稀釋,轉(zhuǎn)染之后每天觀察細(xì)胞的出毒跡象。出毒現(xiàn)象:細(xì)胞呈葡萄狀變大變圓,開始明顯噬斑出現(xiàn)時(shí)。待大部分細(xì)胞發(fā)生病變即從底部脫落進(jìn)行收毒。重組的腺病毒命名為Ad5-EGFP-ACE-shRNA。

        1.5 重組的Ad5-EGFP-ACE-shRNA腺病毒進(jìn)行PCR鑒定 在細(xì)胞瓶25 cm2中培養(yǎng)293細(xì)胞,待生長(zhǎng)到90%細(xì)胞滿時(shí),取上述第1代的500 μL毒種接種于細(xì)胞上,待細(xì)胞完全病變時(shí)凍融細(xì)胞3次按前述方法,收集病毒的上清液離心,此即為第2代的毒種(P2)。進(jìn)行PCR鑒定目的基因,PCR的反應(yīng)條件:94 ℃ 5 min、94 ℃ 30 s、55 ℃ 30 s、72 ℃ 40 s共30個(gè)循環(huán);72 ℃5 min。然后再進(jìn)行毒種的生產(chǎn)、純化和滴度測(cè)定。

        1.6 大鼠血管平滑肌細(xì)胞培養(yǎng)及鑒定 解剖取出大鼠的胸腹主動(dòng)脈,于無菌條件下,組織貼塊法培養(yǎng)平滑肌細(xì)胞,當(dāng)細(xì)胞長(zhǎng)滿80%培養(yǎng)瓶底時(shí)即可傳代,胞漿α-肌動(dòng)蛋白免疫熒光陽性即鑒定為平滑肌細(xì)胞,實(shí)驗(yàn)采用第3~4代細(xì)胞進(jìn)行。

        1.7 重組的Ad5-EGFP-ACE-shRNA腺病毒轉(zhuǎn)染大鼠血管平滑肌細(xì)胞 當(dāng)大鼠的血管平滑肌細(xì)胞生長(zhǎng)至90%融合時(shí)進(jìn)行傳代,放置的無菌蓋玻片6孔板用5×105個(gè)/孔進(jìn)行接種,同步化細(xì)胞后分為空白對(duì)照組、陽性病毒組和陰性病毒組。在接種24 h后,達(dá)到70%~80%細(xì)胞融合時(shí)進(jìn)行轉(zhuǎn)染,將培養(yǎng)板中培養(yǎng)基吸去,等量的維持液加入,選擇對(duì)數(shù)生長(zhǎng)期的細(xì)胞,直接將病毒按每孔1∶10接種滴入培養(yǎng)基中。48 h后在熒光顯微鏡下觀察轉(zhuǎn)染的效率。分別于轉(zhuǎn)染前及轉(zhuǎn)染后24 h、48 h、72 h收集細(xì)胞并提取mRNA。

        1.8 綠色熒光蛋白檢測(cè)評(píng)價(jià)轉(zhuǎn)染的效率 用倒置相差顯微鏡,在轉(zhuǎn)染后48 h,先后經(jīng)GFP特異性的濾色片濾光后通過自然光和紫外激發(fā)光源觀察六孔板內(nèi)的血管平滑肌細(xì)胞,兩人同時(shí)獨(dú)立估計(jì)相同視野下的綠色熒光細(xì)胞數(shù)與自然光下總細(xì)胞數(shù)的百分比,取其平均值作為細(xì)胞轉(zhuǎn)染效率。

