亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        On the properties of generalized fibonacci numbers with binomial coefficients

        2017-11-02 00:12:10ZHANGCaihuanLIUDong
        關(guān)鍵詞:洛陽性質(zhì)信息技術(shù)

        ZHANG Caihuan, LIU Dong

        (1.Department of Mathematics, Luoyang Normal University, Luoyang, Henan, 471022 ;2.Department of Information Technology, Luoyang Normal University, Luoyang, Henan 471022)

        Onthepropertiesofgeneralizedfibonaccinumberswithbinomialcoefficients

        ZHANG Caihuan1*, LIU Dong2

        (1.Department of Mathematics, Luoyang Normal University, Luoyang, Henan, 471022 ;2.Department of Information Technology, Luoyang Normal University, Luoyang, Henan 471022)

        In this paper, we obtained many new important properties by studying generalized Fibonacci numbers and summarized some properties of generalized Fibonacci numbers by binomial coefficients.

        binomial coefficient; generalized Fibonacci numbers; binomial expansion

        Fn+1=Fn+Fn-1,F(xiàn)0=0,F(xiàn)1=1;

        (1)

        un+1=pun+un-1,u0=0,u1=1.

        (2)

        Fnandunare called thenth Fibonacci number and generalized Fibonacci number respectively. These numbers are well-known for possessing wonderful and amazing properties (consult [1] together with their very extensive annotated bibliography for additional references and history) Moreover, for thenth Fibonacci number, it is well known that the sum of the squares is

        Also, the elegant formula is

        Recently, there has been a huge interest of the application for Fibonacci and Lucas numbers in all sciences. For the pretty and rich applications of these numbers and their relatives one can see science and the nature [2-10]. There are many different generalizations in the theory of Fibonacci numbers, among other generalizations in the distance sense, and there are many types of identities containing sums of certain functions of binomial coefficients and Fibonacci or Lucas numbers. All of these are special cases of the following two identities.

        In [11], the author gave some properties of Fibonacci numbers with binomial coefficients. Motivated by it, in this paper, we concentrate on the generalized Fibonacci numbers and show some interesting results.

        1 Main results

        For the generalized Fibonacci {un} defined in (2), we know:

        u0=0,u1=1,u2=p,u3=p2+1,

        u4=p3+2p,u5=p4+3p2+1,

        u6=p5+4p3+3p,…

        Generally, we have the following result:

        Theorem1Forn∈Z+,

        un+6=p(p2+3)un+3+un.

        (3)

        ProofWe use the principle of mathematical induction onn. Forn=1,

        u7=p(p2+3)u4+u1=

        p(p2+3)(p3+2p)=p6+5p4+6p2+1.

        And from the equation (2), we have

        u7=pu6+u5=

        p(p5+4p3+3p)+p4+3p2+1=

        p6+5p4+6p2+1.

        Assume that it is true for all positive integersn=k. That is

        uk+6=p(p2+3)uk+3+uk.

        (4)

        We need to show that it is true forn=k+1. That is

        u(k+1)+6=p(p2+3)u(k+1)+3+u(k+1).

        (5)

        The right hand side of equation (5) can be written as

        p(p2+3)u(k+1)+3+u(k+1)=

        p(p2+3)uk+4+u(k+1)=

        p(p2+3)(puk+3+uk+2)+puk+uk-1=

        p(p(p2+3)uk+3+uk)+
        (p(p2+3)uk+2+uk-1).

        From (4), we know

        p(p2+3)uk+3+uk=uk+6

        and

        p(p2+3)uk+2+uk-1=uk+5,

        so we have

        p(p2+3)u(k+1)+3+u(k+1)=

        p(p2+3)uk+4+u(k+1)=

        puk+6+uk+5=uk+7=u(k+1)+6.

        Thus (5) is true. Therefore, the result is true for everyn>0.

        (6)

        u9=p(p2+3)u6+u3=

        p(p2+3)×p(p2+3)(p2+1)+u3=

        (p2+1)[p(p2+3)]2+u3.

        ProofWe use the principle of mathematical induction onn. Forn=2, by Theorem 1,the identity (6) is true. Assume that it is true forn=m-1≥3. That is

        (7)

        We need to show that it is true forn=m. Then by Theorem 1, we have

        u3m+3=u3(m-1)+6=

        p(p2+3)u3(m-1)+3+u3(m-1)=

        p(p2+3)u3m+u3(m-1),

        and by assumption, we know

        u3m+3=p(p2+3)((p2+1)[p(p2+3)]m-1+

        (p2+1)[p(p2+3)]m+

        Equation (6) is true forn=m.

        (8)

        For this theorem, we will give two proves of it. The first is perceptual intuition, and the second we will use the principle of mathematical induction.

        ?

        It is clear that the multipliersa,ab2,ab4, …,abnofu3,u9,u15, …,ukhave the binomial coefficients as:

        or briefly, we write

        (9)

        We need to show that it is true forn=2m. Thenk=6m+3x, by Theorem 1, we have

        u6m+3=u6(m-1)+3+6=

        p(p2+3)u6(m-1)+3+3+u6(m-1)+3=

        bu6m+u6m-3=u6m-3+bu6(m-1)+6=

        u6m-3+b(bu6(m-1)+3+u6(m-1))=

        u6m-3+b2u6m-3+bu6(m-2)+6=

        u6m-3+b2u6m-3+b(bu6(m-2)+3+u6(m-2))=

        …=

        u6m-3+b2u6m-3+b2u6m-9+b2u6m-15+…+b2u3.

