張希萌, 齊 輝, 丁曉浩, 陳洪英
(哈爾濱工程大學(xué) 航天與建筑工程學(xué)院,哈爾濱 150001)
半空間雙相壓電介質(zhì)垂直邊界附近圓形夾雜的動態(tài)性能分析
張希萌, 齊 輝, 丁曉浩, 陳洪英
(哈爾濱工程大學(xué) 航天與建筑工程學(xué)院,哈爾濱 150001)
利用“Green函數(shù)法”和“鏡像法”對在SH波作用下半空間雙相壓電介質(zhì)垂直邊界附近圓形夾雜的動態(tài)性能進(jìn)行分析,得到其穩(wěn)態(tài)響應(yīng)。利用鏡像法得到滿足水平邊界應(yīng)力自由與電位移自由的波函數(shù)解析表達(dá)式。根據(jù)垂直邊界連續(xù)性條件,利用“契合法”建立第一類Fredholm型積分方程組,得到圓形夾雜周邊的動應(yīng)力集中系數(shù)與電場強(qiáng)度系數(shù)解析表達(dá)式。數(shù)值算例分析了入射波頻率、入射角度、圓形夾雜位置等對動應(yīng)力集中系數(shù)與電場強(qiáng)度系數(shù)的影響,并與已有文獻(xiàn)進(jìn)行比較。
半空間;雙相壓電介質(zhì);圓形夾雜;SH波;動應(yīng)力集中系數(shù);電場強(qiáng)度集中系數(shù)
壓電介質(zhì)具有機(jī)-電耦合效應(yīng),可實現(xiàn)機(jī)械振動和交流電的互相轉(zhuǎn)換,這使壓電介質(zhì)廣泛應(yīng)用于智能結(jié)構(gòu)和傳感器元件中,實現(xiàn)結(jié)構(gòu)的自我診斷、自我修復(fù)等功能,因此在未來航空航天飛行器設(shè)計中占重要地位。由于加工工藝、環(huán)境變化等因素,復(fù)合材料會產(chǎn)生圓孔或夾雜等缺陷,這些缺陷若存在于界面附近處,即材料性質(zhì)變化最劇烈的地方,將會出現(xiàn)材料失效、破壞等問題。比如壓電元件在生產(chǎn)加工過程中形成的圓形夾雜,其動應(yīng)力集中問題比一般材料更復(fù)雜。大量學(xué)者對缺陷問題進(jìn)行研究并取得豐富成果。近年來,舒小平等[1]利用等效單層理論求解了正交壓電復(fù)合材料層板在各類邊界條件下的解析解,周志東等[2]利用stroh理論分析了含界面剛性線夾雜的雙壓電介質(zhì)的電彈性問題,侯密山等[3]利用復(fù)變函數(shù)中級數(shù)展開法研究了含任意形狀夾雜壓電介質(zhì)的反平面問題,Shindo等[4]利用波函數(shù)展開法分析了在剪切波與電載荷作用下含柱形夾雜的無限大壓電介質(zhì)的動態(tài)性能,Du等[5]利用波函數(shù)展開法對部分脫膠夾雜對反平面剪切波的散射問題進(jìn)行了研究,F(xiàn)eng等[6]利用奇異積分方程技術(shù)研究了壓電材料中脫膠夾雜對SH波的散射問題,宋天舒等[7-9]研究了全空間雙相壓電介質(zhì)中水平邊界附近圓孔的動力學(xué)問題。
本文利用“Green函數(shù)法”和“鏡像法”,構(gòu)造出滿足水平邊界應(yīng)力自由與電位移自由、垂直邊界連續(xù)性條件的波函數(shù)。根據(jù)直角域公共垂直邊界上連續(xù)性條件,利用“契合法”建立第一類Fredholm型積分方程組并進(jìn)行求解。文章最后給出具體算例和數(shù)值結(jié)果,討論了入射角度、入射頻率、圓形夾雜位置等對動應(yīng)力集中系數(shù)與電場強(qiáng)度集中系數(shù)的影響。
(1)
圖1 含圓形夾雜的半空間雙相壓電介質(zhì)模型
Fig.1 The model of a piezoelectric bi-material half-space with a circular inclusion
