亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        NEW RECURRENCE FORMULAE FOR THE POLYLOGARITHM FUNCTION

        2017-11-06 09:36:37HEYuanZHANGJialing
        數(shù)學(xué)雜志 2017年6期
        關(guān)鍵詞:云南昆明理學(xué)院張家

        HE Yuan,ZHANG Jia-ling

        (School of Science,Kunming University of Science and Technology,Kunming 650500,China)

        NEW RECURRENCE FORMULAE FOR THE POLYLOGARITHM FUNCTION

        HE Yuan,ZHANG Jia-ling

        (School of Science,Kunming University of Science and Technology,Kunming 650500,China)

        In this paper,we perform a further investigation for the polylogarithm function at negative integral arguments.By applying the generating function methods and Padé approximation techniques,we establish some new recurrence formulae for this type function and present some illustrative special cases of main results.

        polylogarithm function;generating function;Padé approximants;recurrence formulae

        1 Introduction

        Letsandzbe complex numbers,the polylogarithm function Lis(z)is de fined by means of the Dirichlet series

        which is valid for arbitrary complex ordersand for all complex argumentszwith|z|<1 and can be extended to|z|≥1 by the process of analytic continuation.

        The polylogarithm function at zero and negative integral arguments are referred to as the polypseudologarithms(or polypseudologs)of ordernby Lee[8].It is worth noticing that the values of polypseudologrithms atz=1 are related to the values of the Riemann zeta functionζ(s)at negative integers and are expressed in terms of the Bernoulli numbersBn,as follows(see,e.g.,[4,8])

        In[11],Truesdell gave a closed formula for the polypseudologarithms,as follows

        whereS(n,k)is the familiar Stirling numbers of the second kind.In[6],Eastham showed that there is no pure recurrence relation of the form

        wherenis a positive integer,r≥nis allowed.TheAn(z)are algebraic functions ofzandA0(z)is not identically zero.More recently,Cvijovi?[5]discovered some similar ones for the polypseudologarithms to formula(1.3),and also established a new type closed formula for the polypseudologarithms in the following way

        where[x]denotes the greatest integer≤xandT(n,k)is the tangent numbers(of orderk)or the higher order tangent numbers given by(see,e.g.,[3])

        Motivated by the work of Eastham and Cvijovi?,in this paper we perform a further investigation for the polylogarithm function at negative integral arguments,and establish some new recurrence formulae for this type function to state that there exist some explicit recurrence relations of form(1.4)for the polypseudologarithms by applying the generating function methods and Padé approximation techniques.And we accordingly consider some illustrative special cases as well as immediate consequences of the main results.

        2 Padé Approximants

        We begin by recalling the de finition of Padé approximation to general series and their expression in the case of the exponential function.Letm,nbe non-negative integers and letPkbe the set of all polynomials of degree≤k.Given a functionfwith a Taylor expansion

        in a neighborhood of the origin,a Padé form of type(m,n)is a pair(P,Q)satisfying that

        and

        It is clear that every Padé form of type(m,n)forf(t)always exists and obeys the same rational function.The uniquely determined rational functionP/Qis called the Padé approximant of type(m,n)forf(t),and is denoted by[m/n]f(t)orrm,n[f;t],see for example,[1,2].

        The study of Padé approximants to the exponential function was initiated by Hermite[7]and then continued by Padé[9].Given a pair(m,n)of nonnegative integers,the Padé approximant of type(m,n)foretis the unique rational function

        with the property that

        Unlike Padé approximants to other functions,it is possible to determine explicit formulae forPm,nandQm,n(see,e.g.,[10,p.245])

        and

        We here refer respectively toPm,n(t)andQm,n(t)as the Padé numerator and denominator of type(m,n)foret.In next section,we shall use the above Padé approximation to the exponential function to establish some new recurrence formulae for the polylogarithm function at zero and negative integral arguments.

        3 The Restatements of Results

        In[4],Cvijovi? discovered some similar formulae to(1.3)by making use of the following generating functions for the polypseudologarithms(see,e.g.,[11,12])

        and

        We shall replace the exponential functionetnot by its Taylor expansion aroundt=0 but by its Padé approximant in the generating function of the polypseudologarithms.We first rewrite the first formula of(3.1)as follows

        If we denote the right hand side of(2.8)bySm,n(t),the Padé approximant for the exponential functionetcan be expressed as

        We now apply(3.4)to(3.3)and then obtain

        If we apply the exponential seriesin the right hand side of(2.8),with the help of the familiar beta function,we get

        For convenience,we considerpm,n;k,qm,n;kandsm,n;kof the coefficients of the polynomialsPm,n(t),Qm,n(t)andSm,n(t)such that

        Obviously,the coefficientspm,n;k,qm,n;kandsm,n;kobey

        and

        respectively.If we apply(3.7)to(3.5),we obtain

        from which and the familiar Cauchy product,we discover

        Comparing the coefficients oftlin(3.11)gives that for 1≤l≤m+n,

        which together with(3.8)yields the following result.

        Theorem 3.1Letl,m,nbe non-negative integers.Then for positive integerlwith max(m,n)<l≤m+n,

        We next discuss some special cases of Theorem 3.1.Settingl=m+nin Theorem 3.1,we obtain that for positive integersm,n,

        It is obvious that the casem=1 in(3.14)gives that for positive integern,

        and the casen=1 in(3.14)arises

        If we compare the coefficients oftlin(3.11)forl≥m+n+1,then

        Hence applying(3.8)and(3.9)to(3.17)gives the following result.

