亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Some Sharp Schwarz Inequalities of the Unit Disk in

        2017-12-16 05:13:14WUKekeCHENWeiTANGXiaomin
        關(guān)鍵詞:邊界點(diǎn)湖州圓盤

        WU Keke, CHEN Wei, TANG Xiaomin

        (School of Science, Huzhou University, Huzhou 313000, China)

        SomeSharpSchwarzInequalitiesoftheUnitDiskin

        WU Keke, CHEN Wei, TANG Xiaomin

        (School of Science, Huzhou University, Huzhou 313000, China)

        In this paper, we establish a new type of the classical Schwarz lemma for holomorphic functions on the unit disk in, and we also obtain some Schwarz inequalities of the derivative of the holomorphic function at a boundary point of the unit disk. Those results extend the classical inner Schwarz lemma and boundary Schwarz lemma respectively.

        holomorphic function; Schwarz lemma; unit disk; boundary point

        0 Introduction

        The Schwarz lemma is one of the most important results in the classical complex analysis, which has become a crucial theme in many branches of mathematical research for over a hundred years. LetDbe the open unit disk in the complex plane. And let ?Dbe the boundary ofD. The classical Schwarz lemma is stated as follows.

        Theorem1[1]Letf:D→Dbe holomorphic andf(0)=0. Then |f(z)|≤|z| for anyz∈Dand |f′(0)|≤1. Moreover, if |f(z0)|=|z0| for somez0∈D{0} or if |f′(0)|=1, then there is a real numberθsuch thatf(z)=eiθz.

        A great deal of work has been devoted to generalizations of Schwarz lemma to more general settings. We refer to [2-7] for a more complete insight on the Schwarz lemma.

        From the point of view of applications, it has been a very natural task to obtain various versions of the Schwarz lemma at the boundary. There is the following classical boundary Schwarz lemma.

        Theorem2[1]Letf:D→Dbe a holomorphic function. Iffis holomorphic atz=1 withf(0)=0 andf(1)=1, thenf′(1)≥1. Moreover, the inequality is sharp.

        In [8], ?rnek got some sharp forms of the Schwarz lemma on the boundary of the unit disk. Osserman gave the Schwarz lemma at the boundary of the unit disk, and presented some sharp Schwarz inequalities at a boundary point of the unit disk in [9]. One of the typical results, in this paper, is stated as follows.

        Theorem3[9]Letf:D→Dbe a holomorphic function. Iff(z) is holomorphic atz0∈?Dwithf(0)=0 and |f(z0)|=1, then

        Moreover,

        |f′(z0)|≥1.

        (1)

        And the equality holds in (1) if and only iff(z)=zeiθf(wàn)or someθ∈. Furthermore, iff(0)=f′(0)=…=f(n-1)(0)=0, then

        |f′(z0)|≥n.

        (2)

        The equality holds in (2) if and only iff(z)=zneiθf(wàn)or someθ∈.

        Establishing various versions of the Schwarz lemma at the boundary has attracted attentions of many mathematicians. Here we refer the reader to [10-15], as well as, many references therein for discussions related to such studies. Our main purpose here is to establish a new type of the classical Schwarz lemma for holomorphic function on the unit disk, and give the optimal estimates of the derivative of the holomorphic function at a boundary point of the unit disk.

        1 Main results

        We first introduce some notations and definitions, and present the Schwarz lemma for the holomorphic functions on the unit disk.

        Leta∈Dand consider the M?bius mappingφaofDthat interchangesaand 0,

        Theorem4 Letfbe a holomorphic function onDwith |f(z)-b|<1 andf(0)=a, where -1+b

        (3)

        Moreover,

        |f′(0)|≤1-(a-b)2.

        (4)

        The equality in (3) for some nonzeroz∈Dor in (4) holds if and only if

        for someθ∈.

        ProofTakeg(z)=f(z)-band

        for anyz∈D. Thengandφare both holomorphic self-mappings ofDwithφ(0)=0. It follows from Theorem 1 that |φ(z)|≤|z| for eachz∈Dand |φ′(0)|≤1. This implies

        Hence, we obtain

        |f(z)|-a≤|f(z)-a|≤|z||1-(a-b)(f(z)-b)|≤|z|(|1+(a-b)b|+|a-b||f(z)|).