本文模型是對實際工程中由兩種壓電介質(zhì)組成的含圓形夾雜缺陷的壓電元件在SH波作用下動態(tài)性能問題的簡化。
設(shè)z軸為壓電材料的電極化方向,則反平面動力學(xué)問題的穩(wěn)態(tài)控制方程(忽略時間因子e-iωt)表達(dá)式為:
(2)
式中:w,φ和ω分別為壓電材料出平面位移、電位勢和SH波圓頻率。方程(1)可以簡化為:
(3)
(4)
(5)
式中:τrz與τθz表示剪應(yīng)力,Dr與Dθ表示電位移。本節(jié)研究的直角域介質(zhì)Ⅰ在線源荷載δ(η-η0)作用下的模型如圖2所示。η0=d+yi(y≤h),表示介質(zhì)Ⅰ中的點。
圖2 受線源荷載作用的直角域模型
Fig.2 The right-angle plane model impacted by a line source force
本節(jié)研究的直角域介質(zhì)Ⅰ的邊界條件可以表示為:
(6)
(7)
(8)
式中:
其中:η1=η-2hi,η2=η1-2d,η3=η-2d
(9)
對于介質(zhì)Ⅲ圓形夾雜內(nèi)部的駐波,其表達(dá)式為:
(10)
(11)
利用邊界條件(6)建立關(guān)于An、Bn、Cn、Dn、En、Fn的方程組:
(12)
式中:
ξ(4)=0
其中:
ι=Jn-1(k3η)[η/η]n-1,
ν=-Jn-1(k3η)[η/η]n+1,
將方程(12)等式兩端同時乘以exp(-imθ),m=0,±1,±2,±3…,在邊界ΓC上從(-π,π)進(jìn)行積分,截取有限項,得到關(guān)于An、Bn、Cn、Dn、En、Fn的線性方程組進(jìn)行求解。對于介質(zhì)Ⅱ,其Green函數(shù)表達(dá)式為:
(13)
根據(jù)文獻(xiàn)[9-11]中方法,入射波wi、反射波wr、折射波wf和散射波ws以及激發(fā)的電位勢函數(shù)φi、φr、φf和φs表達(dá)式分別如下:
(14)
(15)
(16)
(17)
(18)
式中:β0=π-α0,α0為入射角度,α2為折射角度。各個常系數(shù)滿足連續(xù)性條件:
(19)
在SH波作用下產(chǎn)生的散射波場中未知量Kn、Pn、Qn、Rn、Sn、Tn可以根據(jù)邊界條件(6)進(jìn)行求解,方法與求解Green函數(shù)中未知量所用方法相同。
圖3 含圓形夾雜的半空間雙相壓電介質(zhì)垂直界面的契合
Fig.3 Conjunction of Piezoelectric Bi-material vertical interface in half space with a circular inclusion
在介質(zhì)Ⅰ中:
(20)
在介質(zhì)Ⅱ中:
(21)
WⅠ+Wf1=WⅡ+Wf2,
φⅠ+φf1=φⅡ+φf2
(22)
由位移與電勢的連續(xù)性條件式(19)對式(22)進(jìn)行簡化,得到關(guān)于外力系的積分方程:
(23)
(24)
根據(jù)文獻(xiàn)[10],在SH波作用下夾雜周邊的環(huán)向剪切應(yīng)力可以表示為:
(25)
動應(yīng)力系數(shù)可表示為:
根據(jù)文獻(xiàn)[10],在SH波作用下夾雜周邊的環(huán)向剪切應(yīng)力可以表示為:
(26)
圖5 SH 波以不同角度入射時圓形夾雜周邊動應(yīng)力集中系數(shù)的分布
Fig. 5 Distribution of DSCF around circular inclusion edge by SH-wave with different incident angles.
