茹京娜,于太飛,陳雋,陳明,周永斌,馬有志,徐兆師,閔東紅
?
小麥鋅指轉(zhuǎn)錄因子TaDi19A對(duì)低溫的響應(yīng)及其互作蛋白的篩選
茹京娜1,2,于太飛2,陳雋2,陳明2,周永斌2,馬有志2,徐兆師2,閔東紅1
(1西北農(nóng)林科技大學(xué)/旱區(qū)作物逆境生物學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,陜西楊凌712100;2中國(guó)農(nóng)業(yè)科學(xué)院作物科學(xué)研究所/農(nóng)作物基因資源與基因改良國(guó)家重大科學(xué)工程/農(nóng)業(yè)部麥類生物學(xué)與遺傳育種重點(diǎn)實(shí)驗(yàn)室,北京100081)
【目的】鋅指類轉(zhuǎn)錄因子在植物逆境信號(hào)轉(zhuǎn)導(dǎo)和非生物脅迫響應(yīng)中發(fā)揮重要的作用。通過(guò)對(duì)小麥鋅指轉(zhuǎn)錄因子基因的耐冷性能進(jìn)行鑒定,利用酵母雙雜交技術(shù)篩選并獲得與TaDi19A互作的候選蛋白,以解析介導(dǎo)的抗逆調(diào)控機(jī)制。【方法】通過(guò)對(duì)低溫處理的小麥轉(zhuǎn)錄組測(cè)序結(jié)果進(jìn)行分析,獲得一個(gè)鋅指類轉(zhuǎn)錄因子。利用生物信息學(xué)的方法分析的分子特性,用SMART在線工具進(jìn)行蛋白結(jié)構(gòu)分析;用GSDS和PHYRE2在線工具分別對(duì)結(jié)構(gòu)和蛋白三級(jí)結(jié)構(gòu)進(jìn)行分析;用NetPhos 2.0 Server數(shù)據(jù)庫(kù)預(yù)測(cè)TaDi19A蛋白磷酸化位點(diǎn)。以低溫處理的小麥cDNA作為模板,通過(guò)SYBR Green染料法進(jìn)行實(shí)時(shí)熒光定量PCR,檢測(cè)在低溫處理不同時(shí)間段的表達(dá)模式。構(gòu)建植物表達(dá)載體pBI121-,通過(guò)花序侵染法轉(zhuǎn)化擬南芥,用T3代擬南芥進(jìn)行耐冷性鑒定,分析低溫處理對(duì)轉(zhuǎn)基因擬南芥的根長(zhǎng)、鮮重和存活率的影響。檢測(cè)轉(zhuǎn)擬南芥中抗逆相關(guān)基因表達(dá)變化,分析調(diào)控植物耐冷性的作用機(jī)制。構(gòu)建誘餌載體pGBKT7-,驗(yàn)證自激活活性;利用酵母雙雜交技術(shù),將誘餌載體pGBKT7-和小麥cDNA文庫(kù)共轉(zhuǎn)化酵母AH109感受態(tài)細(xì)胞,通過(guò)SD/-Trp/-Leu/-His/-Ade和X-α-gal顯藍(lán)反應(yīng)篩選得到陽(yáng)性克隆,測(cè)序和BLAST分析獲得候選蛋白?!窘Y(jié)果】小麥編碼區(qū)全長(zhǎng)747 bp,編碼248個(gè)氨基酸,分子量為28.03 kD,等電點(diǎn)為4.74,基因含4個(gè)外顯子,3個(gè)內(nèi)含子。TaDi19A蛋白靠近N-端包含鋅指結(jié)合結(jié)構(gòu)域,C端為Di19結(jié)構(gòu)域,預(yù)測(cè)的TaDi19A蛋白三級(jí)結(jié)構(gòu)包含2個(gè)α螺旋結(jié)構(gòu)。磷酸化位點(diǎn)分析結(jié)果顯示TaDi19A蛋白含有12個(gè)絲氨酸、9個(gè)蘇氨酸和3個(gè)酪氨酸磷酸化位點(diǎn)。實(shí)時(shí)熒光定量PCR結(jié)果顯示,受低溫脅迫誘導(dǎo)表達(dá)。正常生長(zhǎng)條件下,轉(zhuǎn)基因和野生型擬南芥沒(méi)有明顯差異,低溫處理下,轉(zhuǎn)基因擬南芥的根長(zhǎng)明顯大于野生型擬南芥,并且耐冷性強(qiáng)于野生型擬南芥。下游基因檢測(cè)結(jié)果表明,低溫處理后,、和等冷脅迫響應(yīng)相關(guān)基因在野生型和轉(zhuǎn)基因植株中表達(dá)量都升高,在轉(zhuǎn)基因植株中的表達(dá)量顯著高于野生型,表明可能通過(guò)調(diào)節(jié)下游冷脅迫響應(yīng)相關(guān)基因的表達(dá)提高轉(zhuǎn)基因植物的耐冷性。