        This gives

        Notice that

        This, together with |φ′(0)|≤1, yields

        Thus, we have

        |f′(0)| ≤1-(a-b)2.

        By Theorem 1, the equality in (3) for some nonzeroz∈Dor in (4) holds if and only if

        whereθ∈. It follows that

        whereθ∈. The proof is complete.

        Now, we give the Schwarz inequality of holomorphic function at a boundary point of the unit disk.

        Theorem5 Letfbe a holomorphic function onDwith |f(z)-b|<1 andf(0)=a, where -1+b

        (5)

        The equality holds in (5) if and only if

        whereθ∈satisfieseiθ=.

        Thus, by the Theorem 3 we get

        |φ′(z0)|≥1.

        (6)

        Since

        (7)

        combine (6) and (7) to obtain

        It follows that

        Notice that

        Then

        [1+(a-b)b]z0eiθ+a= [1+(a-b)z0eiθ](1 +b),

        This yields

        The proof is complete.

        Finally, we consider the Schwarz inequality at a boundary point of the unit disk for the holomorphic function with some special Taylor expansion.

        Theorem6 Letfbe a holomorphic function onD. Suppose thatf(z)=a+cnzn+cn+1zn+1+… and |f(z)-b|<1, wheren≥1,cn≠0, -1+b

        (8)

        The equality holds in (8) if and only if

        whereθ∈satisfieseiθ=.

        bnzn+bn+1zn+1+…,

        wherebn,bn+1,…∈andbn=≠0. Hence,

        φ(0)=φ′(0)=φ″(0)=…=φn-1(0)=0.

        It follows from Theorem 3 that

        This implies

        If the equality holds in (8), then |φ′(z0) |=n. Hence, by Theorem 3 we have

        which yields

        whereθ∈satisfieseiθ, Then

        Thus, we have

        The proof is complete.

        RemarkFrom the proof of Theorem 5 and 6, it is clear that we only to need assume that the function f is1up to the boundary ofDnearz0.

        [1] GARNETT J. Bounded Analytic Functions [M]. New York: Academic Press, 1981.

        [2] AHLFORS L. An extension of Schwarz's lemma [J]. Trans Amer Math Soc, 1938, 43(3): 359-364.

        [3] YAU S. A general Schwarz lemma for K?hler manifolds [J]. Amer J Math, 1978, 100(1): 197-203.

        [4] CHELST D. A generalized Schwarz lemma at the boundary [J]. Proc Amer Math Soc, 2001, 129(11): 3 275-3 278.

        [5] KIM K, LEE H. Schwarz's Lemma from a Differential Geometric Viewpoint [M]. Bangalore: IISc Press, 2011.

        [6] KRANTZ S G. The Schwarz lemma at the boundary [J]. Complex Var Elliptic Equ, 2011, 56(5): 455-468.

        [7] ELIN M, JACOBZON F, LEVENSHTEIN M, et al. The Schwarz Lemma: Rigidity and Dynamics, Harmonic and Complex Analysis and Its Applications [M]. Berlin: Springer, 2014.

        [8] ?RNEK B. Sharpened forms of the Schwarz lemma on the boundary [J]. Bull Korean Math Soc, 2013, 50(6): 2 053-2 059.

        [9] OSSERMAN R. A sharp Schwarz inequality on the boundary [J]. Proc Amer Math Soc, 2000, 128(12): 3513-3517.

        [10] BURNS D M, KRANTZ S G. Rigidity of holomorphic mappings and a new Schwarz lemma at the boundary [J]. J Amer Math Soc, 1994, 7(3): 661-676.

        [11] HUANG X J. A preservation principle of extremal mappings near a strongly pseudoconvex point and its applications [J]. Illinois J Math, 1994, 38(2): 283-302.

        [12] LIU T S, WANG J F, TANG X M. Schwarz lemma at the boundary of the unit ball innand its applications [J]. J Geom Anal, 2015, 25(3): 1 890-1 914.

