曾志紅, 楊必成
(1. 廣東第二師范學(xué)院學(xué)報編輯部, 廣州 510303; 2. 廣東第二師范學(xué)院數(shù)學(xué)系, 廣州 510303)
關(guān)于一個參量化的全平面Hilbert積分不等式
曾志紅1, 楊必成2*
(1. 廣東第二師范學(xué)院學(xué)報編輯部, 廣州 510303; 2. 廣東第二師范學(xué)院數(shù)學(xué)系, 廣州 510303)
探討了一個新的參量化的全平面Hilbert積分不等式:建立2個權(quán)函數(shù),運用帶權(quán)的H?lder不等式,應(yīng)用實分析技巧,引入非零的獨立參量a、b、、β以及滿足關(guān)系σ+μ=<1-β的參數(shù)σ、μ,得到一個新的全平面非齊次核的具有最佳常數(shù)因子K(σ)且含中間變量的Hilbert型積分不等式及其等價式和特殊參數(shù)下的齊次與非齊次核不等式.
權(quán)函數(shù); 全平面Hilbert積分不等式; 等價式; 最佳常數(shù)
Keywords: weight function; Hilbert’s integral inequality in the whole plane; equivalent form; best possible constant factor
(1)
這里,常數(shù)因子π為最佳值.
基于式(1)的Hilbert積分不等式的部分推廣形式[2-7]有-1齊次核k(x,y)的;有引入一對共軛指數(shù),或引入貝塔函數(shù)及獨立參量(0,),或引入2對共軛指數(shù)(p,q)、(r,s) (p,r>1,1/p+1/q=1/r+1/s=1)及獨立參數(shù)>0得到的. 這些Hilbert積分不等式的研究區(qū)域均為第一象限. 目前,在全平面上研究Hilbert積分不等式的文獻還比較少.
2007年,YANG[8]得到全平面非齊次核的具有最佳常數(shù)因子的Hilbert型積分不等式:
(2)
隨后,文獻[9-16]繼續(xù)討論了這一課題.
本文在文獻[8]的基礎(chǔ)上引入獨立參量及含指數(shù)函數(shù)的中間變量,運用權(quán)函數(shù)方法和實分析技巧,建立如下一個類似式(2)的全平面齊次核的具有最佳常數(shù)因子的Hilbert型積分不等式:
(3)
其中,σ,μ>0,σ+μ=. 并進一步探討了其更一般的形式、等價式及特殊參數(shù)下的齊次與非齊次核不等式.
定義1設(shè)a,b≠0,σ,μ>0,σ+μ=<1-β. 定義如下權(quán)函數(shù):
(4)
(5)
(6)
(7)
定理1設(shè)p>1,1/p+1/q=1,a,b≠0,σ,μ>0,σ+μ=<1-β,則
K(σ)∶=Kb1/pKa1/q=
(8)
f(x)≥0,x,且. 則有如下不等式:
(9)
證明由帶權(quán)的H?lder不等式[17]及式(7),有
(10)
下證式(10)中間取嚴(yán)格不等號. 否則,對于某個y,使式(10)中間取等號,有不全為0的常數(shù)A、B,使a.e.于[17]. 若A=0,則B=0,這與A、B不全為0的條件矛盾. 不妨設(shè)A≠0,則a.e.于. 這與條件矛盾. 由式(10)、(6)及交換積分次序的Fubini定理[18],有
(11)
再由式(7)、(8),可得式(9). 證畢.
定理2設(shè)p>1,1/p+1/q=1,a,b≠0,σ,μ>0,σ+μ=<1-β,K(σ)如式(8)所示. 若及,則有如下與式(9)等價的不等式:
(12)
這里,式(12)與式(9)的常數(shù)因子K(σ)均為最佳值. 特別當(dāng)a=b=1時,有非齊次核的具有最佳常數(shù)因子k(σ)∶=[B(1--β,σ)+B(1--β,μ)]的等價不等式:
(13)
(14)
證明由H?lder不等式,有
(15)
由此可得式(9),而且式(9)與式(12)等價.
任意給足夠大的n+,定義集合Ea∶={x;ax≥0},Fb∶={y;by≤0},及函數(shù)
則
作變換u=eax+by,有
(16)
(17)
及K(σ)≤k. 故k=K(σ)是式(12)的最佳值. 式(9)的常數(shù)因子K(σ)必是最佳值,否則,由式(15),必導(dǎo)出式(12)的常數(shù)因子也不是最佳值的矛盾. 證畢.
評注在式(12)與式(9)中,令a=1,b=-1,以eg(y)取代g(y),則有及如下具有最佳常數(shù)因子的齊次核等價不等式:
(18)
(19)
當(dāng)β=-時,式(18)變?yōu)槭?3).