通過(guò)對(duì)酵母雙雜交系統(tǒng)篩選到的候選互作蛋白進(jìn)行初步分析表明,這些候選互作蛋白主要參與植物體的信號(hào)轉(zhuǎn)導(dǎo)和非生物脅迫響應(yīng)過(guò)程,表明在植物的逆境信號(hào)轉(zhuǎn)導(dǎo)及非生物脅迫響應(yīng)過(guò)程中發(fā)揮著重要作用。【結(jié)論】小麥?zhǔn)艿蜏卣T導(dǎo)表達(dá),過(guò)表達(dá)能夠提高轉(zhuǎn)基因擬南芥的耐冷性;而功能的發(fā)揮可能需要其他蛋白的參與。
普通小麥;鋅指轉(zhuǎn)錄因子;耐冷性;酵母雙雜交;蛋白互作
【研究意義】干旱、鹽堿、高溫、低溫等非生物脅迫因子嚴(yán)重影響作物的產(chǎn)量和品質(zhì)[1],其中低溫是一個(gè)非常重要的環(huán)境因子。近年來(lái)氣候變化異常,極端低溫天氣出現(xiàn)頻繁,低溫寒害已經(jīng)成為農(nóng)業(yè)生產(chǎn)中面臨的嚴(yán)重自然災(zāi)害之一。低溫通過(guò)影響植物細(xì)胞膜成分,氣孔開(kāi)度等生理、生化過(guò)程對(duì)植物造成傷害,限制作物的種植區(qū)域,影響作物的產(chǎn)量[2]。植物遭受冷脅迫時(shí),從接收低溫信號(hào)到引起生理生化反應(yīng),再到調(diào)節(jié)基因表達(dá),最后產(chǎn)生耐冷能力,存在一個(gè)復(fù)雜的信號(hào)傳導(dǎo)系統(tǒng)[3-4],其中低溫脅迫相關(guān)轉(zhuǎn)錄因子的作用尤為關(guān)鍵,它可以誘導(dǎo)下游多個(gè)耐冷基因的表達(dá)從而提高植物的耐冷性[5]。小麥?zhǔn)鞘澜缰匾募Z食作物之一,低溫凍害和倒春寒對(duì)小麥生產(chǎn)造成了嚴(yán)重的威脅。因此,發(fā)掘小麥耐冷相關(guān)轉(zhuǎn)錄因子基因,研究其調(diào)控機(jī)制,對(duì)于完善低溫脅迫應(yīng)答的分子機(jī)制和利用分子手段改良作物耐冷性具有重要意義。【前人研究進(jìn)展】植物對(duì)逆境脅迫應(yīng)答反應(yīng)是一個(gè)涉及多基因、多信號(hào)傳導(dǎo)途徑及多基因表達(dá)產(chǎn)物的復(fù)雜過(guò)程[6]。其中轉(zhuǎn)錄因子是植物體內(nèi)一類重要的調(diào)節(jié)因子。轉(zhuǎn)錄因子(transcription factor,TF)也稱反式作用因子,能夠與基因啟動(dòng)子區(qū)域中順式作用元件特異性結(jié)合,調(diào)節(jié)眾多下游基因的表達(dá),對(duì)植物的生長(zhǎng)發(fā)育、形態(tài)建成、以及抵抗非生物脅迫起重要作用[7-9]。自植物中最早的轉(zhuǎn)錄因子在玉米中被報(bào)道以來(lái)[10],已從植物中分離鑒定出大量轉(zhuǎn)錄因子,根據(jù)DNA結(jié)構(gòu)域的特點(diǎn)將轉(zhuǎn)錄因子分成若干個(gè)家族,包括WRKY、AP2/EREBP、MYB、bZIP和ZFPs等[11-12]。在植物對(duì)低溫脅迫的響應(yīng)過(guò)程中,轉(zhuǎn)錄因子通過(guò)調(diào)控下游抗逆相關(guān)基因的表達(dá)起著重要的作用[13]。低溫能夠誘導(dǎo)多種植物基因的表達(dá),如、、或者等[14-16]。CBFs/DREBs轉(zhuǎn)錄因子能夠與COR/KIN/LTI/RD基因啟動(dòng)子區(qū)的DRE/CRT順式作用元件結(jié)合并調(diào)控其表達(dá)[17-18]。擬南芥中過(guò)表達(dá)和能調(diào)控下游冷誘導(dǎo)基因的表達(dá),產(chǎn)生高水平的脯氨酸和可溶性糖,從而提高植物的耐冷性[19-21];冷處理下能夠負(fù)向調(diào)控和的表達(dá),從而調(diào)控下游基因表達(dá)及擬南芥的耐冷性[22]。