        1.9 實(shí)時(shí)熒光定量PCR檢測(cè)ACE mRNA的表達(dá) 按試劑盒說明書提取總RNA,之后反轉(zhuǎn)錄成cDNA。在GenBank上選取大鼠的ACE mRNA序列(序列號(hào)NM_012544),ACE探針序列為:5’-FTGGCACTTGTCTGTCACTGGAGCCTGATP-3’,上游引物為:5’-GCCTCCCAACGAGTTAGAAGAG-3’,下游引物為:5’-CGGGACGTGGCCATTATATT-3’;β-actin探針序列為:5’-FTCCAGCCTTCCTTCCTGGGTATGGAATC-3’,上游引物為:5’-TCAGGTCATCACTATCGGCAAT-3’,下游引物為:5’-GGATGTCAACGTCACACTTCATG-3’;探針修飾:P代表TAQMAN-MGB基團(tuán),F(xiàn)代表FAM。制備標(biāo)準(zhǔn)的曲線樣品:需要先將樣品管家基因(β-actin)以及目的基因進(jìn)行PCR的擴(kuò)增,行梯度稀釋其產(chǎn)物用于標(biāo)準(zhǔn)曲線制做。PCR的反應(yīng)條件為94 ℃預(yù)變性2 min,94 ℃變性15 s,60 ℃退火、延伸30 s,共30個(gè)循環(huán)。在GeneAmp 5700 sequence Detector System檢測(cè)儀上進(jìn)行擴(kuò)增同時(shí)收集熒光信號(hào),分析結(jié)果。為消除RT及PCR反應(yīng)效率差異、mRNA定量對(duì)結(jié)果的影響,實(shí)驗(yàn)中同步行絕對(duì)拷貝數(shù)定量檢測(cè)內(nèi)對(duì)照β-actin,以檢測(cè)基因和β-actin絕對(duì)拷貝數(shù)之比為檢測(cè)基因相對(duì)表達(dá)量。

        2 結(jié) 果

        2.1 pACE-shRNA質(zhì)粒酶切鑒定 pACE-shRNA質(zhì)粒酶切鑒定電泳圖(見圖1)。質(zhì)粒pACE-shRNA經(jīng)HindIII和BamHI雙酶切預(yù)計(jì)得到4.8kb和60bp的小片段兩條帶。實(shí)驗(yàn)結(jié)果與預(yù)計(jì)相符。

        2.2 pDC316-EGFP-ACE-shRNA-U6重組質(zhì)粒酶切鑒定及測(cè)序鑒定 pDC316-EGFP-ACE-shRNA-U6重組質(zhì)粒的酶切鑒定電泳圖(見圖2)。質(zhì)粒pDC316-EGFP-ACE-shRNA-U6中shRNA編碼序列后方設(shè)計(jì)插入了一個(gè)SalI位點(diǎn),所以,經(jīng)SalI單酶切預(yù)計(jì)能產(chǎn)生一條線性化條帶5.2kb,電泳的結(jié)果與預(yù)計(jì)相符,經(jīng)酶切鑒定該重組的質(zhì)粒正確。在英駿公司用引物Cdcksi-r進(jìn)行測(cè)序比對(duì)表明:測(cè)出序列與U6啟動(dòng)子序列完全一致。說明編碼序列shRNA已成功構(gòu)建到pDC316-EGFP-ACE-shRNA-U6重組質(zhì)粒中,所以,pDC316-EGFP-ACE-shRNA-U6重組質(zhì)粒構(gòu)建正確。

        注:1代表BamHI+HindIII雙酶切pACE-shRNA質(zhì)粒;M1代表DL15 000(上樣量5 μL,條帶大小分別為15 000、10 000、7 500、5 000、2 500、1 000、250);M2代表DL2 000(上樣量5 μL,條帶大小分別為2 000、1 000、50、500、250、100)。

        注:1代表 SalI單酶切pDC316-EGFP-ACE-shRNA-U6質(zhì)粒;2代表 pDC316-EGFP-ACE-shRNA-U6質(zhì)粒;M1代表DL2 000(上樣量5 μL,條帶大小分別為2 000、1 000、750、500、250 、100); M2代表DL15 000(上樣量5 μL,條帶大小分別為15 000、10 000、7 500、5 000、2 500、1 000)。

        2.3 Ad5-EGFP-ACE-shRNA重組腺病毒進(jìn)行PCR鑒定、測(cè)序及滴度測(cè)定 Ad5-EGFP-ACE-shRNA重組腺病毒經(jīng)PCR可擴(kuò)增出目的基因,大小約在500bp左右(見圖3)。

        DNA測(cè)序同前比對(duì)的結(jié)果表明,通過位點(diǎn)特異性基因重組方式產(chǎn)生重組腺病毒所克隆的序列和已知的序列完全一致,未發(fā)現(xiàn)有移碼或突變,表明腺病毒骨架質(zhì)粒和穿梭質(zhì)粒確實(shí)發(fā)生了重組。