        (10)

        And so on, we have the identity

        And so the equation (8) is true forn=2m, then we complete the proof.

        By the same method, we can obtain the following theorem:

        ProofThe proof of this theorem is similar to the proof of Theorem 3, so we omitted it.

        2 Applications

        By Theorem 1~4, we could have the following results, and the proves were left to interested readers.

        Corollary2Forn∈,-1=nandn≥0,

        Corollary4Forn∈,-1=nandn≥0,

        [1] KALMAN D, MENA R. The Fibonacci numbers exposed [J]. Math Mag, 2003,76(3): 167-181.

        [2] KILIC E. Sums of generalized Fibonacci numbers by matrix methods [J]. Ars Combinatoria, 2007,84(84):23-31.

        [3] KOSHY T. Fibonacci and Lucas Numbers with Applications [M]. NY: John Wiley and Sons, 2001.

        [4] STAKHOV A. Fibonacci matrices, a generalization of the 'Cassini formula’ and a new coding theory Chaos[J]. Solitons & Fractals, 2006,30(1):56-66.

        [5] ZhANG C H. On the generalized Fibonacci matrix of order 2Γ(k) Sequence {FΓ(2k)n}[J]. Ars Combinatoria, 2001,59:7-14.

        [6] FALCON S, PLAZA A. The k-Fibonacci sequence and the Pascal 2-triangle[J]. Chaos Soliton Fract, 2007,33(1):38-49.

        [7] FARROKHI D G M. Some remarks on the equationFn=kFmin Fibonacci numbers[J]. J Integer Seq, 2007,10(5):1-5.

        [8] SPIVEY M Z. Combinatorial sums and finite differences[J]. Discrete Math, 2007,307(24):3130-3146.

        [9] AKBULAK M, BOZIKURT D. On the order-m generalized Fibonaccik-numbers [J]. Chaos Soliton Fract, 2009,42(3): 1347-1355.

        [10] DEMIR A, OMUR N, ULUTAS Y T. Parametrized Fibonacci search method withk-Lucas numbers[J]. Appl Math Comput, 2008,198(1):355-360.

        [11] GULEC H H, TASKARA N. On the properties of Fibonacci numbers with binomial coefficients[J]. Int J Contemp Math Sciences, 2009,4(25):1251-1256.

        帶有二項(xiàng)式系數(shù)的廣義數(shù)Fibonacci的相關(guān)性質(zhì)

        張彩環(huán)1, 劉 棟2

        (1.洛陽師范學(xué)院 數(shù)學(xué)科學(xué)學(xué)院, 河南 洛陽 471022; 2.洛陽師范學(xué)院 信息技術(shù)學(xué)院, 河南 洛陽 471022)

        該文通過研究廣義的Fibonacci數(shù),得到了許多重要的性質(zhì),并且,用二項(xiàng)式系數(shù)對(duì)廣義Fibonacci數(shù)的一些性質(zhì)進(jìn)行了概括.

        二項(xiàng)式系數(shù); 廣義的Fibonacci數(shù); 二項(xiàng)展開

        O157.1

        A

        2017-03-24.

        the National Natural Science Foundation of China (11371184).

        1000-1190(2017)05-0581-04

        *E-mail: zhcaihuan@163.com.

        10.19603/j.cnki.1000-1190.2017.05.004

        猜你喜歡
        洛陽性質(zhì)信息技術(shù)
        洛陽關(guān)(中篇小說)
        紅豆(2022年9期)2022-11-04 03:14:14
        洛陽正大劇院
        新一代信息技術(shù)征稿啟示
        隨機(jī)變量的分布列性質(zhì)的應(yīng)用
        新一代信息技術(shù)征稿啟示
        新一代信息技術(shù)征稿啟示
        完全平方數(shù)的性質(zhì)及其應(yīng)用
        信息技術(shù)在幼兒教育中的有效應(yīng)用
        甘肅教育(2020年2期)2020-09-11 08:00:44
        “立法為民”的洛陽實(shí)踐
        九點(diǎn)圓的性質(zhì)和應(yīng)用
        国产真人无码作爱视频免费| 国产精品狼人久久影院软件介绍| 精品亚洲a∨无码一区二区三区| 亚洲成av人在线观看天堂无码| 一区二区日韩国产精品| 人人妻人人澡av| 免费精品人妻一区二区三区| 亚洲日韩国产av无码无码精品| 日日鲁鲁鲁夜夜爽爽狠狠视频97 | 亚洲AVAv电影AV天堂18禁| 日韩在线视频专区九区| 欧美性高清另类videosex| 欧美日韩中文国产一区发布| 国产日本在线视频| 国产另类av一区二区三区| 久久久久国产亚洲AV麻豆| 精品av一区二区在线| 老鲁夜夜老鲁| 天天躁夜夜躁狠狠躁2021a2| 日韩精品无码久久久久久| 亚洲无码美韩综合| 在线观看国产白浆一区三区| 久久久亚洲精品无码| 好日子在线观看视频大全免费动漫| 国产真实乱人偷精品人妻| 人妻系列影片无码专区| 人妖在线一区二区三区| 国模雨珍浓密毛大尺度150p| 亚洲国产无套无码av电影| 亚洲熟妇大图综合色区| 久久精品人妻中文av| 日本高清视频wwww色| 天堂网www在线资源| 日本熟妇精品一区二区三区| 国产精品一区二区av不卡 | 蜜桃精品人妻一区二区三区| a级国产乱理伦片在线播放| 日韩久久久久中文字幕人妻| 蜜桃国产精品视频网站| 国产欧美一区二区三区在线看| 亚洲天堂在线播放|