編碼一個(gè)MYC類bHLH 轉(zhuǎn)錄因子,位于CBFs上游,正向調(diào)控CBFs,過(guò)表達(dá)的同源基因同樣能夠提高擬南芥的耐冷性[23-24]。這些研究都表明CBF-依賴途徑在植物低溫脅迫中起著重要的作用。除了CBF-依賴途徑,在植物的低溫脅迫響應(yīng)中還存在著多重的信號(hào)途徑[25-27]。C2H2類鋅指蛋白是真核生物中最大的轉(zhuǎn)錄因子家族之一,在植物非生物脅迫響應(yīng)中起著重要作用[8, 28-29],其中一些C2H2類鋅指蛋白對(duì)低溫脅迫響應(yīng)。例如大豆的鋅指蛋白基因,能夠提高bZIP類轉(zhuǎn)錄因子SGBF-1與ABRE的結(jié)合效率,調(diào)控轉(zhuǎn)基因植物對(duì)低溫的耐受性[30];另一個(gè)大豆的鋅指蛋白基因能夠被ABA、鹽、干旱和低溫誘導(dǎo),增強(qiáng)轉(zhuǎn)基因擬南芥對(duì)干旱和低溫的耐受性[13]。據(jù)報(bào)道,水稻鋅指蛋白基因//和沙冬青的鋅指蛋白基因受多種非生物脅迫誘導(dǎo),均提高了轉(zhuǎn)基因植株對(duì)冷、干旱和鹽脅迫的耐受性[11, 31-34]。雖然近幾年生物技術(shù)發(fā)展迅速,但是植物C2H2類鋅指蛋白的生理生化功能研究還很少。到目前為止,大部分被鑒定的植物脅迫相關(guān)的C2H2類鋅指蛋白都在干旱和鹽脅迫中起著重要作用,然而其中很少涉及到冷脅迫響應(yīng),尤其是在作物中[30-31]?!颈狙芯壳腥朦c(diǎn)】小麥?zhǔn)鞘澜缰匾募Z食作物之一,而低溫凍害和倒春寒卻限制了小麥的種植區(qū)域。本研究通過(guò)對(duì)低溫處理的小麥轉(zhuǎn)錄組測(cè)序結(jié)果進(jìn)行分析,獲得一個(gè)Di19家族轉(zhuǎn)錄因子。Di19家族屬于鋅指蛋白中的一個(gè)小家族,包含zf-di19和di19_C結(jié)構(gòu)域,涉及到植物非生物脅迫響應(yīng)[35-37]。在擬南芥、水稻和大豆中分別鑒定出了7個(gè)成員[35, 38-39],而在小麥中的研究卻很少。小麥中,LI等[40]發(fā)現(xiàn)對(duì)植物非生物脅迫響應(yīng)起著重要作用,過(guò)表達(dá)能提高擬南芥在萌發(fā)期對(duì)鹽脅迫、ABA和甘露醇的敏感性,根長(zhǎng)試驗(yàn)表明過(guò)表達(dá)能夠降低植株對(duì)鹽脅迫的耐受性和對(duì)乙烯的敏感性,然而關(guān)于Di19在小麥冷脅迫響應(yīng)中的研究尚未見(jiàn)報(bào)道?!緮M解決的關(guān)鍵問(wèn)題】本研究通過(guò)實(shí)時(shí)熒光定量PCR鑒定了在低溫脅迫下的表達(dá)模式,以及轉(zhuǎn)基因擬南芥對(duì)低溫脅迫的響應(yīng);為了進(jìn)一步研究的耐冷作用機(jī)制,利用酵母雙雜交技術(shù)以pGBKT7-為誘餌篩選小麥cDNA文庫(kù),篩選可能與其互作的候選蛋白,為研究小麥Di19轉(zhuǎn)錄因子抗逆調(diào)控機(jī)制提供依據(jù)。
1.1 植物材料及脅迫處理
普通小麥(L.)農(nóng)家品種小白麥?zhǔn)怯芍袊?guó)農(nóng)業(yè)科學(xué)院作物科學(xué)研究所景蕊蓮研究員提供。將其播種在土中于22℃生長(zhǎng)1周,然后對(duì)其進(jìn)行低溫脅迫處理:將小麥幼苗放入4℃繼續(xù)生長(zhǎng),并于1、2、4、8、12和24 h分別取樣。取2周大的野生型擬南芥(Columbia-0)和過(guò)表達(dá)的擬南芥進(jìn)行下游脅迫相關(guān)基因的分析。將所取樣品迅速放入液氮中,然后保存到-80℃冰箱中。
1.2 基因的生物信息學(xué)分析
