亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        BELL POLYNOMIALS AND ITS SOME IDENTITIES

        2017-11-06 09:36:38GUOJingLIXiaoxue
        數(shù)學(xué)雜志 2017年6期
        關(guān)鍵詞:數(shù)論西北大學(xué)恒等式

        GUO Jing,LI Xiao-xue

        (1.School of Mathematics and Computer Science,Jiangxi Science&Technology Normal University,Nanchang 330038,China)

        (2.School of Mathematics,Northwest University,Xi’an 710127,China)

        BELL POLYNOMIALS AND ITS SOME IDENTITIES

        GUO Jing1,LI Xiao-xue2

        (1.School of Mathematics and Computer Science,Jiangxi Science&Technology Normal University,Nanchang 330038,China)

        (2.School of Mathematics,Northwest University,Xi’an 710127,China)

        In this paper,we introduce a new polynomial called Bell polynomials.By using the elementary and combinational methods,we prove some identities for this polynomials.As an application of these identities,we give an interesting congruence for Bell numbers.

        Bell numbers;Bell polynomials;identity;combinational method

        1 Introduction

        For any integersn≥k≥0,letS(n,k)denote the number of partitions of a set withnelements intoknonempty blocks.It is clear thatS(n,k)>0 for all 1≤k≤n,andS(n,k)=0 for 1≤n<k.PutS(0,0)=1 andS(0,k)=0 fork≥1,S(n,0)=0 forn≥1.These numbers were introduced by Stirling in his book“Methodus Di ff erentialis”(see[3–5]).Now they are called as the Stirling numbers of the second kind.These numbers satisfy the recurrence relation

        The number of all partitions of a set withnelements is

        called also a Bell number(or exponential number),related contents can be found in many papers or books.For example,see[6–8].

        These numbers satisfy the recurrence formula

        whereB(0)=1 by de finition.

        The generating function ofB(n)is given by

        where exp(y)=ey.

        The numbersB(n)can be represented also as the sum of a convergent series(Dobinski’s formula)

        see Pólya and Szeg?[9]for these basic properties.

        In this paper,we introduce a new polynomialsB(x,n)(called Bell polynomials)as follows

        It is clear thatB(0,x)=1,B(1,x)=x,B(2,x)=x+x2,B(3,x)=x+3x2+x3,···.Ifx=1,thenB(n,1)=B(n),the well known Bell numbers.About the properties ofB(n,x),it seems that none had studied it yet,at least we have not seen any related papers before.The problem is interesting,because it can help us to further understand the properties of Bell numbers.

        The main purpose of this paper is using the elementary and combinational methods to study the computational problem of the sums

        Theorem 1Letkbe a positive integer withk≥1.Then for any positive integern≥1,we have the identity

        where the polynomialsB(n,x)satisfy the recurrence formulaB(0,x)=1,B(1,x)=x,B(2,x)=x+x2,B(3,x)=x+3x2+x3,and

        For the polynomialsB(n,x),we also have a similar Dobinski’s formula.

        Theorem 2For any positive integern≥1,we have the identities

        From Theorem 1 and the recurrence formula ofB(n,x),we may immediately deduce the following congruence.

        Corollary 1Letpbe an odd prime.Then for any positive integerk≥1 with(k,p)=1,we have the congruence

        Corollary 2For any positive integern,we have the identity

        2 Proof of the Theorems

        In this section,we shall complete the proofs of our theorems.First we give a sample lemma,which are necessary in the proof of our theorems.Hereinafter,we shall use some elementary number theory contents and properties of power series,all of these can be found in references[1]and[2],so they will not be repeated here.

        LemmaFor any real numberx,let functionf(t)=exp(x(et?1)),then we havef(n)(0)=B(n,x)for all integersn≥0,wheref(n)(t)denotes thenthderivative off(t)for variablet.

        ProofWe prove this lemma by complete induction.It is clear thatf(0)=1=B(0,x),f′(t)=xet·exp(x(et?1))=xet·f(t),andf′(0)=x=B(1,x).So the lemma is true forn=0,1.Assume thatf(n)(0)=B(n,x)for all 0≤n≤r.Then note thatf′(t)=xet·f(t),so from the properties of derivative(Newton-Leibnitz formula),we have

        Applying(2.1)and inductive hypothesis,we have

        That is,f(r+1)(0)=B(r+1,x).

        Now the lemma follows from the complete induction.

        Proof of Theorem 1For any positive integerk≥2,it is clear thatfk(t)=exp(kx(et?1)),then from(1.4),we have

        On the other hand,letg(t)=fk(t)=exp(kx(et?1)),then from the de finition of the power series and lemma,we also have

        Combining(2.2)and(2.3)we may immediately deduce the identity

        This proves Theorem 1.

        Proof of Theorem 2Applying the power serieswe have

        Comparing the coefficients oftnin(1.4)and(2.4),we may immediately deduce the identity

        This proves Theorem 2.