        滴度測(cè)定的結(jié)果表明:Ad5-EGFP-ACE-shRNA重組腺病毒的感染性滴度(TCID50/mL)為 8×109,Ad5對(duì)照腺病毒的感染性滴度(TCID50/mL)為7.3×109。

        注:M代表DL2000Marker(2 000bp、1 000bp、750bp、500bp、250bp、100bp); 1代表Ad5-EGFP-ACE-shRNA-U6提DNA原液;2代表Ad5-EGFP-ACE-shRNA-U6提DNA稀釋10倍;3代表 Ad5-EGFP-ACE-shRNA-U6提DNA稀釋100倍;4代表陽性對(duì)照(pDC316-EGFP-ACE-shRNA-U6);5代表陰性對(duì)照。

        2.4 大鼠血管平滑肌細(xì)胞培養(yǎng)及鑒定 在倒置顯微鏡下觀察可見血管平滑肌細(xì)胞形狀多樣,一般為三角形、梭形、星形或帶形,部分區(qū)域細(xì)胞呈單層,部分區(qū)域呈多層重疊,高低起伏,呈現(xiàn)VSMC特征性的“谷”“峰”狀生長(zhǎng)(見圖4)。通過熒光顯微鏡掃描,RASMC核周胞漿可呈現(xiàn)較強(qiáng)的黃綠色熒光,呈彌散分布或顆粒狀存在,而背景則無熒光顯現(xiàn),證實(shí)培養(yǎng)平滑肌細(xì)胞成功(見圖5)。

        圖4 大鼠主動(dòng)脈平滑肌細(xì)胞(×100)

        圖5平滑肌細(xì)胞α-肌動(dòng)蛋白免疫熒光鑒定(×200)

        2.5 Ad5-EGFP-ACE-shRNA重組腺病毒成功轉(zhuǎn)染了大鼠血管平滑肌細(xì)胞 Ad5-EGFP-ACE-shRNA重組腺病毒轉(zhuǎn)染大鼠血管平滑肌細(xì)胞 48 h后,在熒光顯微鏡下觀察發(fā)現(xiàn)有所編碼的綠色熒光蛋白(EGFP)的病毒載體表達(dá),熒光細(xì)胞與自然光下細(xì)胞數(shù)之比即為轉(zhuǎn)染效率,大約95%以上,證實(shí)病毒載體轉(zhuǎn)染平滑肌細(xì)胞成功;并且可見感染細(xì)胞出現(xiàn)很強(qiáng)凝聚性而且可形成細(xì)胞團(tuán),有時(shí)可呈串狀,細(xì)胞折光性增強(qiáng)(見圖6)。

        圖6 Ad5-EGFP-ACE-shRNA轉(zhuǎn)染大鼠血管平滑肌細(xì)胞后48 h(×100)

        2.6 Ad5-EGFP-ACE-shRNA重組腺病毒轉(zhuǎn)染大鼠血管平滑肌細(xì)胞后對(duì)ACE mRNA表達(dá)的影響 與空白對(duì)照組和陰性病毒組相比,陽性病毒組(Ad5-EGFP-ACE-shRNA)細(xì)胞ACE mRNA的表達(dá)轉(zhuǎn)染后24 h無明顯變化;48 h明顯降低,差異有統(tǒng)計(jì)學(xué)意義(P<0.01);72 h更低;表明Ad5-EGFP-ACE-shRNA 顯著下調(diào)了ACE mRNA 表達(dá)。而空白對(duì)照組和陰性病毒組轉(zhuǎn)染前后的各時(shí)間點(diǎn)ACE mRNA的表達(dá)無明顯變化(見表1)。結(jié)果提示RNAi所介導(dǎo)的基因沉默主要由于靶mRNA降解而引起。

        組別0h24h48h72h空白對(duì)照組0.862±0.0420.863±0.0320.864±0.0330.861±0.031陰性病毒組0.853±0.0320.854±0.0280.852±0.0320.853±0.032陽性病毒組0.855±0.0240.853±0.026 0.454±0.0241)3) 0.253±0.0132)4) 與空白對(duì)照組比較,1)P<0.05,2)P<0.01;與陰性病毒組比較,3)P<0.05,4)P<0.01。