        Theorem 3.2Letm,nbe non-negative integers.Then for positive integerlwithl≥m+n+1,

        It follows that we show some special cases of Theorem 3.2.Takingl=m+n+1 in Theorem 3.2,we obtain that for non-negative integersm,n,

        In particular,the casem=0 in(3.19)arises

        More generally,by settingm=0 andl=n+rin Theorem 3.2,we get that for non-negative integernand positive integerr,

        And the casen=0 in(3.21)yields another recurrence formula to compute the values of the polypseudologarithms with Li0(z)=z/(1?z):

        It becomes obvious that formulae(3.15),(3.16)and(3.22)mean that there exists pure recurrence relations of form(1.4)for the polypseudologarithms,respectively.

        AcknowledgementThis work was done during the authors’visit for Department of Computer Science,State University of New York at Stony Brook.

        [1]Baker Jr G A,Graves-Morris P.Padé approximants(2nd ed.)[M].Cambridge:Cambridge Univ.Press,1996.

        [2]Brezinski C.History of continued fractions and Padé approximant[M].Berlin:Springer-Verlag,1991.

        [3]Carlitz L,Scoville R.Tangent numbers and operators[J].Duke Math.J.,1972,39:413–429.

        [4]Chen G H,Liu B L.Some identities related to the dedekind sums[J].J.Math.,2014,34:198–204.

        [5]Cvijovi? D.Polypseudologarithms revisited[J].Phys.A,2010,389:1594–1600.

        [6]Eastham M S P.On polylogarithms[J].Proc.Glasgow Math.Assoc.,1964,6:169–171.

        [7]Hermite C.Sur lafonction exponentielle[J].C.R.Acad.Sci.Paris,1873,77:18–24,74–79,226–233,285–293.

        [8]Lee M H.Polylogarithms and Riemann’sζfunction[J].Phys.Review E,1997,56:3909–3912.

        [9]Padé H.Librairie scientifique et technique(edited by C.Brezinski)[M].Paris:A.Blanchard,1984.

        [10]Perron O.Die Lehre von den Kettenbriichen(3rd ed.)[M].Stuttgart:Teubner,1957.

        [11]Truesdell C.On a function which occurs in the theory of the structure of polymers[J].Ann.Math.,1945,46:144–157.

        [12]Zeitlin D.Two methods for the evaluation ofAmer.Math.Monthly,1961,68:986–989.

        關(guān)于polylogarithm函數(shù)新的循環(huán)公式

        何 圓,張家玲
        (昆明理工大學(xué)理學(xué)院,云南昆明 650500)

        本文對polylogarithm函數(shù)在負(fù)整數(shù)點(diǎn)的情形作了進(jìn)一步的研究.利用生成函數(shù)方法及Padé估計技巧,建立了此類函數(shù)的一些新的循環(huán)公式,并給出了主要結(jié)果的一些特殊情況.

        polylogarithm函數(shù);生成函數(shù);Padé估計;循環(huán)公式

        O156.4

        11E41;33E20;05A19

        A

        0255-7797(2017)06-1154-07

        date:2015-01-09Accepted date:2015-10-10

        Supported by the Foundation for Fostering Talents in Kunming University of Science and Technology(KKSY201307047)and the National Natural Science Foundation of China(11326050;11071194).

        Biography:He Yuan(1982–),male,born at Neijiang,Sichuan,associate professor,major in number theory and its applications.

        猜你喜歡
        云南昆明理學(xué)院張家
        說話算話的我
        昆明理工大學(xué)理學(xué)院學(xué)科簡介
        昆明理工大學(xué)理學(xué)院簡介
        “霸王”不在家
        云南昆明:公布今年首個拖欠農(nóng)民工工資“黑名單”
        A Study of The Women Warrior and God Help the Child from Perspective of Role Theory
        --Take Bride and No Name Woman as an Example
        報刊精萃(2019年2期)2019-11-13 02:48:29
        Women’s Dilemma in Wide Sargasso Sea from the Perspective of Ecofeminism
        報刊精萃(2019年2期)2019-11-13 02:48:29
        給張家源的信
        On theChinese Translation ofEnglish SongsBased on Functional Equivalence Theory
        成功(2018年10期)2018-03-26 02:56:14
        西安航空學(xué)院專業(yè)介紹
        ———理學(xué)院
        国产不卡在线免费视频| 久久精品国产免费观看| 国产国拍精品av在线观看按摩| 久久亚洲精品无码va大香大香| 国产一区二区三区4区| 免费黄网站永久地址进入| 亚洲高清在线免费视频| 小蜜被两老头吸奶头在线观看| 国产精品久免费的黄网站| 亚洲av色香蕉一区二区蜜桃| 国产激情视频在线观看大全| 国产午夜成人av在线播放| 巨大欧美黑人xxxxbbbb| 亚洲人成无码网站在线观看| 国产男女猛烈无遮挡免费视频| 白白色发布永久免费观看视频| 一区二区三区午夜视频在线| 久久久久久久97| 亚洲成人福利在线观看| 日本视频一区二区二区| 亚洲tv精品一区二区三区| 麻豆精品久久久久久久99蜜桃| 日韩欧美国产亚洲中文| 日产一区一区三区区别| 护士的小嫩嫩好紧好爽| 一个人在线观看免费视频www| 亚洲色www无码| 久久想要爱蜜臀av一区二区三区| 中国无码人妻丰满熟妇啪啪软件| 亚洲黄色电影| 久久精品一品道久久精品9| 久久久免费精品国产色夜| 97在线视频人妻无码| 人人妻人人澡人人爽人人精品| 国产伦码精品一区二区| 狠狠爱婷婷网五月天久久| 欧美寡妇xxxx黑人猛交| 在线a亚洲视频播放在线观看| 国产免费一区二区三区在线观看| 亚洲av永久无码精品一福利 | 麻豆AV无码久久精品蜜桃久久|