錢 薇,劉 媛,栗孟飛,楊德龍,陳菁菁,程宏波,常 磊,柴守璽
(1.甘肅省干旱生境作物學重點實驗室/甘肅農(nóng)業(yè)大學生命科學技術學院,甘肅蘭州 730070; 2.甘肅農(nóng)業(yè)大學農(nóng)學院,甘肅蘭州 730070)
不同水分條件下小麥ILs群體花后不同器官蔗糖積累與轉運的遺傳特性
錢 薇1,劉 媛1,栗孟飛1,楊德龍1,陳菁菁1,程宏波1,常 磊2,柴守璽2
(1.甘肅省干旱生境作物學重點實驗室/甘肅農(nóng)業(yè)大學生命科學技術學院,甘肅蘭州 730070; 2.甘肅農(nóng)業(yè)大學農(nóng)學院,甘肅蘭州 730070)
為了探索干旱調控小麥花后不同器官蔗糖積累和轉運的遺傳特性,以抗旱性有顯著差異的西峰20和魯麥14雜交創(chuàng)建的小麥回交導入系(introgression lines,ILs)群體為供試材料,對正常灌溉(WW)和干旱脅迫(DS)條件下該群體花后不同器官蔗糖積累和轉運的相關性狀進行數(shù)量遺傳分析,評價該群體目標性狀的遺傳變異特點和相互關系。結果表明,小麥ILs群體及其雙親的被測性狀指標均表現(xiàn)為SCg(灌漿期蔗糖含量)顯著高于SCf(開花期蔗糖含量)和SCm(成熟期蔗糖含量),主莖穗下節(jié)和倒二節(jié)的蔗糖含量高于旗葉,花前高于花后,干旱脅迫顯著高于正常灌溉。在兩種水分條件下,小麥ILs群體各被測性狀平均表型值均介于雙親之間,且偏向于輪回親本魯麥14;群體內表型變異廣泛,且存在超親分離,變異系數(shù)為14.29%~57.98%(DS)和20.87%~63.75%(WW),多樣性指數(shù)為0.63~0.89(DS)和0.57~0.79(WW)。各目標性狀表型受水分和發(fā)育階段/器官的影響達顯著水平,遺傳力較低,為0.27~0.51(DS)和0.30~0.62(WW)。各器官的SCf、SCg和SCm間均有不同程度的正相關(r=0.17~0.56**)關系,SCf與花前蔗糖轉運率和花后蔗糖貢獻率(r=0.32**~0.94**)、SCg與花前蔗糖轉運率和花后蔗糖貢獻率(r=0.29*~0.72**)、主穗粒重與花前蔗糖轉運率和CRSpr(r=0.13~0.43**)具有較高正相關性,且各目標性狀間DS條件下相關系數(shù)普遍高于WW。說明小麥花后不同器官蔗糖積累和轉運相關性狀屬于典型的數(shù)量性狀,其表型變異具有顯著的時空特異性。
小麥;ILs群體;蔗糖;積累轉運;遺傳分析
小麥(TriticumaestivumL.)是我國四大糧食作物之一,隨著淡水資源的日益匱乏,干旱已成為小麥減產(chǎn)的最主要環(huán)境影響因子[1],每年因不同程度干旱導致的小麥減產(chǎn)約在30%以上,其危害相當于其他自然災害的總和[2]。研究表明,小麥的產(chǎn)量形成取決于源-流-庫中可溶性碳水化合物(water soluble carbohydrates,WSC)協(xié)同代謝[1]。其中,蔗糖是小麥營養(yǎng)器官中WSC代謝和運輸?shù)闹饕问?,也是協(xié)調源-流-庫關系的信號分子,在WSC代謝中具有特殊的位置[3]。在干旱脅迫條件下,蔗糖可通過滲透調節(jié)來緩解干旱脅迫對小麥的生理傷害[4];在灌漿期,當干旱脅迫導致旗葉光合產(chǎn)物無法滿足冠層呼吸消耗和保持籽粒正常灌漿需要時,小麥籽粒產(chǎn)量的形成主要依賴花前貯存于旗葉和莖(主要是穗下節(jié)和倒二節(jié))等營養(yǎng)器官中WSC的代謝產(chǎn)物-蔗糖向籽粒的轉運[5-9]。因此,掌握干旱脅迫調控小麥灌漿期蔗糖積累與轉運的遺傳機制,對小麥抗旱遺傳改良具有重要意義。
小麥蔗糖積累和代謝轉運是一個復雜的生理代謝過程[11]。蔗糖代謝主要受果糖-1,6-二磷酸酯酶(FBPase)、蔗糖磷酸合成酶(SPS)與轉化酶(Inv)和蔗糖合成酶(SS)等關鍵酶[10]及其基因表達的調控[11];其表型易受基因型、環(huán)境、基因型×環(huán)境互作[10,12]、發(fā)育階段和器官[12-15]等因子的顯著影響。借助分子數(shù)量遺傳學手段發(fā)現(xiàn),小麥灌漿期WSC及其組分積累轉運相關性狀的遺傳力較低,屬于多基因控制的復雜數(shù)量性狀[16-21]。前人利用加倍單倍體群體(doubled haploid line,DH)[16-19]、重組近交系群體(recombinant inbred line,RIL)[20]、自然群體[21]等對不同水分處理條件下小麥的WSC及其組分積累轉運相關性狀進行了數(shù)量性狀位點(quantitative trait locus,QTL)的定位,發(fā)現(xiàn)控制WSC相關性狀的QTL在小麥整個基因組均有分布,其遺傳受加性效應、上位性效應、加性×水分環(huán)境互作效應及上位性×水分環(huán)境互作效應的控制;并且在不同水分條件下,不同群體間控制WSC及其組分相關性狀的QTL數(shù)目和表達特點不同。因此,利用不同背景小麥材料,有利于挖掘新的WSC及其組分積累轉運相關性狀的遺傳特性。