        3 討 論

        隨著基因治療技術(shù)的興起,現(xiàn)代醫(yī)學(xué)診療已經(jīng)向分子水平轉(zhuǎn)變?;蚣夹g(shù)已經(jīng)廣泛用于生命科學(xué)的各個(gè)領(lǐng)域,為人類多種疾病的診療帶來革命性變化[4]。RNAi是一種進(jìn)化上高度保守、具有高度特異性,與特異性位點(diǎn)結(jié)合后只降解與其同源序列的RNA,所致的一種轉(zhuǎn)錄后基因沉默現(xiàn)象,利用該技術(shù)可特異性阻斷某些致病基因的表達(dá)[5]。近年來國(guó)內(nèi)外對(duì)RNAi技術(shù)的研究極為廣泛,并取得重大進(jìn)展[6-8]。本研究通過構(gòu)建腺病毒載體使其含有ACE-shRNA,在原代培養(yǎng)大鼠血管平滑肌細(xì)胞利用RNAi技術(shù)特異性下調(diào)ACE基因表達(dá),為研究AngⅡ介導(dǎo)血管平滑肌細(xì)胞在動(dòng)脈粥樣硬化等多種心血管疾病中的病理生理作用奠定基礎(chǔ)。

        VSMC生長(zhǎng)、分化,細(xì)胞外基質(zhì)重塑、降解,炎癥反應(yīng),胰島素抵抗等貫穿動(dòng)脈粥樣硬化全過程。越來越多的證據(jù)表明 AngⅡ通過作用VSMC上的AT1受體,激活細(xì)胞內(nèi)多種信號(hào)轉(zhuǎn)導(dǎo)通路調(diào)控上述病理過程[9]。

        VSMC作為血管壁的重要成分,其高度分化的收縮表型在維持血管壁張力中發(fā)揮重要作用。VSMC從動(dòng)脈中膜遷移到內(nèi)膜、吞噬脂質(zhì)后轉(zhuǎn)變?yōu)榕菽?xì)胞,分泌大量的細(xì)胞外基質(zhì),引起纖維組織增生,因此VSMC的異常增殖、收縮、遷移可促進(jìn)早期粥樣硬化斑塊的形成[10]。 AngⅡ可通過兩類通路調(diào)控VSMC生長(zhǎng)、分化。首先,通過激活受體(非酪氨酸蛋白酶家族)包括EGFR、 PDGFR、 c-Src、 PYK2、FAK、JAK2,調(diào)控VSMC生長(zhǎng)、分化(增殖、遷移、收縮)。其次,激活酪氨酸蛋白酶家族包括MAPK家族、p70S6K、Akt、PKCs等參與上述病理過程[9]。其中PI3K/Akt、P70s6K的激活可促進(jìn)VSMC增殖,P38MAPK的激活促進(jìn)VSMC增殖的同時(shí)也促進(jìn)其收縮,EPK激活對(duì)上述三種病理過程均有促進(jìn)作用[11-14]。有研究表明AngⅡ誘導(dǎo)的活性氧簇(ROS)又對(duì)上述通路具有調(diào)節(jié)作用[15]。

        晚期病變尤其是不穩(wěn)定斑塊以纖維帽薄、大量炎癥細(xì)胞浸潤(rùn)、平滑肌細(xì)胞和細(xì)胞外基質(zhì)較少為特征,VSMC的凋亡、壞死以及細(xì)胞外基質(zhì)降解在晚期病變尤其是不穩(wěn)定斑塊的破裂中發(fā)揮重要作用[10];多項(xiàng)研究表明AngⅡ可激活MAPK、PLD、PLA2,作用于NADP/NADPH氧化酶,激活線粒體上的KATP,產(chǎn)生更多ROS,從而啟動(dòng)線粒體介導(dǎo)的VSMC的凋亡,誘發(fā)斑塊破裂等急性心血管事件[16-20];細(xì)胞外基質(zhì)作為血管壁的重要組成成分,其中基質(zhì)金屬蛋白酶9(MMP-9)與組織蛋白酶抑制劑1比值(TIMP-1)在維持細(xì)胞外基質(zhì)平衡及斑塊穩(wěn)定性中發(fā)揮重要作用,晚期斑塊中AngⅡ通過激動(dòng)VSMC上的AT1受體,雖不影響TIMP-1表達(dá),但可促進(jìn)基質(zhì)金屬蛋白酶1(MMP-1)、基質(zhì)金屬蛋白酶3(MMP-3)和MMP-9表達(dá),MMP/TIMP增大,促進(jìn)Ⅰ型前膠原肽N端(PⅠNP)及Ⅲ型前膠原肽N端(PⅢNP)的降解,導(dǎo)致斑塊破裂,且平滑肌細(xì)胞的凋亡及細(xì)胞外基質(zhì)的降解與腹主動(dòng)脈瘤(AAA)明確相關(guān)[21-25]。