小麥TaDi19A數(shù)據(jù)來(lái)源于EnsemblPlants(http:// plants.ensembl.org/index.html)數(shù)據(jù)庫(kù)。小麥TaDi19A蛋白的分子量和等電點(diǎn)用在線工具 Compute pI/Mw tool(http://web.expasy.org/protparam/)計(jì)算。其余的生物信息學(xué)分析方法如下:利用SMART(http://smart. embl-heidelberg.de/)在線工具分析小麥TaDi19A蛋白的結(jié)構(gòu)域;利用GSDS(http://gsds.cbi.pku.edu.cn/)制作小麥TaDi19A外顯子-內(nèi)含子結(jié)構(gòu)示意圖;利用PHYRE2(http://www.sbg. bio.ic.ac.uk/ phyre2.html)在線工具對(duì)TaDi19A蛋白三級(jí)結(jié)構(gòu)進(jìn)行分析[41]。利用NetPhos 3.1 Server數(shù)據(jù)庫(kù)(http://www.cbs.dtu.dk/ services/NetPhos/)預(yù)測(cè)TaDi19A蛋白磷酸化位點(diǎn)。
1.3 RNA提取和實(shí)時(shí)熒光定量PCR(qRT-PCR)
用植物總RNA提取試劑盒(天根,北京)提取不同時(shí)間段低溫處理的小麥RNA和擬南芥RNA,按照反轉(zhuǎn)錄試劑盒(TaKaRa,大連)說(shuō)明書(shū)將提取的RNA反轉(zhuǎn)錄成單鏈cDNA。然后將反轉(zhuǎn)錄的cDNA模板均稀釋到200 ng·μL-1,以SYBR Green染料法,在ABI 7500(Applied Biosystems,F(xiàn)oster City,CA)儀器上進(jìn)行實(shí)時(shí)熒光定量PCR反應(yīng)。反應(yīng)體系及程序參見(jiàn)Feng等[38]。每個(gè)反應(yīng)3次重復(fù)。按照基因相對(duì)表達(dá)分析2-ΔΔCT方法分析和擬南芥脅迫相關(guān)基因的相對(duì)表達(dá)量及其標(biāo)準(zhǔn)差。
1.4 轉(zhuǎn)基因擬南芥的產(chǎn)生及低溫鑒定
將的編碼序列構(gòu)建到帶有CaMV35S啟動(dòng)子的pBI121表達(dá)載體上,轉(zhuǎn)入GV3101農(nóng)桿菌中,通過(guò)花序侵染法侵染開(kāi)花期的野生型擬南芥。轉(zhuǎn)基因擬南芥的篩選參照HE等[42],T3純合轉(zhuǎn)基因種子和野生型種子用于低溫表型鑒定。
將野生型WT與T3轉(zhuǎn)基因擬南芥種子用70%的酒精洗3 min,無(wú)菌水洗3次,0.7%的NaClO溶液泡15 min,無(wú)菌水再?zèng)_洗3次,晾干后點(diǎn)種于MS0培養(yǎng)基上。先在4℃春化3 d打破休眠,然后轉(zhuǎn)移到16 h光照/8 h黑暗、60%相對(duì)濕度、22℃的培養(yǎng)箱中繼續(xù)生長(zhǎng)。將生長(zhǎng)5 d的擬南芥幼苗移到新的MS0培養(yǎng)基上,將其分別放入22℃和4℃直立生長(zhǎng),觀察轉(zhuǎn)基因和野生型植株根部的生長(zhǎng)狀況,統(tǒng)計(jì)根長(zhǎng)和鮮重。將生長(zhǎng)10 d大的擬南芥幼苗轉(zhuǎn)移到營(yíng)養(yǎng)土中(蛭石﹕泥炭土=1﹕1),在適宜條件下(16 h光照/8 h黑暗、溫度22℃、相對(duì)濕度60%)生長(zhǎng)3周,隨后進(jìn)行低溫處理:4℃放置3 h進(jìn)行冷適應(yīng),轉(zhuǎn)移到-10℃放置5 h,然后轉(zhuǎn)移到4℃放置3 h,最后轉(zhuǎn)移到正常生長(zhǎng)條件(22℃)恢復(fù)生長(zhǎng)5 d,觀察表型,統(tǒng)計(jì)存活率并照相。采用檢驗(yàn)方法,對(duì)所有數(shù)據(jù)進(jìn)行顯著性分析?!?.05即為差異顯著,用一顆黑色五星標(biāo)注,≤0.01即為差異極顯著,用兩顆黑色五星標(biāo)注。
1.5 小麥cDNA文庫(kù)構(gòu)建和誘餌載體構(gòu)建