        Proof of Corollary 1Letpbe an odd prime,taken=p+1 in Theorem 1,then from the properties ofB(n,x)and Theorem 1,we have

        or

        Note thatk≥2 anda1+a2+···+ak=p+1,so if there are three ofa1,a2,···,akare positive integers,then

        If there are only two ofa1,a2,···,akare positive integers,and both of them are greater than one,then we also have

        If there are only two ofa1,a2,···,akare positive integers,and one isp,another is 1,then we also have

        If only one ofa1,a2,···,akare positive integers,then it must bep+1.This time we have

        Combining(2.5)–(2.10)and note that identity

        we have

        or

        This proves the first congruence of Corollary 1.The second congruence follows from the second identity of Corollary 2 withn=p.

        Proof of Corollary 2Letf(t,x)=exp(x(et?1)),then from(1.4),we have

        On the other hand,from the de finition off(t,x),we also have

        Comparing the coefficients oftnin(2.11)and(2.12),we may immediately deduce the identity

        Note that the recurrence formulafrom(2.13)we may immediately deduce the identityThis completes the proofs of our all results.

        [1]Tom M Apostol.Introduction to analytic number theory[M].New York:Springer-Verlag,1976.

        [2]Tom M Apostol.Mathematical analysis(2nd ed.)[M].Boston:Addison-Wesley Publishing Co.,1974.

        [3]Stirling J.Methodus differentialis[M].Londini:Sive Tractatus de Summation et Interpolazione Serierum In finitarum,1730.

        [4]Boole G.Calculus of finite differences[M].London:Chelsea Publishing Company,1860.

        [5]Caralambides C A.On weighted Stirling and other related numbers and come combinatorial applications[J].Fibonacci Quar.,1984,22:296–309.

        [6]Conway H J,Guy R K.The book of numbers[M].New York:Copernicus,1996.

        [7]Corcino C B.An asymptotic for ther-Bell numbers[J].Matimyás Mat.,2001,24:9–18.

        [8]Tan M H,Xiang Y H,Zha Z W.Someinifite summation identities of the second kind[J].J.Math.,2013,33(3):388–392.

        [9]Pólya G,Szeg? G.Problems and theorems in analysis I[M].New York:Springer-Verlag,1972.

        關(guān)于Bell多項(xiàng)式及其它的一些恒等式

        過 靜1,李小雪2
        (1.江西科技師范大學(xué)數(shù)學(xué)與計(jì)算機(jī)科學(xué)學(xué)院,江西南昌 330038)
        (2.西北大學(xué)數(shù)學(xué)學(xué)院,陜西西安 710127)

        本文引入了一個新的多項(xiàng)式,即Bell多項(xiàng)式.利用初等數(shù)論及組合方法,證明了包含該多項(xiàng)式的一些恒等式.作為這些恒等式的應(yīng)用,給出了關(guān)于Bell數(shù)的同余式.

        Bell數(shù);Bell多項(xiàng)式;恒等式;組合方法

        O157.1

        11B37;11B83

        A

        0255-7797(2017)06-1201-06

        date:2015-04-14Accepted date:2015-07-06

        Supported by National Natural Science Foundation of China(11371291);Jiangxi Science and Technology Normal University(xjzd2015002).

        Biography:Guo Jing(1973–),female,born at Jinxian,Jiangxi,associate professor,major in mathematics.

        猜你喜歡
        數(shù)論西北大學(xué)恒等式
        西北大學(xué)木香文學(xué)社
        活躍在高考中的一個恒等式
        民族文匯(2022年23期)2022-06-10 00:52:23
        一類涉及數(shù)論知識的組合題的常見解法
        幾類遞推數(shù)列的數(shù)論性質(zhì)
        賴彬文
        書香兩岸(2020年3期)2020-06-29 12:33:45
        數(shù)論中的升冪引理及其應(yīng)用
        《西北大學(xué)學(xué)報(bào)》(自然科學(xué)版)征稿簡則
        一類新的m重Rogers-Ramanujan恒等式及應(yīng)用
        Weideman公式的證明
        《我們》、《疑惑》
        全球中文成人在线| 国产激情综合五月久久| 久久无码高潮喷水抽搐| 性色av闺蜜一区二区三区| 久久久久久久久久久熟女AV| 国产成人自拍小视频在线| 天天色天天操天天日天天射| 亚洲欧美中文字幕5发布| 日日摸夜夜添狠狠添欧美| 特一级熟女毛片免费观看| 国产一区二区三区最新地址| 国产精品成人网站| 国产精品一区二区久久精品| 久草精品手机视频在线观看| 91国产精品自拍在线观看| 国产后入又长又硬| 久久久久成人亚洲综合精品| 日韩精品有码中文字幕| 久久久久久夜精品精品免费啦 | 成人免费a级毛片| 免费一级特黄欧美大片久久网 | 亚洲图文一区二区三区四区| 久久精品免费一区二区喷潮| 亚洲午夜精品久久久久久人妖| 丝袜欧美视频首页在线| 国产黄色一级大片一区二区| 成人精品一区二区三区电影 | 国产激情视频在线观看首页| 国产精品天干天干| 成人免费网站视频www| 国产精品亚洲专区无码不卡| 日本超级老熟女影音播放| 欧美人与动牲交a精品| 国产乱色国产精品免费视频| 久久国产精品免费一区二区三区 | 欧美乱人伦人妻中文字幕| 亚洲毛片网| 亚洲国语对白在线观看| 亚洲人成影院在线无码按摩店| 亚洲欧美日韩一区在线观看| 亚洲午夜精品国产一区二区三区|