小麥導入系(introgression lines,ILs)群體的建立為小麥基因從簡單定位向精細定位的發(fā)展奠定了堅實的材料基礎。通過多次回交建立的小麥ILs群體表現(xiàn)出高比率的輪回親本基因型,同時保留少量供體親本的染色體片段/基因,有效排除了不同遺傳背景對導入基因的干擾,是檢測目標性狀QTL、進行基因精細定位和克隆的理想遺傳材料[22-28]。前人利用小麥ILs群體對產(chǎn)量相關性狀進行了遺傳分析[22-25]和精細定位[26-27]。這些研究為利用ILs群體進行小麥復雜數(shù)量性狀精細定位奠定了良好的材料基礎。
本研究選用強抗旱性小麥品種西峰20為供體親本和抗旱高產(chǎn)品種魯麥14為輪回親本建立的ILs群體為材料,研究干旱脅迫和正常灌溉條件下小麥灌漿期旗葉、穗下節(jié)和倒二節(jié)蔗糖積累與轉運相關性狀的遺傳及其相互關系,分析該群體性狀的遺傳變異,以期為進一步揭示小麥抗旱重要性狀的連鎖不平衡特點以及基因精細定位奠定基礎,為小麥抗旱遺傳改良提供理論依據(jù)。
1.1 試驗材料與設計
以抗旱性強的小麥品種西峰20為供體親本和抗旱高產(chǎn)品種魯麥14為輪回親本雜交創(chuàng)建的ILs群體(BC3F8)的160個株系作為供試材料。兩親本的遺傳背景差異較大,西峰20是甘肅省慶陽地區(qū)農(nóng)科所以西峰18號為母本、CA8055為父本雜交后,通過單株選擇和穩(wěn)定世代的株系比較、鑒定育成,該品系具有抗旱性強、穗大粒多等特性;魯麥14是山東省煙臺市農(nóng)業(yè)科學研究所以C149為母本,與F4530雜交育成的抗旱高產(chǎn)品種。
試驗于2014年10月-2015年6月在甘肅省榆中縣金家營小麥試驗點(35°51′N,104°07′E,平均海拔1 900 m,平均氣溫6.6 ℃,年降雨量450 mm,年蒸發(fā)量1 450 mm,無霜期140 d)進行。隨機區(qū)組設計,各材料均為稀條播,行長1 m,行距 0.2 m,每行點播40粒,3行區(qū),每處理3次重復。設干旱脅迫(DS)和正常灌溉(WW)兩種水分處理。兩個處理播前均統(tǒng)一灌底墑水(900 m3·hm-2)。灌溉處理在拔節(jié)期、抽穗期和開花期補充灌水,每次灌水量為750 m3·hm-2;干旱脅迫處理只在拔節(jié)期灌水750 m3·hm-2,其后完全依靠自然降水。本試驗點在小麥全生育期內降水量為128 mm。
1.2 測定項目與方法
在小麥開花期、灌漿期和成熟期選取群體長勢一致的植株10株,剪取主莖旗葉(FL)、穗下節(jié)(PedI)、倒二節(jié)(Pen I),于105 ℃殺青30 min,80 ℃烘干至恒重,將樣品剪碎至1~2 mm。選用間苯二酚比色法測定蔗糖含量[28],開花期、灌漿期和成熟期的蔗糖含量分別記為SCf、SCg和SCm。3次重復。將成熟期主穗自然風干后,脫粒測定主穗粒重(SGW)。依據(jù)蔗糖含量、干重和穗粒重計算以下指標:
蔗糖花前轉運率=(開花當天蔗糖絕對含量-成熟期蔗糖絕對含量)/開花當天蔗糖絕對含量×100%;蔗糖花后轉運率=(最大蔗糖絕對含量-花后當天蔗糖絕對含量)/最大蔗糖絕對含量×100%;蔗糖花前貢獻率=(開花當天蔗糖絕對含量-成熟期蔗糖絕對含量)/主穗粒重×100%;蔗糖花后貢獻率=(最大蔗糖絕對含量-開花當天蔗糖絕對含量)/主穗千粒重×100%。其中,蔗糖絕對含量=蔗糖濃度×干物質量。
1.3 數(shù)據(jù)統(tǒng)計
2.1小麥ILs群體及親本蔗糖積累與轉運相關性狀的表型分析
表1 干旱脅迫和灌溉條件下小麥ILs群體及其親本蔗糖積累和轉運相關性狀的表型值Table 1 Phenotypic data of related traits to sucrose accumulation and remobilization in wheat ILs and its parents under drought stress and well-watered conditions