利用RNA提取試劑盒(天根,北京)提取小麥葉片的總RNA,將提取的RNA反轉(zhuǎn)錄合成cDNA第一鏈(TaKaRa,大連),以反轉(zhuǎn)錄合成的第一鏈cDNA為模板進(jìn)行LD-PCR擴(kuò)增,反應(yīng)程序和后續(xù)反應(yīng)按照于太飛等[43]的方法進(jìn)行,最終得到小麥cDNA文庫(kù)。
根據(jù)的序列以及誘餌載體pGBKT7(Clontech,美國(guó))的限制性酶切位點(diǎn)設(shè)計(jì)特異引物,通過(guò)PCR技術(shù)擴(kuò)增的編碼序列。pGBKT7采用Ⅰ單酶切,將PCR產(chǎn)物及酶切產(chǎn)物切膠回收,然后通過(guò)In-Fusion技術(shù)(TaKaRa,大連)連接后轉(zhuǎn)化入大腸桿菌TOP10感受態(tài)細(xì)胞中(天根,北京)。測(cè)序比對(duì)正確后提取質(zhì)粒得到pGBKT7-重組質(zhì)粒。
1.6 TaDi19A互作蛋白的篩選
酵母AH109的感受態(tài)細(xì)胞按照試劑盒說(shuō)明書(shū)(Yeastmaker? Yeast TransformationSystem 2 User Manual,Clontech)制備。自激活驗(yàn)證的方法參照于太飛等[43]的方法。首先將1 μg的pGBKT7-重組質(zhì)粒加入50 μL新制備的酵母感受態(tài)細(xì)胞中,再加入500μL PEG/LiAc,混勻后30℃水浴30 min,每5min顛倒混勻一次;再加入20 μL DMSO,42℃水浴15 min,每5min顛倒混勻一次;8000r/min離心15 s,棄上清,將菌體重懸于1 mL YPD液體培養(yǎng)基中,30℃振蕩培養(yǎng)90min;高速離心棄上清,將菌體重懸于0.9%的NaCl中,然后涂到SD/-Trp、SD/-Trp/-His/-Ade固體培養(yǎng)基上,驗(yàn)證pGBKT7-是否存在自激活。
將5 μg的誘餌載體pGBKT7-質(zhì)粒及5 μg 的小麥cDNA文庫(kù)質(zhì)粒加入600 μL制備好的酵母感受態(tài)細(xì)胞中,再加入2.5 mL PEG/LiAc,混勻后30℃水浴45 min,期間每10 min顛倒混勻一次;再加入160 μL DMSO,混勻后42℃水浴20 min,每10 min顛倒混勻一次;200 r/min離心5 min棄上清,將菌體重懸于1 mL YPD液體培養(yǎng)基中,30℃震蕩培養(yǎng)90 min;200 r/min離心5 min棄上清,將菌體重懸于0.9%的NaCl中,然后涂到SD/-Trp/-Leu/-His/-Ade固體培養(yǎng)基上,30℃倒置培養(yǎng)4 d左右;挑取直徑大于2 mm的單克隆,重懸于0.9%的NaCl中,然后點(diǎn)涂到SD/-Trp/-Leu/-His/-Ade/X-gal顯藍(lán)板上避光培養(yǎng),篩選藍(lán)色陽(yáng)性單克隆。
挑取篩選到的陽(yáng)性菌落于1 mL YPDA液體培養(yǎng)基中,30℃,230 r/min振蕩培養(yǎng),待菌液搖混后進(jìn)行PCR檢測(cè)。PCR反應(yīng)條件參照于太飛等[43]的方法。將插入片段大小在1 000 bp左右的酵母單克隆提取質(zhì)粒并轉(zhuǎn)化到大腸桿菌TOP10(天根,北京)中,測(cè)序,然后將測(cè)序結(jié)果在 NCBI 網(wǎng)站進(jìn)行同源性BLAST分析。
2.1生物信息學(xué)分析
通過(guò)對(duì)低溫處理的小麥轉(zhuǎn)錄組測(cè)序結(jié)果進(jìn)行分析,獲得一個(gè)鋅指類轉(zhuǎn)錄因子。小麥全長(zhǎng)747 bp,編碼248個(gè)氨基酸,分子量為28.03 kD,等電點(diǎn)為4.74,基因含有4個(gè)外顯子和3個(gè)內(nèi)含子(圖1-A);TaDi19A蛋白靠近N-端包含鋅指結(jié)合結(jié)構(gòu)域,C端為Di19結(jié)構(gòu)域(圖1-B),預(yù)測(cè)的TaDi19A蛋白三級(jí)結(jié)構(gòu)包含2個(gè)α螺旋結(jié)構(gòu)(圖1-C),有助于折疊成正確的蛋白結(jié)構(gòu),從而行使其生物學(xué)功能;磷酸化位點(diǎn)分析結(jié)果顯示TaDi19A含有12個(gè)絲氨酸、9個(gè)蘇氨酸和3個(gè)酪氨酸磷酸化位點(diǎn),推測(cè)磷酸化作用可能與TaDi19A蛋白的活性調(diào)控有關(guān)。