        AngⅡ以濃度依賴的方式激活I(lǐng)RE1通路,促進(jìn)內(nèi)質(zhì)網(wǎng)生成更多轉(zhuǎn)錄因子NF-κB及AP-1,介導(dǎo)ERStress相關(guān)的炎癥反應(yīng),從而參與動(dòng)脈粥樣硬化全過程[26-29];且ER Stress相關(guān)的炎癥可能與慢性腎臟疾病(CKD)所致動(dòng)脈粥樣硬化相關(guān)[26,30]。有研究證明IRE1α/IKK/NF-κB誘導(dǎo)的炎癥反應(yīng)能夠被血管緊張素轉(zhuǎn)化酶抑制所阻斷,也有學(xué)者用IRE1α-siRNA技術(shù)阻斷了AngⅡ介導(dǎo)的炎癥反應(yīng),從而減少了ER stress相關(guān)AS的發(fā)生[31]。利用RNAi技術(shù)在基因水平通過下調(diào)ACEmRNA,減少AngⅡ生成,有望為動(dòng)脈粥樣硬化的基因治療帶來希望。早期對(duì)VSMC的研究表明,胰島素可通過MAPK通路刺激血管平滑肌細(xì)胞的生長(zhǎng)和遷移[32],意味著胰島素在某些情況下可促進(jìn)AS的形成。然而,最近的研究表明,胰島素通過與IRS-1作用激活PI3K/Akt通路,刺激中內(nèi)皮型一氧化氮合酶(eNOS)和誘導(dǎo)型一氧化氮合成酶(iNOS)表達(dá)而促進(jìn)NO產(chǎn)生,改善血管重塑,延緩動(dòng)脈粥樣硬化的發(fā)生[33-34]。有趣的是,在胰島素抵抗條件下,PI3K/Akt通路的抑制與ERK/MAPK通路激活有關(guān)[35]。Folli 等[36]在小鼠主動(dòng)脈 VSMC模型中發(fā)現(xiàn) AngⅡ能夠減弱胰島素對(duì)IRS-1磷酸化作用及PI3K通路的激活,證明了AngⅡ能增加胰島素抵抗,進(jìn)而加速AS形成。血管緊張素轉(zhuǎn)化酶抑制劑及AT1受體拮抗劑的應(yīng)用能夠改善胰島素抵抗,延緩AS進(jìn)程,本研究利用RNAi技術(shù)阻斷VSMC上ACE的表達(dá)。

        傳統(tǒng)藥物治療對(duì)ACE 的阻斷并非循環(huán)特異、組織特異、血管壁特異,因?yàn)椴煌课籄CE介導(dǎo)的病理過程有其特殊性,局部ACE阻斷越來越受到科研工作者的重視[3]。在強(qiáng)調(diào)金準(zhǔn)醫(yī)學(xué)的今天,RNAi技術(shù)特異性阻斷VSMC上的ACE表達(dá)較傳統(tǒng)的血管緊張素轉(zhuǎn)化酶抑制劑及AT1受體拮抗劑對(duì)腎素-血管緊張素-醛固酮系統(tǒng)的阻斷具有獨(dú)特優(yōu)勢(shì),為進(jìn)一步研究血管平滑肌細(xì)胞對(duì)動(dòng)脈粥樣硬化、腹主動(dòng)脈瘤等多種心血管疾病的作用機(jī)制奠定基礎(chǔ)。

        [1] Brozovich FV,Nicholson CJ,Degen CV.Mechanisms of vascular smooth muscle contraction and the basis for pharmacologic treatment of smooth muscle disorders[J].Pharmacol Rev,2016,68:476-532.