FL、PedI和PenI分別表示主莖旗葉、穗下節(jié)和倒二節(jié);SCf,SCg和SCm分別表示開花期、灌漿期和成熟期蔗糖含量;RRSpr和RRSps分別表示花前和花后蔗糖轉運率; CRSpr和CRSps分別表示花前和花后蔗糖貢獻率;DS和WW分別表示干旱脅迫和正常灌溉;*:P<0.05,**:P<0.01。同列相同指標數(shù)據(jù)后不同字母表示處理間差異顯著(P<0.05)。下同。
FL,PedI and PenI mean flag leaf,peduncle internode and penultimate internode of main stem,respectively; SCf,SCg and SCm represent sucrose content at the flowering,grain-filling and mature stages,respectively; RRSpr and RRSps mean translocation rate of sucrose during pre-anthesis and post-anthesis,respectively; CRSpr and CRSps mean contribution rate of sucrose during pre-anthesis and post-anthesis,respectively; DS and WW mean drought stress and well-watered conditions,respectively; *:P<0.05,**:P<0.01.Different letters following date at same column and index mean significant difference between treatments(P<0.05).The same below.
由表1可知,在兩種水分處理下,小麥ILs群體與其親本的蔗糖積累和轉運相關性狀表型值均有顯著差異;魯麥14不同處理的蔗糖積累和轉運相關被測指標的表型值均高于西峰20。小麥ILs群體各被測指標的平均表型值介于雙親之間,且普遍接近于魯麥14的表型值。群體內株系變異廣泛,其變異系數(shù)在14.29%~57.98%(DS)和20.87%~63.75%(WW)之間。從表型值變異范圍可看出,各被測指標均存在超親分離現(xiàn)象。表明該群體雙親對所考察性狀有貢獻的等位基因在其后代群體中得到了廣泛分離,呈現(xiàn)出多基因控制的數(shù)量性狀特點,其增效和減效基因在兩親本中均有分布,通過基因重組可產(chǎn)生正向和負向兩個方向的超親基因型;且目標性狀表型多偏向于輪回親本魯麥14,體現(xiàn)出導入系群體的遺傳特性。比較小麥ILs群體及其雙親的蔗糖積累和轉運相關指標的表型值發(fā)現(xiàn),SCg顯著高于SCf和SCm(P<0.05)。主莖穗下節(jié)和倒二節(jié)的蔗糖含量顯著高于旗葉(P<0.05),花前各被測器官的蔗糖含量高于花后,干旱脅迫下各被測器官的蔗糖含量顯著高于正常灌溉(PedIr SCm和PenI的SCm除外)。說明目標性狀表型變異具有顯著的時空性,且易受水分環(huán)境的影響,從而佐證了其復雜數(shù)量性狀的特點。
2.2小麥ILs群體蔗糖積累轉運相關指標的方差分析
由表2可知,小麥ILs群體蔗糖含量受到水分、發(fā)育階段、器官、基因型、水分與發(fā)育階段互作效應的顯著(P<0.05)或極顯著(P<0.01)影響。水分和發(fā)育階段是影響該群體蔗糖含量表型變異的主要因素,分別對其表型變異的相對貢獻率分別為27.36%和54.49%。水分與發(fā)育階段的互作對蔗糖含量表型變異的相對貢獻率為9.54%,對水分和器官ILs群體蔗糖花前轉運率、花后轉運率的影響顯著,對其表型變異的相對貢獻率分別為22.93%、26.24%和31.45%、33.42%。水分和器官互作也是顯著影響花前、花后轉運率的重要因子,對表型值變異的貢獻率為11.46%、13.27%。水分和器官顯著影響蔗糖花前貢獻率、花后貢獻率的表型變異,其對表型變異的相對貢獻率分別為25.69%、26.40%和34.55%、37.00%。說明水分環(huán)境、器官和發(fā)育階段是小麥IL群體蔗糖相關性狀表型變異的主要影響因子。
2.3小麥ILs群體蔗糖積累和轉運相關指標的遺傳分析