2.2低溫脅迫響應(yīng)分析
為進(jìn)一步研究對(duì)低溫脅迫的響應(yīng),通過(guò)實(shí)時(shí)熒光定量PCR分析在低溫處理不同時(shí)間段的表達(dá)模式。結(jié)果顯示,在低溫脅迫下,上調(diào)表達(dá),在脅迫處理2 h時(shí)達(dá)到最大值,為對(duì)照的25倍,之后表達(dá)量迅速下降,處理后12 h后恢復(fù)到初始水平(圖2)。
2.3 轉(zhuǎn)擬南芥植株的耐冷性鑒定
為進(jìn)一步研究對(duì)低溫脅迫的響應(yīng),通過(guò)獲得的轉(zhuǎn)基因擬南芥(圖3)分析其在低溫脅迫下的根長(zhǎng)和耐冷性。在正常生長(zhǎng)條件下,野生型擬南芥與3個(gè)轉(zhuǎn)基因株系的主根長(zhǎng)、總根長(zhǎng)和鮮重均沒(méi)有顯著差異。而在4℃處理后,野生型和轉(zhuǎn)基因擬南芥的生長(zhǎng)都受到抑制,野生型擬南芥受抑制的程度要比轉(zhuǎn)基因植株嚴(yán)重,轉(zhuǎn)基因擬南芥的主根長(zhǎng)、總根長(zhǎng)和鮮重都顯著高于野生型擬南芥(圖4)。例如,在低溫處理20 d后,野生型擬南芥的主根長(zhǎng)平均為2.4 cm左右,而轉(zhuǎn)基因擬南芥達(dá)到2.9 cm左右。
為進(jìn)一步檢測(cè)野生型和轉(zhuǎn)基因擬南芥的耐冷性,將植株種在土盆里于22℃生長(zhǎng)4周,隨后經(jīng)4℃/3 h、-10℃/5 h和4℃/3 h低溫處理,22℃/5 d恢復(fù)正常生長(zhǎng),發(fā)現(xiàn)大約60%野生型擬南芥存活,而大約90%的轉(zhuǎn)基因植株存活,轉(zhuǎn)基因植株的存活率明顯高于野生型(圖5)。無(wú)論是低溫根長(zhǎng)試驗(yàn)還是存活率都表明轉(zhuǎn)基因植株的耐冷性強(qiáng)于野生型擬南芥,表明提高了轉(zhuǎn)基因植株的耐冷性。
2.4 冷脅迫相關(guān)基因在轉(zhuǎn)植株中的表達(dá)
為研究耐低溫脅迫應(yīng)的機(jī)制,檢測(cè)正常生長(zhǎng)情況下轉(zhuǎn)基因和野生型擬南芥植株中冷脅迫響應(yīng)有關(guān)基因的表達(dá)。結(jié)果顯示,正常生長(zhǎng)條件下,除了在轉(zhuǎn)基因擬南芥中的表達(dá)量比野生型高之外,、和的表達(dá)量在野生型和轉(zhuǎn)基因擬南芥中沒(méi)有顯著差異;4℃處理后,、、和在野生型和轉(zhuǎn)基因擬南芥中表達(dá)量都有顯著提高,但在轉(zhuǎn)基因植株的表達(dá)量明顯高于野生型,如在轉(zhuǎn)基因擬南芥中的表達(dá)量是野生型的2倍多(圖6)。結(jié)果表明,能正向調(diào)控、、和的表達(dá),并通過(guò)調(diào)控冷脅迫相關(guān)基因的表達(dá)提高轉(zhuǎn)基因植株的耐冷性。
2.5 誘餌載體的構(gòu)建及自激活檢測(cè)
將編碼區(qū)全長(zhǎng)構(gòu)建到pGBKT7誘餌載體上,用PCR技術(shù)進(jìn)行菌液檢測(cè),瓊脂糖電泳得到與目的片段大小相符的單一條帶約750 bp,經(jīng)測(cè)序和序列比對(duì),提取正確的重組質(zhì)粒pGBKT7-。
為檢測(cè)是否存在自激活活性,將pGBKT7-重組質(zhì)粒轉(zhuǎn)入酵母感受態(tài)細(xì)胞中,轉(zhuǎn)化產(chǎn)物分別涂布于SD/-Trp、SD/-Trp/-His/-Ade的固體培養(yǎng)基上,30℃倒置培養(yǎng)3 d,結(jié)果只有在SD/-Trp培養(yǎng)基長(zhǎng)出酵母菌落,而SD/-Trp/-His/-Ade平板上沒(méi)有菌落長(zhǎng)出(圖7)。表明pGBKT7-成功轉(zhuǎn)入酵母感受態(tài)細(xì)胞,且無(wú)自激活活性,可以用酵母雙雜交系統(tǒng)篩選小麥cDNA文庫(kù)。