[1] SCHUR I. Bernerkungen zur theorie der beschr?nkten Billnearformen mit unendlich vielen veranderlichen [J]. Journal Für Die Reine und Angewandte Mathematik,1911,140:1-28.
[2] HARDY G H. Note on a theorem of Hilbert concerning series of positive terms [J]. Proceedings of the London Mathematical Society,1925,23(2):45-46.
[3] HARDY G H,LITTLEWOOD J E,POLYA G. Inequalities [M]. Cambridge:Cambridge University Press,1952.
[4] MITRINOVIC D S,PECARIC J E,FINK A M. Inequalities involving functions and their integrals and derivatives [M]. Boston:Kluwer Academic Publishers,1991.
[5] YANG B C. On Hilbert’s integral inequality [J]. Journal of Mathematical Analysis and Applications,1998,220:778-785.
[6] YANG B C. A note on Hilbert’s integral inequality [J]. Chinese Quarterly,1998,13(4):83-86.
[7] YANG B C. On an extension of Hilbert’s integral inequali-ty with some parameters [J]. Australian Journal of Mathe-matical Analysis and Applications,2004,1(1):1-8.
[8] YANG B C. A new Hilbert’s type integral inequality [J]. Soochow Journal of Mathematics,2007,33(4):849-859.
[9] 楊必成. 一個新的參量化Hilbert型積分不等式[J]. 吉林大學(xué)學(xué)報(理學(xué)版),2008,46(6):1085-1090.
YANG B C. A new Hilbert-type integral inequality with some parameters[J]. Journal of Jilin University(Science Edition),2008,46(6):1085-1090.
[10] XIN D M,YANG B C. A Hilbert-type integral inequality in the whole plane with the homogeneous kernel of degree -2[J]. Journal of Inequalities and Applications,2011(1):1-11.
[11] WANG A Z,YANG B C. A new Hilbert-type integral inequality in the whole plane with the non-homogeneous kernel[J]. Journal of Inequalities and Applications,2011(1):123-131.
[12] XIE Z T,RAJA RAMA GANDHI K,ZENG Z. A new Hilbert-type integral inequality with the homogeneous kernel of real degree form and the integral in whole plane [J]. Bulletin of Society for Mathematical Services & Applications,2013,2(1):95-109.
[13] XIE Z T,ZENG Z. A new Hilbert-type inequality in whole plane with the homogeneous kernel of degree 0 [J]. I-manager’s Journal on Mathematics,2013,2(1):13-19.
[14] XIE Z T,ZENG Z,SUN Y F. A new Hilbert-type inequality with the homogeneous kernel of degree-2 [J]. Advances and Applications in Mathematical Sciences,2013,12(7):391-401.
[15] YANG B C,CHEN Q. Two kinds of Hilbert-type integral inequalities in the whole plane [J]. Journal of Inequalities and Applications,2015(1):1-11.
[16] RASSIAS M T,YANG B C. A Hilbert-type integral inequality in the whole plane related to the hypergeometric function and the beta function [J]. Journal of Mathematical Analysis and Applications,2015,428(2):1286-1308.
[17] 匡繼昌. 常用不等式[M]. 濟南:山東科技出版社,2004.
[18] 匡繼昌. 實分析與泛函分析(續(xù)論) [M]. 北京:高等教育出版社,2015.
A Parametric Hilbert’s Integral Inequality in the Whole Plane
ZENG Zhihong1, YANG Bicheng2*
(1. Editorial Department of Journal, Guangdong University of Education, Guangzhou 510303, China;2. Department of Mathematics, Guangdong University of Education, Guangzhou 510303, China)
A new parametric Hilbert’s integral inequality in the whole plane is discussed. Two weight functions are established. By using the weighted H?lder’s inequality, the real analysis techniques, and by introducing the non-zero independent parametersa,b,,βand the parametersσ,μsatisfyingσ+μ=<1-β, a new Hilbert-type integral inequality with intermediate variable, the best constant factorK(σ) and non-homogeneous kernel is obtained, as well as its equivalent inequality and the inequalities with homogeneous or non-homogeneous kernel under special parameters.
2017-03-31 《華南師范大學(xué)學(xué)報(自然科學(xué)版)》網(wǎng)址:http://journal.scnu.edu.cn/n
國家自然科學(xué)基金項目(61370186);廣東第二師范學(xué)院教授、博士科研專項基金項目 (2015ARF25)
*通訊作者:楊必成,教授,Email:bcyang@gdei.edu.cn.
O178
A
1000-5463(2017)05-0100-04
【中文責(zé)編:莊曉瓊 英文審校:肖菁】