從表3看出,在兩種水分條件下,小麥ILs群體蔗糖積累和轉運相關被測指標的遺傳力普遍較低(0.27~0.62);WW條件下各被測指標的遺傳力(0.30~0.62)普遍高于DS條件下的(0.27~0.51)。各被測指標的表型多樣性指數(shù)較高,在0.63~0.89之間。其中,DS條件下各被測指標的表型多樣性指數(shù)(0.63~0.89)普遍高于WW條件下的(0.57~0.79)。表明干旱脅迫豐富了各目標性狀表型多樣性。此外,小麥群體蔗糖積累轉運相關指標的偏度和峰度分別在-3.08~2.49和-1.08~8.88之間,大部分性狀偏度和峰度在0~1之間,表現(xiàn)出表型值近正態(tài)分布的數(shù)量性狀特點。但部分指標表現(xiàn)出較大的偏度和(或)峰度值,如WW條件下的穗下節(jié)SCf和SCm,DS條件下倒二節(jié)的RRSpr等,表明這些性狀的表型總體分布呈尖頂峰的偏態(tài)分布,說明這些性狀在特定條件下控制性狀的數(shù)量基因可能存在主效基因的表達。
表2 小麥ILs群體蔗糖積累和轉運相關性狀的表型方差分析Table 2 Multi-factor analysis of phenotypic traits related to sucrose accumulation and translocation in wheat ILs
SSa/SST、MS和F分別表示多因素方差分析中各處理變異平方和(SSa)占總變異平方和(SST)的百分率、均方及F值,*和**分別表示多因素方差分析中達到0.05和0.01顯著性水平。
SSa/SST,MS andFrepresent percentage of mean square of every treatment variation(SSa)to total variation,mean square andFvalue in the multi-factor analysis of variation,respectively.* and ** mean significant at 0.05 and 0.01 levels by the multi-factor analysis of variation.
表3 小麥ILs群體蔗糖積累與轉運相關性狀的遺傳力和多樣性Table 3 Heritability and diversity of traits related to sucrose accumulation and translocation in wheat ILs
2.4小麥ILs群體蔗糖積累和轉運指標的相關性
從表4可看出,在兩種水分條件下,小麥ILs群體不同器官的SCf、SCg和SCm之間均呈不同程度的正相關(r=0.17~0.56**),其中,SCf與SCg相關極顯著(P<0.01)。不同器官的SCf均與RRSpr和CRSpr呈極顯著的正相關,與RRSps呈極顯著(或顯著)負相關,與CRSps呈不同程度的負相關。SCg與分別與RRSpr、CRSpr、RRSps和CRSps呈不同程度的正相關,與RRSps和CRSps的相關性均達顯著或極顯著水平。SCm與RRSpr呈極顯著的負相關,與CRSpr、RRSps和CRSps呈不同程度的正相關。RRSpr和CRSpr分別與RRSps和CRSps呈不同程度的負相關,但RRSpr和CRSpr、RRSps和CRSps間均呈極顯著的正相關。SGW除與SCm呈不同程度的負相關外,與其他性狀均呈不同程度的正相關,其中,干旱條件下與RRSpr和CRSpr相關性均達顯著或極顯著水平(PenI的CRSpr除外)。說明各器官開花期蔗糖含量與花前蔗糖轉運率及其對籽粒的貢獻率密切相關,而灌漿中期的蔗糖含量與花后蔗糖轉運率及其對籽粒的貢獻率密切相關,成熟期的蔗糖含量與花前蔗糖轉運率密切相關,而主穗粒重更多地取決于蔗糖花前的積累和轉運。各目標性狀間干旱脅迫條件下相關系數(shù)普遍高于正常灌溉。說明,干旱脅迫更有利于各器官花后蔗糖的積累轉運。
表4 干旱脅迫和灌溉條件下小麥ILs群體各性狀之間的相關系數(shù)Table 4 Correlation coefficients between all traits in wheat ILs population under drought stress and well-watered conditions
表中右和左三角區(qū)域分別為干旱脅迫(DS)和正常灌溉(WW)條件下性狀的相關系數(shù);*:P<0.05;**:P<0.01。
Values in the upper right segment are the correlation coefficients under drought stress(DS),and those in the lower left are the correlation coefficients under well-watered(WW).*:P<0.05; **:P<0.01.