        [13] LIU T S, TANG X M. Schwarz lemma at the boundary of strongly pseudoconvex domain inn[J]. Math Ann, 2016, 366(1-2): 655-666.

        [14] TANG X M, LIU T S. Schwarz lemma at the boundary of the egg domainBp1,p2inn[J]. Canad Math Bull, 2015, 58(2): 381-392.

        [15] TANG X M, LIU T S, ZHANG W J. Schwarz lemma at the boundary and rigidity property for holomorphic mappings on the unit ball ofn[J]. Proc Amer Math Soc, 2017, 145(4): 1 709-1 716.

        單位圓盤上若干精確的Schwarz不等式

        吳科科, 陳 偉, 唐笑敏

        (湖州師范學(xué)院 理學(xué)院, 浙江 湖州 313000)

        建立了復(fù)平面中單位圓盤上全純函數(shù)的一個(gè)新型Schwarz引理,并獲得了單位圓盤上全純函數(shù)的導(dǎo)函數(shù)在邊界點(diǎn)處的若干Schwarz不等式.這些結(jié)果分別推廣了經(jīng)典的內(nèi)部型Schwarz引理和邊界型Schwarz引理.

        全純函數(shù); Schwarz引理; 單位圓盤; 邊界點(diǎn)

        O174.56

        date:2017-09-14

        s:This work is supported by the NNSF of China (11571105) and the Xinmiao Talent Project of Zhejiang Province (2016R427003).

        Biography:TANG Xiaomin, Ph.D, Professor, Research Interests: complex analysis. E-mail:txm@zjhu.edu.cn

        O174.56DocumentcodeAArticleID1009-1734(2017)10-0006-06

        MSC2010:30C80; 32H02

        MSC2010:30C80; 32H02

        [責(zé)任編輯吳志慧]

        猜你喜歡
        邊界點(diǎn)湖州圓盤
        道路空間特征與測(cè)量距離相結(jié)合的LiDAR道路邊界點(diǎn)提取算法
        層次化點(diǎn)云邊界快速精確提取方法研究
        圓盤鋸刀頭的一種改進(jìn)工藝
        石材(2020年6期)2020-08-24 08:27:00
        單位圓盤上全純映照模的精細(xì)Schwarz引理
        奇怪的大圓盤
        湖州出土郡國(guó)五銖錢
        湖州特色小鎮(zhèn)的“特”與“色”
        基于Profibus-DP的圓盤澆鑄控制系統(tǒng)的應(yīng)用
        湖州練市小學(xué)
        一種去除掛網(wǎng)圖像鋸齒的方法及裝置
        電腦與電信(2014年6期)2014-03-22 13:21:06
        精品国产成人av久久| 欧美成人精品福利在线视频| 国产99久久精品一区| 日本最新视频一区二区| 久久人妻无码一区二区| 狠狠躁夜夜躁人人爽天天不卡软件| 青青草综合在线观看视频| 在线小黄片视频免费播放| 亚洲av色欲色欲www| 在线永久免费观看黄网站| 手机色在线| 国产内射一级一片内射高清视频1 成人av一区二区三区四区 | 国产精品9999久久久久仙踪林| 久草热8精品视频在线观看| 无码精品国产午夜| 日本人妻精品有码字幕| 亚洲热妇无码av在线播放| 亚洲人免费| 日本视频一区二区二区| 日本av一区二区三区视频| 国产亚洲精品aaaa片小说| 秋霞日韩一区二区三区在线观看| 伊人久久大香线蕉av色婷婷| 国产婷婷色一区二区三区| 亚洲av无码电影网| 超级少妇一区二区三区| 91久久国产香蕉视频| 欧美日韩精品一区二区三区高清视频| 狠狠躁天天躁无码中文字幕图| 一区二区三区av资源网| 国产精品久久久久久av| 免费无码成人av在线播放不卡| 熟妇与小伙子露脸对白| 亚洲国产精品高清在线| 中文亚洲欧美日韩无线码| 精品久久综合一区二区| 综合激情五月三开心五月| 国产熟女内射oooo| 精品免费福利视频| 久久亚洲av熟女国产| 亚洲高清乱码午夜电影网|