亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Some Sharp Schwarz Inequalities of the Unit Disk in

        2017-12-16 05:13:14WUKekeCHENWeiTANGXiaomin
        關(guān)鍵詞:邊界點(diǎn)湖州圓盤

        WU Keke, CHEN Wei, TANG Xiaomin

        (School of Science, Huzhou University, Huzhou 313000, China)

        SomeSharpSchwarzInequalitiesoftheUnitDiskin

        WU Keke, CHEN Wei, TANG Xiaomin

        (School of Science, Huzhou University, Huzhou 313000, China)

        In this paper, we establish a new type of the classical Schwarz lemma for holomorphic functions on the unit disk in, and we also obtain some Schwarz inequalities of the derivative of the holomorphic function at a boundary point of the unit disk. Those results extend the classical inner Schwarz lemma and boundary Schwarz lemma respectively.

        holomorphic function; Schwarz lemma; unit disk; boundary point

        0 Introduction

        The Schwarz lemma is one of the most important results in the classical complex analysis, which has become a crucial theme in many branches of mathematical research for over a hundred years. LetDbe the open unit disk in the complex plane. And let ?Dbe the boundary ofD. The classical Schwarz lemma is stated as follows.

        Theorem1[1]Letf:D→Dbe holomorphic andf(0)=0. Then |f(z)|≤|z| for anyz∈Dand |f′(0)|≤1. Moreover, if |f(z0)|=|z0| for somez0∈D{0} or if |f′(0)|=1, then there is a real numberθsuch thatf(z)=eiθz.

        A great deal of work has been devoted to generalizations of Schwarz lemma to more general settings. We refer to [2-7] for a more complete insight on the Schwarz lemma.

        From the point of view of applications, it has been a very natural task to obtain various versions of the Schwarz lemma at the boundary. There is the following classical boundary Schwarz lemma.

        Theorem2[1]Letf:D→Dbe a holomorphic function. Iffis holomorphic atz=1 withf(0)=0 andf(1)=1, thenf′(1)≥1. Moreover, the inequality is sharp.

        In [8], ?rnek got some sharp forms of the Schwarz lemma on the boundary of the unit disk. Osserman gave the Schwarz lemma at the boundary of the unit disk, and presented some sharp Schwarz inequalities at a boundary point of the unit disk in [9]. One of the typical results, in this paper, is stated as follows.

        Theorem3[9]Letf:D→Dbe a holomorphic function. Iff(z) is holomorphic atz0∈?Dwithf(0)=0 and |f(z0)|=1, then

        Moreover,

        |f′(z0)|≥1.

        (1)

        And the equality holds in (1) if and only iff(z)=zeiθf(wàn)or someθ∈. Furthermore, iff(0)=f′(0)=…=f(n-1)(0)=0, then

        |f′(z0)|≥n.

        (2)

        The equality holds in (2) if and only iff(z)=zneiθf(wàn)or someθ∈.

        Establishing various versions of the Schwarz lemma at the boundary has attracted attentions of many mathematicians. Here we refer the reader to [10-15], as well as, many references therein for discussions related to such studies. Our main purpose here is to establish a new type of the classical Schwarz lemma for holomorphic function on the unit disk, and give the optimal estimates of the derivative of the holomorphic function at a boundary point of the unit disk.

        1 Main results

        We first introduce some notations and definitions, and present the Schwarz lemma for the holomorphic functions on the unit disk.

        Leta∈Dand consider the M?bius mappingφaofDthat interchangesaand 0,

        Theorem4 Letfbe a holomorphic function onDwith |f(z)-b|<1 andf(0)=a, where -1+b

        (3)

        Moreover,

        |f′(0)|≤1-(a-b)2.

        (4)

        The equality in (3) for some nonzeroz∈Dor in (4) holds if and only if

        for someθ∈.

        ProofTakeg(z)=f(z)-band

        for anyz∈D. Thengandφare both holomorphic self-mappings ofDwithφ(0)=0. It follows from Theorem 1 that |φ(z)|≤|z| for eachz∈Dand |φ′(0)|≤1. This implies

        Hence, we obtain

        |f(z)|-a≤|f(z)-a|≤|z||1-(a-b)(f(z)-b)|≤|z|(|1+(a-b)b|+|a-b||f(z)|).