蔗糖是小麥營養(yǎng)器官中WSC運輸?shù)闹饕问絒31],對維持機體新陳代謝和產(chǎn)量形成有重要的作用[7,32]。在本研究中,小麥ILs群體及其雙親所考察的蔗糖積累和轉運相關性狀表型值均表現(xiàn)出SCg顯著高于SCf和SCm,穗下節(jié)和倒二節(jié)的高于旗葉的,花前的高于花后的,干旱脅迫條件下的顯著高于正常條件下的。通過多因素方差分析發(fā)現(xiàn),蔗糖含量受到水分、發(fā)育階段及水分×發(fā)育階段互作效應的影響顯著,水分、器官及其互作是影響蔗糖轉運率和貢獻率的主要因素。該研究結果是對前人利用品種間比較試驗得出小麥莖稈WSC及其組分積累和轉運受基因型、基因型×環(huán)境互作[5-6,10,33-35]影響的有力補充。在本研究發(fā)現(xiàn),花后不同發(fā)育階段的蔗糖含量與其轉運率和對籽粒貢獻率的相關性有顯著差異,其中,SCf與RRSpr和CRSpr、SCg與RRSps和CRSps的正相關性達顯著或極顯著水平,RRSpr和CRSpr與SGW表現(xiàn)出較高的正相關性,且各目標性狀在DS條件下相關系數(shù)普遍高于WW。說明開花前蔗糖的積累有利于花前各器官蔗糖的轉運,而灌漿期的蔗糖積累有利于花后各器官蔗糖的轉運,粒重的增加可能更加依賴于花前各器官蔗糖的積累轉運,這種趨勢在干旱脅迫條件下更為顯著。
小麥WSC及其組分積累、轉運是典型的微效多基因控制的復雜數(shù)量性狀[16-21]。前人利用加倍單倍體群體(DH)、重組近交系群體(RILs)和自然群體對小麥莖稈WSC積累、轉運相關性狀遺傳剖析發(fā)現(xiàn),這些性狀的數(shù)量遺傳基礎主要由加性、上位性、加性×環(huán)境互作和上位性×環(huán)境互作組成[16-18]。在不同環(huán)境、遺傳背景和發(fā)育階段,小麥營養(yǎng)器官WSC積累、轉運均呈現(xiàn)出復雜的遺傳特性[16-21]。因此,加快開展不同水分環(huán)境條件下小麥不同遺傳背景材料后代群體營養(yǎng)器官中WSC及其組分積累、轉運數(shù)量遺傳研究,有利于發(fā)掘該性狀更為豐富的抗旱遺傳信息。本試驗利用1套ILs群體對不同水分條件下該群體花后不同器官蔗糖積累、轉運相關性狀表型變異進行了研究,發(fā)現(xiàn)各目標性狀的表型值介于雙親之間,群體內株系變異廣泛,存在超親分離現(xiàn)象,遺傳力低,多樣性指數(shù)高,易受水分環(huán)境的影響。表明該群體雙親對所考察性狀有貢獻的等位基因在其后代群體中得到廣泛分離,呈現(xiàn)出多基因控制的數(shù)量性狀特點,且目標性狀表型多偏向于輪回親本魯麥14,體現(xiàn)出導入系群體的遺傳特性。這些研究研究結果將為進一步開展干旱調控小麥花后蔗糖積累、轉運的遺傳剖析和QTL精細定位奠定良好的材料和理論基礎,對小麥抗旱遺傳改良具有重要意義。
致謝:感謝中國農(nóng)科院作物科學研究所景蕊蓮研究員為本試驗提供材料。
[1] 張 娟,謝惠民,張正斌,等.小麥抗旱節(jié)水生理遺傳育種研究進展[J].干旱地區(qū)農(nóng)業(yè)研究,2005,23(3):231.