圖6 SH波水平入射時圓形夾雜周邊動應(yīng)力集中系數(shù)隨ka的分布
Fig.6 Distribution of DSCF around circular inclusion edge vs.kaby SH-wave horizontally
圖7 SH波水平入射時圓形夾雜周邊動應(yīng)力集中系數(shù)隨λⅠ的分布
Fig.7 Distribution of DSCF around circular inclusion edge vs.λⅠby SH-wave horizontally
圖8 SH波水平入射時圓形夾雜周邊動應(yīng)力集中系數(shù)隨λⅡ的分布
Fig.8 Distribution of DSCF around circular inclusion edge vs.λⅡby SH-wave horizontally
圖9 SH波水平入射時圓形夾雜周邊動應(yīng)力集中系數(shù)隨h*的分布
Fig.9 Distribution of DSCF around circular inclusion edge vs.h*by SH-wave horizontally
圖10 SH波水平入射時圓形夾雜周邊動應(yīng)力集中系數(shù)隨ka的變化
Fig.10 Variation of DSCF around circular inclusion edge vs.kaby SH-wave horizontally
圖11 SH波以不同角度入射時圓形夾雜周邊電場強(qiáng)度系數(shù)的分布
Fig.11 Distribution of EFICF around circular inclusion edge by SH-wave with different incident angles
圖12 SH波水平入射時圓形夾雜周邊電場強(qiáng)度系數(shù)隨波數(shù)ka變化情況
Fig.12 Distribution of EFICF around circular inclusion edge vs.kaby SH-wave horizontally
圖13 SH波水平入射時圓形夾雜周邊電場強(qiáng)度系數(shù)隨λⅠ的分布
Fig.13 Distribution of EFICF around circular inclusion edge vs.λⅠby SH-wave horizontally
圖14 SH波水平入射時圓形夾雜周邊電場強(qiáng)度系數(shù)隨λⅡ的分布
Fig.14 Distribution of EFICF around circular inclusion edge vs.λⅡby SH-wave horizontally
圖15 SH波水平入射時圓形夾雜周邊動應(yīng)力集中系數(shù)隨h*的分布
Fig.15 Distribution of EFICF around circular inclusion edge vs.h*by SH-wave horizontally
圖16 SH波水平入射時圓形夾雜周邊電場強(qiáng)度系數(shù)隨ka的變化
Fig.16 Variation of DSCF around circular inclusion edge vs.kaby SH-wave horizontally
本文利用Green函數(shù)法、“鏡像法”、“契合法”對半空間雙壓電介質(zhì)垂直邊界附近圓形夾雜對SH波的散射進(jìn)行分析研究,為壓電元件的設(shè)計制造及工程應(yīng)用提供了大量的參考數(shù)據(jù)。計算表明,入射角度、波數(shù)、無量綱壓電參數(shù)、夾雜位置均對圓形夾雜周邊的動應(yīng)力強(qiáng)度系數(shù)與電場強(qiáng)度系數(shù)存在影響,高頻SH波水平入射對本文模型危害較大;隨著入射波頻率的增加,圓形夾雜周邊動應(yīng)力集中系數(shù)與電場強(qiáng)度系數(shù)均呈現(xiàn)出振蕩性;圓形夾雜周邊動應(yīng)力集中系數(shù)與電場強(qiáng)度系數(shù)隨夾雜與水平邊界距離的增加而減??;特定物理參數(shù)的兩種壓電介質(zhì)能夠減小圓形夾雜周邊的動應(yīng)力和電場強(qiáng)度,因此適當(dāng)選取不同的參數(shù)組合可以降低結(jié)構(gòu)破壞的可能性。
[1] 舒小平. 正交壓電復(fù)合材料層板各類邊界的解析解[J]. 工程力學(xué), 2013, 30(10): 288-295.
SHU Xiaoping. Analytical solutions of cross-ply piezoelectric composite laminates with various boundary conditions [J]. Engineering Mechanics, 2013, 30(10): 288-295.
[2] 周志東,趙社戌,匡震邦.含界面剛性線夾雜與廣義壓電位錯雙壓電介質(zhì)的電彈性分析[J]. 固體力學(xué)學(xué)報, 2008, 29(3): 223-230.
ZHOU Zhidong, ZHAO Shexu,KUANG Zhenbang. Electroelastic analysis of bi-piezoelectrics embedded interfacial rigid lines with generalized piezoelectric dislocaton [J]. Chinese Journal of Solid Mechanics, 2008, 29(3): 223-230.
[3] 侯密山, 高存法. 壓電材料反平面應(yīng)變狀態(tài)的任意形狀夾雜問題[J].應(yīng)用數(shù)學(xué)和力學(xué), 1997, 14(1): 135-141.
HOU Mishan,GAO Cunfa.The antiplane strain problems for piezoelectric medium containing an arbitrary inclusion[J]. Chinese Journal of Applied Mathematics, 1997, 14(1): 135-141.
[4] SHINDO Y, MORIBAYASHI H, NARITA F. Scattering of antiplane shear waves by a circular piezoelectric inclusion embedded in a piezoelectric medium subjected to a steady-state electrical load[J].ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik, 2002, 82(1): 43-49.