        [2] Mehta PK,Kathy K.Griendling angiotensin Ⅱ cell signaling: physiological and pathological effects in the cardiovascular system[J].Am J Physiol Cell Physiol,2007,292:C82-C97.

        [3] Cole J,Quach DL,Sundaram K,et al.Mice lacking endothelial angiotensin-converting enzyme have a normal blood pressure[J].Circ Res, 2002,90:87-92.

        [4] Koenig O,Walker T,Perle N,et al.New aspects of gene-silencing for the treatment of cardiovascular diseases[J].Pharmaceuticals,2013,6:881-914.

        [5] Zimmermann TS,Lee ACH,Akinc A,et al.RNAi-mediated gene silencing in non-human primates[J].Nature,2006,441:111-114.

        [6] Grishok A,Pasquinelli AE,Conte D,et al.Genes and mechanisms related to RNAinterference regulate expression of the small temporal RNAs that control C.elegans developmental timing[J].Cell,2001,106:23-34.

        [7] Maillard PV,Ciaudo C,Marchais A,et al.Antiviral RNA interference in mammalian cells[J].Science,2013,342:235-238.

        [8] Ketting RF,F(xiàn)ischer SE,Bernstein E,et al.Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C.elegans[J].Genes Dev,2001,15:2654-2659.

        [9] Nakashima H,Suzuki H,Ohtsu H,et al.Angiotensin Ⅱ regulates vascular and endothelial dysfunction: recent topics of angiotensin Ⅱ type-1 receptor signaling in the vasculature[J].Current Vascular Pharmacology,2006,4:67-78.

        [10] Bennett MR,Sinha S,Owens GK.Vascular smooth muscle cells in atherosclerosis[J].Circulation Research,2016,118:692-702.

        [11] Xi XP,Graf K,Goetze S,et al.Central role of the MAPK pathway in ang Ⅱ-mediated DNA synthesis and migration in rat vascular smooth muscle cells[J].Arterioscler Thromb Vasc Biol,1999,19:73-82.

        [12] Kyaw M,Yoshizumi M,Tsuchiya K,et al.Src and Cas are essentially but differentially involved in angiotensin Ⅱ-stimulated migration of vascular smooth muscle cells via extracellular signal-regulated kinase 1/2 and c-Jun NH2terminal kinase activation[J].Mol Pharmacol,2004,65:832-841.

        [13] Huang C,Jacobson K,Schaller MD.MAP kinases and cell migration[J].J Cell Sci,2004,117:4619-4628.

        [14] Ushio-Fukai M,Alexander RW,Akers M,et al.p38 Mitogen-activated protein kinase is a critical component of the redox-sensitive signaling pathways activated by angiotensin Ⅱ.Role in vascular smooth muscle cell hypertrophy[J].J Biol Chem,1998,273:15022-15029.

        [15] Zhang F,Ren X,Zhao M,et al.Angiotensin-(1-7) abrogates angiotensin II-induced proliferation,migration and inflammation in VSMCs through inactivation of ROS-mediated PI3K/Akt and MAPK/ERK signaling pathways[J].Scientific Repo Rts,2016,6:34621.

        [16] Ardehali H,O’Rourke B.Mitochondrial K(ATP) channels in cell survival and death[J].J Mol Cell Cardiol,2005,39(1):7-16.

        [17] Broadhead MW,Kharbanda RK,Peters MJ,et al.KATPchannel activation induces ischemic preconditioning of the endothelium in humans in vivo[J].Circulation,2004,110(15):2077-2082.

        [18] Heusch G,Schulz R.Preservation of peripheral vasodilation as a surrogate of cardioprotection? The mechanistic role of ATP-dependent potassium channels and the mitochondrial permeability transition pore[J].Eur Heart J,2011,32(10):1184-1186.

        [19] Huang J,Lam GY,Brumell JH.Autophagy signaling through reactive oxygen species[J].Antioxid Redox Signal,2011,14(11):2215-2231.