ZHANG J,XIE H M,ZHANG Z B,etal.Adcances in drought-resistance and water-saving physiology genetics and breeding of wheat [J].AgriculturalResearchintheAridAreas,2005,23(3):231.
[2] 景蕊蓮.作物抗旱節(jié)水研究進展[J].中國農(nóng)業(yè)科技導報,2007,9(1):1.
JIN R L.Advances of research on drought resistance and water use efficiency in crop plants [J].ReviewofChinaAgriculturalScienceandTechnology,2007,9(1):1.
[3] 王文靜,潘一展.不同類型小麥品種灌漿期蔗糖代謝關鍵酶的活性變化[J].華北農(nóng)學報,2008,23(2):21.
WANG W J,PAN Y Z.Dynamic changes of activities of key enzymes involved in sucrose metabolism during grain filling of wheat with different qualities [J].ActaAgriculturaeBoreali-Sinice,2008,23(2):21.
[4] KAMCLI A,LOSCL D M.Contribution of carbohydrates and other solutes to osmotic adjustment in wheat leaves under water stress [J].JournalofPlantPhysiology,1995,145:363-366.
[5] 駱蘭平,于振文,王 東,等.土壤水分和種植密度對小麥旗葉光合性能和干物質積累與分配的影響[J].作物學報,2011,37(6):1049.
LUO L P,YU Z W,WANG D,etal.Effects of planting density and soil moisture on flag leaf photosynthetic characteristics and dry matter accumulation and distribution in wheat [J].ActaAgronomicaSinica,2011,37(6):1049.
[6] 孟維偉,褚鵬飛,于振文,等.灌水對不同品種小麥莖和葉鞘糖含量及產(chǎn)量的影響[J].應用生態(tài)學報,2011,22(10):2487.
MENG W W,CHU P F,YU Z W,etal.Effects of irrigation on the water soluble carbohydrate contents in different wheat cultivars stem and sheath and the grain yield[J].ChineseJournalofAppliedEcology,2011,22(10):2487.
[7] EHDAIE B,ALLOUSH G A,MADORE M A,etal.Genotypic variation for stem reserves and mobilization in wheat.I.Postanthesis changes in internode dry matter [J].CropScience,2006,46(3):735.
[8] ZHANG Y P,ZHANG Y H,WANG Z M,etal.Characteristics of canopy structure and contributions of non-leaf organs to yield in winter wheat under different irrigated conditions [J].FieldCropsResearch,2011,123(3):187.
[9] XUE G,MCINTYRE C L,GLASSOP D,etal.Use of expression analysis to dissect alterations in carbohydrate metabolism in wheat leaves during drought stress [J].PlantMolecularBiology,2008,67(3):197.
[10] YANG J,ZHANG J,WANG Z,etal.Activities of fructan and sucrose-metabolizing enzymes in wheat stems subjected to water stress during grain filling [J].Planta,2004,220(2):331.
[11] XUE G,DRENTH J,GLASSOP D,etal.Dissecting the molecular basis of the contribution of source strength to high fructan accumulation in wheat [J].PlantMolecularBiology,2013,81(1):71.
[12] WANG B,MA M,LU H,etal.Photosynthesis,sucrose metabolism,and starch accumulation in two NILs of winter wheat [J].PhotosyntheticResearch,2015,126(2):363.
[13] LUDEWIG F,FLUGGE U I.Role of metabolite transporters insource-sink carbon allocation [J].FrontiersinPlantScience,2013,4(2):231.
[14] AHMADI A,BAKER D A.The effect of water stress on the activities of key regulatory enzymes of the sucrose to starch pathway in wheat [J].PlantGrowthRegulation,2001,35(1):81.
[15] HU M,SHI Z,XU P,etal.Wheat acclimate to water deficit by modifying carbohydrates metabolism,water use efficiency,and growth [J].BrazilianJournalofBotany,2015,38(3):505.