[5] DU J K, SHEN Y P,WANG X. Scattering of anti-plane shear waves by a partially debonded piezoelectric circular cylindrical inclusion[J]. Acta Mechanica, 2002, 158: 169-182.
[6] FENG W, WANG L, JIANG Z, et al. Shear wave scattering from a partially debonded piezoelectric cylindrical inclusion[J].Acta Mechanica Solida Sinica, 2004, 17(3): 258-269.
[7] 宋天舒,劉殿魁,于新華. SH波在壓電材料中的散射和動應(yīng)力集中[J]. 哈爾濱工程大學(xué)學(xué)報,2002,23(1): 120-123.
SONG Tianshu,LIU Diankui,YU Xinhua. Scattering of SH-Wave and dynamic stress concentration in a piezoelectric medium with a circular hole[J]. Journal of Harbin Engineering University,2002,23(1): 120-123.
[8] 宋天舒,劉殿魁,付國慶. 含剛性圓柱夾雜壓電介質(zhì)的動力反平面特性[J].哈爾濱工程大學(xué)學(xué)報,2003,24(5):574-577.
SONG Tianshu,LIU Diankui,FU Guoqing.Dynamic anti-plane characteristic of piezoelectric medium with rigid cylindrical inclusion[J]. Journal of Harbin Engineering University, 2003,24(5):574-577.
[9] HASSAN1 A,SONG T S.Dynamic anti-plane analysis for two symmetrically interfacial cracks near circular cavity in piezoelectric bi-materials[J]. Applied Mathematic and Mechanics,2014,35(10):1261-1270.
[10] 李冬,宋天舒. 雙相壓電介質(zhì)中界面附近圓孔的動態(tài)性能分析[J]. 振動與沖擊,2011,30(3): 91-95.
LI Dong,SONG Tianshu. Dynamic performance analysis of circular cavity near interface in piezoelectric biomaterials [J]. Journal of Vibration and Shock, 2011,30(3): 91-95.
[11] WANG X D. On the dynamic behavior of interfacial cracks in piezoelectric media [J]. Int. J. Solids and Structures,2001, 38: 815-831.
[12] 林宏,劉殿魁. 半無限空間中圓形孔洞周圍SH波的散射[J]. 地震工程與工程振動,2002, 22(2): 9-16.
LIN Hong,LIU Diankui. Scattering of SH-wave around a circular cavity in half space [J]. Journal of Earthquake Engineering and Engineering Viberation,2002, 22(2): 9-16.
[13] 折勇,齊輝,楊在林. SH波對直角平面區(qū)域內(nèi)圓形孔洞的散射與地震動[J]. 應(yīng)用力學(xué)學(xué)報,2008, 25(3): 392-397.
SHI Yong,QI Hui,YANG Zailin. Scattering of SH-wave by circular cavity in right-angle plane and seismic ground motion [J]. Chinese Journal of Solid Mechanics, 2008, 25(3): 392-397.
Dynamicperformanceanalysisofcircularinclusionsneartheverticalboundaryinthepiezoelectricbi-materialhalf-space
ZHANGXimeng,QIHui,DINGXiaohao,CHENHongying
(College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin, Heilongjiang 150001, China)
The dynamic performance of circular inclusion near the vertical boundary in the piezoelectric bi-material half-space under the action of SH wave was analyzed by using the Green function method and mirror method to obtain the steady state responses. An analytical expression of the wave function which satisfies the stress free and electric displacement free on the horizontal boundaries was obtained by the mirror method. According to the continuity condition on the vertical boundary, the first kind of Fredholm integral equations was established to obtain the analytical expressions of the dynamic stress concentration factor and electric field intensity concentration factor around the edges of circular inclusions by the conjunction method. The influences of the frequencies of incident wave, the incident angle and the position of circular inclusions, etc. on the dynamic stress concentration factor and electric field intensity concentration factor were analyzed and compared with the results in the calculation examples of existing literatures.
half space; piezoelectric bi-material; circular inclusion; SH wave; dynamic stress concentration factor (DSCF); electric field intensity concentration factor (EFICF)
O343
A
10.13465/j.cnki.jvs.2017.21.013
黑龍江省自然科學(xué)基金(A201404)
2016-03-25 修改稿收到日期:2016-08-16
張希萌 男,博士生,1989年生
齊輝 男,教授,博士生導(dǎo)師,1963年生。E-mail:qihui205@sina.com