        [20] Kimura S,Zhang GX,Nishiyama A,et al .Role of NAD(P)H oxidase- and mitochondria-derived reactive oxygen species in cardioprotection of ischemic reperfusion injury by angiotensin Ⅱ[J].Hypertension,2005,45(5):860-866.

        [21] Guo YS,Wu ZG,Yang JK,et al.Impact of losartan and angiotensin Ⅱ on the expression of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 in rat vascular smooth muscle cells[J].Molecular Medicine Reports,2015,11:1587-1594.

        [22] Madala SK,Pesce JT,Ramalingam TR,et al.Matrix metalloproteinase 12-deficiency augments extracellular matrix degrading metalloproteinases and attenuates IL-13-dependent fibrosis[J].J Immunol,2010,184: 3955-3963.

        [23] Yang DC,Ma ST,Tan Y.Imbalance of matrix metalloproteinases/tissue inhibitor of metalloproteinase-1 and loss of fibronectin expression in patients with congestive heart failure[J].Cardiology,2010,116: 133-141.

        [24] Dabek J,Glogowska-Ligus J,Szadorska B.Transcription activity of MMP-2 and MMP-9 metalloproteinase genes and their tissue inhibitor (TIMP-2) in acute coronary syndrome patients[J].J Postgrad Med,2013,59:115-120.

        [25] Ding SF,Liu HJ,Lu Q,et al.Changes of matrix metalloproteinase-9 and tissue inhibitors of metalloproteinase-1 during left ventricular remodeling in acute myocardial infarction patients after percutaneous coronary intervention[J].Biomed Res-India,2013,24: 179-184.

        [26] Hu P,Han Z,Couvillon AD,et al.Autocrine tumor necrosis factor alpha links endoplasmic reticulum stress to the membrane death receptor pathway through IRE1alpha-mediated NF-kappaB activation and downregulation of TRAF2 expression[J].Mol Cell Biol,2006,26:3071-3084.

        [27] Kaneko M,Niinuma Y,Nomura Y.Activation signal of nuclear factor-kappa B in response to endoplasmic reticulum stress is transduced via IRE1 and tumor necrosis factor receptor-associated factor 2[J].Biol Pharm Bull,2003,26: 931-935.

        [28] Urano F,Wang X,Bertolotti A,et al.Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1[J].Science,2000,287: 664-666.

        [29] Wu L,Wang D,Xiao Y,et al.Endoplasmic reticulum stress plays a role in the advanced glycation end product-induced inflammatory response in endothelial cells[J].Life Sci,2014,110:44-51.

        [30] Masuda R,Jablonski K,Cavasin MA,et al.Endoplasmic reticulum stress effector CCAAT/enhancer-binding protein homologous protein (CHOP) regulates chronic kidney disease-induced vascular calcification[J].J Am Heart Assoc,2014,3:e000949.

        [31] Martinon F,Chen X,Lee AH,et al.TLR activation of the transcription factor XBP1 regulates innate immune responses in macrophages[J].Nat Immunol,2010,11:411-418.

        [32] Hsueh WA,Law RE.Insulin signaling in the arterial wall[J].Am J Cardiol,1999,84:21J-24J.

        [33] Begum N,Ragolia L,Rienzie J,et al.Regulation of mitogen-activated protein kinase phosphatase-1 induction by insulin in vascular smooth muscle cells.Evaluation of the role of the nitric oxide signaling pathway and potential defects in hypertension[J].J Biol Chem,1998,273: 25164-25170.

        [34] Trovati M,Massucco P,Mattiello L,et al.Human vascular smooth muscle cells express a constitutive nitric oxide synthase that insulin rapidly activates,thus increasing guanosine 3’:5’-cyclic monophosphate and adenosine 3’:5’-cyclic monophosphate concentrations[J].Diabetologia,1999,42:831-839.

        [35] Hsueh WA,Quinones MJ.Role of endothelial dysfunction in insulin resistance[J].Am J Cardiol,2003,92(4A):10J.

        [36] Folli F,Kahn CR,Hansen H,et al.Angiotensin Ⅱ inhibits insulin signaling in aortic smooth muscle cells at multiple levels.A potential role for serine phosphorylation in insulin/angiotensin Ⅱ crosstalk[J].J Clin Invest,1997,100:2158-2169.