[16] YANG D L,JING R L,CHANG X P,etal.Identification of quantitative trait loci and environmental interactions for accumulation and remobilization of water-soluble carbohydrates in wehat(TriticumaestivumL.) stems [J].Genetics,2007,176:571.
[17] HUYNH B L,WALLWORK H,STANGOULIS J C R,etal.Quantitative trait loci for grain fructan concentration in wheat(TriticumaestivumL.) [J].TheoreticalandAppliedGenetics,2008,117(5):701.
[18] REBETZKE G J,VAN-HERWARDEN A F,JENKINS C,etal.Quantitative trait loci for soluble stem carbohydrate production in wheat [J].AustralianJournalofAgriculturalResearch,2008,59(10):891.
[19] LIANG Y,ZHANG K,ZHAO L,etal.Identification of chromosome regions conferring dry matter accumulation and photosynthesis in wheat(TriticumaestivumL.) [J].Euphytica,2010,171(1):145.
[20] SALEM K F M,RODER M S,BORNER A.Identification and mapping quantitative trait loci for stem reserve mobilisation in wheat(TriticumaestivumL.)[J].CerealResearchCommunications,2007,35(3):1367.
[21] ZHANG B,LI W,CHANG X,etal.Effects of favorable alleles for water-soluble carbohydrates at grain filling on grain weight under drought and heat stresses in wheat [J].PlosOne,2014,9(7):e102917.
[22] 陳穩(wěn)良,景蕊蓮,劉惠民,等.晉麥47背景回交導入系的遺傳選擇與性狀分析[J].麥類作物學報,2009,29(2):206.
CHEN W L,JIN R L,LIU H M,etal.Genetic selection and trait analysis of introgression lines with Jinmai 47 genetic background [J].JournalofTriticeaeCrops,2009,29(2):206.
[23] 施 偉,昌小平,景蕊蓮.不同水分條件下小麥生理性狀與產(chǎn)量的灰色關聯(lián)度分析[J].麥類作物學報,2012,32(4):653.
SHI W,CHANG X P,JIN R L.Gray association grade analysis of physiological traits with yield of wheat under different water regimes [J].JournalofTriticeaeCrops,2012,32(4):653.
[24] 王慧茹,王光達,昌小平,等.不同水分環(huán)境條件下小麥IL 群體產(chǎn)量相關性狀遺傳和關聯(lián)性分析[J].華北農(nóng)學報,2013,28(4):53.
WANG H R,WANG G D,CHANG X P,etal.Association and genetic analysis of yield related traits in introgression lines of wheat in different water environments [J].ActaAgriculturaeBoreali-Sinica,2013,28(4):53.
[25] LIU S B,ZHOU R Z,DONG Y C,etal.Development utilization of introgression lines using a synthetic wheat as donor [J].TheoreticalandAppliedGenetics,2006,112(7):1360.
[26] IBRAHIM S E,SCHUBERT A,PILLEN K,etal.Comparison of QTLs for drought tolerance traits between two advanced backcross populations of spring wheat [J].InternationalJournalofAgriscience,2012,2(3):216.
[27] IBRAHIM S E,SCHUBERT A,PILLEN K,etal.QTL analysis of drought tolerance for seedling root morphological traits in an advanced backcross population of spring wheat [J].InternationalJournalofAgriscience,2012,2(7):619.
[28] YEMM E W,WILLIS A J.The estimation of carbohydrates in plant extracts by anter culture [J].Biotechnology,1954,57(3):508.
[29] TOKER C.Estimates of broad-sense heritability for seed yield and yield criteria in faba bean [J].Hereditas,2004,140(3):222.
[30] SHANNON C E,WEAVER W.The Mathematical Theory of Communication [M].Urbana:University of Illinois,1949:3.
[31] FARRAR J,POLLOCK C,GALLAGHER J.Sucrose and the integration of metabolism in vascular plants [J].Plantscience,2000,154(1):1.
[32] EHDAIE B,ALLOUSH GA,MADORE MA,etal.Genotypic variation for stem reserves and mobilization in wheat.II Postanthesis changes in internode water-soluble carbohydrates [J].CropScience,2006,46(3):2093.
[33] DODIG D,ZORIC M,KNEZEVIC D,etal.Genotype×environment interaction for wheat yield in different drought stress conditions and agronomic traits suitable for selection [J].AustralianJournalofAgriculturalResearch,2008,59(6):536.