2.6 小麥cDNA文庫(kù)的篩選以及候選互作蛋白序列分析
為解析的抗性機(jī)理,利用酵母雙雜交系統(tǒng)篩選其可能的互作候選蛋白。將誘餌載體pGBKT7-質(zhì)粒與小麥cDNA文庫(kù)質(zhì)粒共轉(zhuǎn)化酵母感受態(tài)細(xì)胞,轉(zhuǎn)化后產(chǎn)物涂布于SD/-Trp/-Leu/-His/-Ade固體培養(yǎng)基上,30℃倒置培養(yǎng)4 d左右,挑取直徑大于2 mm的單克隆,點(diǎn)涂于SD/-Trp/-Leu/-His/-Ade/X-gal顯藍(lán)板上培養(yǎng),篩選藍(lán)色陽(yáng)性單克?。▓D8)。
將顯藍(lán)的單克隆進(jìn)行菌液PCR檢測(cè),結(jié)果表明不同克隆插入的片段大小不同,大部分集中在1 000 bp 左右(圖9),大部分克隆擴(kuò)增結(jié)果為1條帶,但還有一些克隆擴(kuò)增結(jié)果為2條帶。將插入片段大小在1 000 bp左右的單克隆提質(zhì)粒并轉(zhuǎn)化到大腸桿菌TOP10(天根,北京)中,送達(dá)公司測(cè)序,然后將測(cè)序結(jié)果在NCBI網(wǎng)站進(jìn)行同源性比對(duì)分析。通過(guò)序列比對(duì)分析結(jié)果(表1),發(fā)現(xiàn)篩選出的互作候選蛋白包括金屬硫蛋白、PSBR蛋白、溫度誘導(dǎo)的脂質(zhì)運(yùn)載蛋白、熱激蛋白、低溫誘導(dǎo)蛋白、核轉(zhuǎn)運(yùn)因子等,其中大多能夠參與植物對(duì)逆境脅迫響應(yīng),還有的能介導(dǎo)細(xì)胞內(nèi)代謝物質(zhì)交換,還有一些編碼功能未知蛋白。例如金屬硫蛋白能夠解除金屬離子的毒害、維持細(xì)胞內(nèi)環(huán)境的穩(wěn)定、消除活性氧的危害,對(duì)植物抵御非生物脅迫有著重要作用[44];核轉(zhuǎn)運(yùn)因子能夠協(xié)助運(yùn)載物運(yùn)進(jìn)或運(yùn)出細(xì)胞;溫度誘導(dǎo)的脂質(zhì)運(yùn)載蛋白能夠傳遞信號(hào)并調(diào)節(jié)植物抵御逆境[45];低溫誘導(dǎo)蛋白和熱激蛋白都能參與植物對(duì)逆境脅迫的響應(yīng)等[46-48]。這些蛋白能參與植物的能量代謝以及對(duì)非生物脅迫的響應(yīng),對(duì)植物抵御逆境脅迫有著重要的作用。
干旱、鹽堿、高溫、低溫等非生物脅迫因子嚴(yán)重影響植物的生長(zhǎng)和發(fā)育。目前已經(jīng)報(bào)道的參與逆境脅迫調(diào)控過(guò)程的蛋白主要分兩類:一類是功能蛋白,主要參與逆境脅迫的直接調(diào)控,包括分子伴侶、離子通道蛋白等;另一類是調(diào)節(jié)蛋白,包括轉(zhuǎn)錄因子、蛋白激酶等信號(hào)分子[49]。其中轉(zhuǎn)錄因子能夠與基因啟動(dòng)子區(qū)域中順式作用元件特異性結(jié)合,是一大類轉(zhuǎn)錄調(diào)控因子。本研究從低溫處理的小麥轉(zhuǎn)錄組測(cè)序結(jié)果中獲得了一個(gè)轉(zhuǎn)錄因子基因。Di19蛋白編碼一個(gè)小基因家族,包含保守的C2H2鋅指結(jié)構(gòu)域,屬于鋅指類轉(zhuǎn)錄因子,在植物的生長(zhǎng)、發(fā)育和非生物脅迫響應(yīng)中起著重要的作用[35-37]。擬南芥中Di19基因廣泛的在不同組織中表達(dá),包括幼苗、根、莖、花和果實(shí)中;和能夠快速被干旱脅迫誘導(dǎo),和在高鹽的誘導(dǎo)下表達(dá)量增加,而與光信號(hào)的調(diào)控有關(guān),對(duì)非生物脅迫無(wú)響應(yīng)[50-51]。擬南芥能結(jié)合、、啟動(dòng)子的TACA(A/G)T元件,增強(qiáng)其表達(dá),過(guò)表達(dá)能提高轉(zhuǎn)基因擬南芥的抗旱性[35]。