        This gives

        Notice that

        This, together with |φ′(0)|≤1, yields

        Thus, we have

        |f′(0)| ≤1-(a-b)2.

        By Theorem 1, the equality in (3) for some nonzeroz∈Dor in (4) holds if and only if

        whereθ∈. It follows that

        whereθ∈. The proof is complete.

        Now, we give the Schwarz inequality of holomorphic function at a boundary point of the unit disk.

        Theorem5 Letfbe a holomorphic function onDwith |f(z)-b|<1 andf(0)=a, where -1+b

        (5)

        The equality holds in (5) if and only if

        whereθ∈satisfieseiθ=.

        Thus, by the Theorem 3 we get

        |φ′(z0)|≥1.

        (6)

        Since

        (7)

        combine (6) and (7) to obtain

        It follows that

        Notice that

        Then

        [1+(a-b)b]z0eiθ+a= [1+(a-b)z0eiθ](1 +b),

        This yields

        The proof is complete.

        Finally, we consider the Schwarz inequality at a boundary point of the unit disk for the holomorphic function with some special Taylor expansion.

        Theorem6 Letfbe a holomorphic function onD. Suppose thatf(z)=a+cnzn+cn+1zn+1+… and |f(z)-b|<1, wheren≥1,cn≠0, -1+b

        (8)

        The equality holds in (8) if and only if

        whereθ∈satisfieseiθ=.

        bnzn+bn+1zn+1+…,

        wherebn,bn+1,…∈andbn=≠0. Hence,

        φ(0)=φ′(0)=φ″(0)=…=φn-1(0)=0.

        It follows from Theorem 3 that

        This implies

        If the equality holds in (8), then |φ′(z0) |=n. Hence, by Theorem 3 we have

        which yields

        whereθ∈satisfieseiθ, Then

        Thus, we have

        The proof is complete.

        RemarkFrom the proof of Theorem 5 and 6, it is clear that we only to need assume that the function f is1up to the boundary ofDnearz0.

        [1] GARNETT J. Bounded Analytic Functions [M]. New York: Academic Press, 1981.

        [2] AHLFORS L. An extension of Schwarz's lemma [J]. Trans Amer Math Soc, 1938, 43(3): 359-364.

        [3] YAU S. A general Schwarz lemma for K?hler manifolds [J]. Amer J Math, 1978, 100(1): 197-203.

        [4] CHELST D. A generalized Schwarz lemma at the boundary [J]. Proc Amer Math Soc, 2001, 129(11): 3 275-3 278.

        [5] KIM K, LEE H. Schwarz's Lemma from a Differential Geometric Viewpoint [M]. Bangalore: IISc Press, 2011.

        [6] KRANTZ S G. The Schwarz lemma at the boundary [J]. Complex Var Elliptic Equ, 2011, 56(5): 455-468.

        [7] ELIN M, JACOBZON F, LEVENSHTEIN M, et al. The Schwarz Lemma: Rigidity and Dynamics, Harmonic and Complex Analysis and Its Applications [M]. Berlin: Springer, 2014.

        [8] ?RNEK B. Sharpened forms of the Schwarz lemma on the boundary [J]. Bull Korean Math Soc, 2013, 50(6): 2 053-2 059.

        [9] OSSERMAN R. A sharp Schwarz inequality on the boundary [J]. Proc Amer Math Soc, 2000, 128(12): 3513-3517.

        [10] BURNS D M, KRANTZ S G. Rigidity of holomorphic mappings and a new Schwarz lemma at the boundary [J]. J Amer Math Soc, 1994, 7(3): 661-676.

        [11] HUANG X J. A preservation principle of extremal mappings near a strongly pseudoconvex point and its applications [J]. Illinois J Math, 1994, 38(2): 283-302.

        [12] LIU T S, WANG J F, TANG X M. Schwarz lemma at the boundary of the unit ball innand its applications [J]. J Geom Anal, 2015, 25(3): 1 890-1 914.

        [13] LIU T S, TANG X M. Schwarz lemma at the boundary of strongly pseudoconvex domain inn[J]. Math Ann, 2016, 366(1-2): 655-666.