[34] GOYAL A,BERES B L,RANDHAWA H S,etal.Yield stability analysis of broadly adaptive triticale germplasm in southern and central Alberta,Canada for industrial end-use suitability [J].CanadianJournalPlantScience,2011,91:125.
[35] 楊德龍,栗孟飛,程宏波,等.干旱調控下小麥RIL群體灌漿期莖稈可溶性碳水化合物積累與轉運的遺傳分析[J].應用生態(tài)學報,2014,25(3):803.
YANG D L,LI M F,CHENG H B,etal.Genetic analysis of accumulation and remobilization of water soluble carbohydrates regulated by drought in wheat RIL stem at grain-filling stage [J].ChineseJournalofAppliedEcology,2014,25(3):803.
GeneticAnalysisofAccumulationandTranslocationofSucroseinDifferentOrgansafterFloweringinWheatILsPopulationunderDifferentWaterConditions
QIANWei1,LIUYuan1,LIMengfei1,YANGDelong1,CHENJingjing1,CHENGHongbo1,CHANGLei2,CHAIShouxi2
(1.Gansu Provincial Key Laboratory of Arid land Crop Science/College of Life Science and Technology,Gansu Agricultural University,Lanzhou,Gansu 730070,China; 2.College of Agronomy,Gansu Agricultural University,Lanzhou,Gansu 730070,China)
In order to reveal the genetic characteristics of accumulation and translocation of sucrose in different organs after flowering,an introgression lines(ILs) population derived from a backcross between two wheat cultivars(Xifeng 20 and Lumai 14) with different drought tolerance was used to evaluate quantitative genetic variations and correlations among target traits under well-watered(WW) and drought stress(DS) conditions.As for the phenotypic values of target traits in the ILs and two parents,the results showed that SCg(sucrose content of flowering) was significantly higher than SCf(sucrose content at grain-filling) and SCm(sucrose content at mature).Sucrose content in peduncle and penultimate internodes of main shoots were higher than that in flag leaf.Pre-anthesis and DS had higher sucrose content,compared to post-anthesis and WW,respectively.Under two water conditions,the phenotypic means of all target traits in the ILs were intermediated between those of two parents,but tended to be closer to the recurrent parent Lumai 14.The phenotypic values of all traits in the ILs varied widely,altogether with presenting substantial transgressive segregation.The coefficients of variations ranged from 14.29% to 57.98% under DS and from 20.87% to 63.75% under WW,while the genetic diversity indices differed from 0.63 to 0.89 under DS and from 0.57 to 0.79 under WW.The phenotypic variations of all traits were significantly affected by water conditions and growth stages or organs.The heritability of all traits was lower and varied from 0.27 to 0.51 under DS and 0.30 to 0.62 under WW.There were variously positive correlations(r=0.17-0.56**) between SCf,SCg and SCm in different organs.SCf was highly correlated with RRSpr(translocation rate of sucrose during pre-anthsis) and CRSpr(contribution rate of sucrose during pre-anthesis)(r=0.32**-0.94**),and SCg was correlated with RRSps(translocation rate of sucrose during post-anthesiss) and CRSps(contribution rate of sucrose during post-anthesis)(r=0.29*-0.72**),and SGW(main spike grain weight) was positively correlated with RRSpr and CRSpr(r=0.13-0.43**).The correlation coefficients under DS were significantly higher than those under WW.This indicated that related traits to the accumulation and translocation of sucrose after flowering in different organs in wheat were quantitatively inherited,of which phenotypic variations showed significantly temporal-spatial specificity.
Wheat; ILs population; Sucrose; Accumulation and translocation; Genetic analysis
時間:2017-10-11
網(wǎng)絡出版地址:http://kns.cnki.net/kcms/detail/61.1359.S.20171011.1601.012.html
2017-03-05
2017-03-21
國家自然科學基金項目(31460348,30960195);甘肅省農(nóng)業(yè)生物技術研究與應用開發(fā)項目(GNSW-2015-18);甘肅農(nóng)業(yè)大學"伏羲人才"計劃項目(FXRC20130102);國家公益性行業(yè)(農(nóng)業(yè))科研專項(20130314);現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術體系建設專項(CARS-3-2-49)
E-mail:401179853@qq.com
楊德龍(E-mail:yangdl@gsau.edu.cn)
S512.1;S330
A
1009-1041(2017)10-1309-09