        Selective Knockdown of Angiotensin-converting Enzyme in Rat Vascular Smooth Muscle Cells by RNA Interference

        Zhou Hua,Zhang Cuifang,Cheng Ruirui,Gao Fen,Yang Zhiming

        Second Hospital,Shanxi Medical University,Taiyuan 030001,Shanxi,China

        Objective To construct adenovirus vector carrying the shRNA of rat angiotensin- converting enzyme (ACE) .To selectively knock down the expression of angiotensin-converting enzyme (ACE) in rat vascular smooth muscle cells by RNA interference.Methods The rat ACE-shRNA segments was obtained from plasmid p-ACE-shRNA which was constructed at an earlier date by RT-PCR and then was cloned into the shuttle plasmid pDC316 to form the pDC316-EGFP-ACE-shRNA vector.The pDC316-EGFP-ACE-shRNA plasmid was cotransfected with genomic plasmid pBHGlox-E1,3Cre into 293 cells to package the recombinant adenovirus.The recombinant adenovirus was transfected into the primary cultured rat vascular smooth muscle cells.ACE mRNA expression were analyzed from rat vascular smooth muscle cells before transfection and 24,48,72 hours after transfection by real-time fluorescence quantitative PCR.Results Recombinant adenoviral vector Ad-EGFP-ACE-shRNA was constructed successfully,which was confirmed by restriction enzyme digestion,PCR and GFP expression.Expression of ACE mRNA in rat vascular smooth muscle cells were significantly reduced 48 hours after Ad-EGFP-ACE-shRNA transfection,and was nearly undetectable after 72 hours.Conclusion The recombinant adenoviral vector carrying ACE-shRNA is successfully constructed.RNA interference can knockdown ACE expression in cultured rat vascular smooth muscle cells,which maybe provide a new gene therapy idea for cardiovascular diseases.

        RNA interference;vascular smooth muscle cells;angiotensin-converting enzyme

        R329

        A

        10.3969/j.issn.1672-1349.2017.22.007

        1672-1349(2017)22-2821-06

        山西省衛(wèi)生廳科技攻關(guān)項(xiàng)目(No.200933)

        山西醫(yī)科大學(xué)第二醫(yī)院(太原030001),E-mail:zhouhua032670@sina.com

        信息:周華,張翠芳,陳瑞瑞,等.下調(diào)大鼠血管平滑肌細(xì)胞血管緊張素轉(zhuǎn)換酶的表達(dá)[J].中西醫(yī)結(jié)合心腦血管病雜志,2017,15(22):2821-2826.

        2017-04-16)

        (本文編輯 郭懷印)

        最新日本女优中文字幕视频| 夜夜综合网| 久久久99精品视频| 国产精品国产三级国产专区50| 又黄又爽又色视频| 韩国无码av片在线观看网站| 欧洲亚洲视频免费| 精品国产3p一区二区三区| 香蕉视频在线观看亚洲| 久久久久久国产精品无码超碰动画 | 精品女同一区二区三区免费播放| 日本女优在线一区二区三区 | 国产一区二区黄色网页 | 91精品全国免费观看青青| 国产精品午夜福利天堂| 久久国语露脸国产精品电影| 国产va在线观看免费| 亚洲成a∨人片在线观看无码| 亚洲大胆美女人体一二三区| 婷婷伊人久久大香线蕉av| 依依成人精品视频在线观看| 丰满熟妇人妻av无码区| 毛片在线视频成人亚洲| 色费女人18毛片a级毛片视频| 欧美在线三级艳情网站| 日本五十路熟女在线视频| 美女在线一区二区三区视频| 亚洲人成影院在线观看| 亚洲情a成黄在线观看动漫尤物| 人妻丰满精品一区二区| 久久精品国产99国产精偷| 天天影视色香欲综合久久| 中文字幕人妻少妇美臀| 丝袜美腿福利一区二区| 国产乱xxⅹxx国语对白| 禁止免费无码网站| 亚洲成人激情深爱影院在线| 欧美日韩国产精品自在自线| 午夜一级在线| 白浆高潮国产免费一区二区三区| 日本在线 | 中文|