        [14] TANG X M, LIU T S. Schwarz lemma at the boundary of the egg domainBp1,p2inn[J]. Canad Math Bull, 2015, 58(2): 381-392.

        [15] TANG X M, LIU T S, ZHANG W J. Schwarz lemma at the boundary and rigidity property for holomorphic mappings on the unit ball ofn[J]. Proc Amer Math Soc, 2017, 145(4): 1 709-1 716.

        單位圓盤上若干精確的Schwarz不等式

        吳科科, 陳 偉, 唐笑敏

        (湖州師范學(xué)院 理學(xué)院, 浙江 湖州 313000)

        建立了復(fù)平面中單位圓盤上全純函數(shù)的一個(gè)新型Schwarz引理,并獲得了單位圓盤上全純函數(shù)的導(dǎo)函數(shù)在邊界點(diǎn)處的若干Schwarz不等式.這些結(jié)果分別推廣了經(jīng)典的內(nèi)部型Schwarz引理和邊界型Schwarz引理.

        全純函數(shù); Schwarz引理; 單位圓盤; 邊界點(diǎn)

        O174.56

        date:2017-09-14

        s:This work is supported by the NNSF of China (11571105) and the Xinmiao Talent Project of Zhejiang Province (2016R427003).

        Biography:TANG Xiaomin, Ph.D, Professor, Research Interests: complex analysis. E-mail:txm@zjhu.edu.cn

        O174.56DocumentcodeAArticleID1009-1734(2017)10-0006-06

        MSC2010:30C80; 32H02

        MSC2010:30C80; 32H02

        [責(zé)任編輯吳志慧]

        猜你喜歡
        邊界點(diǎn)湖州圓盤
        道路空間特征與測(cè)量距離相結(jié)合的LiDAR道路邊界點(diǎn)提取算法
        層次化點(diǎn)云邊界快速精確提取方法研究
        圓盤鋸刀頭的一種改進(jìn)工藝
        石材(2020年6期)2020-08-24 08:27:00
        單位圓盤上全純映照模的精細(xì)Schwarz引理
        奇怪的大圓盤
        湖州出土郡國(guó)五銖錢
        湖州特色小鎮(zhèn)的“特”與“色”
        基于Profibus-DP的圓盤澆鑄控制系統(tǒng)的應(yīng)用
        湖州練市小學(xué)
        一種去除掛網(wǎng)圖像鋸齒的方法及裝置
        電腦與電信(2014年6期)2014-03-22 13:21:06
        久久se精品一区二区国产| 亚洲一卡2卡3卡4卡5卡精品| 性一乱一搞一交一伦一性 | 天堂AV无码AV毛片毛| 亚洲肥婆一区二区三区| 日日噜噜夜夜狠狠va视频v| 日本又黄又爽gif动态图| 一区二区在线亚洲av蜜桃| 免费观看在线视频播放| 欧美噜噜久久久xxx| 69久久夜色精品国产69| 国产精品日本天堂| 亚洲第一页视频在线观看 | 国产又黄又爽又无遮挡的视频| 中文字幕一区二区三区亚洲| 欧美性受xxxx黑人猛交| 久久人人玩人妻潮喷内射人人| 亚洲公开免费在线视频| 日本三区在线观看视频| 中文字幕乱码高清完整版| 四虎影院在线观看| 亚洲又黄又大又爽毛片| 国产自拍精品视频免费| 激情第一区仑乱| 亚洲国产精品线观看不卡| 在线视频自拍视频激情| 久久久久国色av免费观看性色| 激情欧美日韩一区二区| 国产日韩午夜视频在线观看| 精品人妻一区二区三区在线观看| 亚洲色成人网站www永久四虎| 亚洲日韩精品欧美一区二区三区不卡| 亚洲国产丝袜美女在线| 免费成人电影在线观看| 老湿机香蕉久久久久久| 欧美熟妇与小伙性欧美交| 女同性恋一区二区三区av| 熟女无套内射线观56| 午夜视频网址| 亚洲捆绑女优一区二区三区| 国产欧美日韩一区二区三区|