另外擬南芥Di19家族成員能夠以Ca2+依賴的方式被CPK11和CPK3磷酸化[50]。qRT-PCR和芯片數(shù)據(jù)分析表明,水稻7個(gè)Di19家族成員能夠大量在營(yíng)養(yǎng)器官中表達(dá),但在生殖器官中表達(dá)量很少,一些能顯著被非生物脅迫和外源激素誘導(dǎo)[37]。過(guò)表達(dá)通過(guò)增強(qiáng)ROS的清除活性提高轉(zhuǎn)基因水稻的抗旱性,并且轉(zhuǎn)基因水稻對(duì)ABA高度敏感,敲除表現(xiàn)出對(duì)ABA敏感性降低[37,39]。與互作并磷酸化,ABA處理后的磷酸化作用增強(qiáng),提高了調(diào)控下游ABA相關(guān)基因的能力[39]。大豆中共鑒定出了7個(gè)Di19基因,每個(gè)Di19基因?qū)}、干旱、氧化、ABA脅迫有著特定的響應(yīng)。在非生物脅迫中起著負(fù)調(diào)的作用,過(guò)表達(dá)提高了轉(zhuǎn)基因擬南芥對(duì)鹽、干旱、氧化和ABA脅迫的敏感性;GmDi19-5與GmLEA3.1互作,通過(guò)調(diào)控脅迫相關(guān)基因的表達(dá)參與ABA和SOS信號(hào)通路[38]。
表1 候選基因的BLAST分析結(jié)果及其功能推測(cè)
小麥在植物對(duì)非生物脅迫的響應(yīng)中起著重要作用,過(guò)表達(dá)提高了擬南芥在萌發(fā)期對(duì)鹽、ABA和甘露醇的敏感性,過(guò)表達(dá)降低了擬南芥在苗期對(duì)鹽脅迫的耐受性和對(duì)乙烯的敏感性[40]。FAN等[52]發(fā)現(xiàn)能被多種脅迫誘導(dǎo),過(guò)表達(dá)提高了轉(zhuǎn)基因擬南芥的耐鹽性。這些研究都表明Di19在植物非生物脅迫響應(yīng)中起著重要的作用。
本研究從低溫處理的小麥轉(zhuǎn)錄組測(cè)序結(jié)果中獲得了。實(shí)時(shí)熒光定量PCR結(jié)果表明受低溫誘導(dǎo);低溫處理的根長(zhǎng)試驗(yàn),轉(zhuǎn)基因和野生型擬南芥的耐冷性鑒定(圖4和圖5)都表明過(guò)表達(dá)能提高轉(zhuǎn)基因植株的耐冷性。為研究耐冷脅迫響應(yīng)機(jī)制,通過(guò)檢測(cè)正常和低溫處理情況下轉(zhuǎn)基因和野生型擬南芥中冷脅迫響應(yīng)相關(guān)基因的表達(dá),表明能正向調(diào)控、、和的表達(dá),說(shuō)明可能通過(guò)調(diào)控冷脅迫相關(guān)基因的表達(dá)提高轉(zhuǎn)基因植株的耐冷性。為進(jìn)一步研究調(diào)控植物冷脅迫響應(yīng)的作用機(jī)制,本研究通過(guò)酵母雙雜交技術(shù)篩選到一些可能與TaDi19A互作的候選蛋白,其中括金屬硫蛋白、PSBR蛋白、溫度誘導(dǎo)的脂質(zhì)運(yùn)載蛋白、熱激蛋白、低溫誘導(dǎo)蛋白、核轉(zhuǎn)運(yùn)因子等,其中大多能夠參與植物對(duì)逆境脅迫響應(yīng),比如熱激蛋白。熱激蛋白廣泛分布于真菌、動(dòng)物和植物細(xì)胞中,研究發(fā)現(xiàn),熱激蛋白在高溫、低溫、干旱、過(guò)氧化等逆境下均能大量表達(dá),通過(guò)作為分子伴侶促進(jìn)其他蛋白合成、折疊、穩(wěn)定、運(yùn)輸和降解等來(lái)維持植物內(nèi)環(huán)境的穩(wěn)定,在植物抵御逆境及適應(yīng)環(huán)境中發(fā)揮重要作用[53-54]。據(jù)報(bào)道,HSP90、HSP70家族和一些小的HSPs能在低溫響應(yīng)中積累,通過(guò)保護(hù)細(xì)胞膜、蛋白質(zhì)的重新折疊等抵御低溫脅迫[53]。當(dāng)植物遭遇低溫脅迫時(shí),表達(dá)量上升,熱激蛋白積累量增多,植物抵御低溫能力增強(qiáng),TaDi9A可能通過(guò)與熱激蛋白相互作用提高轉(zhuǎn)基因擬南芥的耐冷性。
另外,有研究表明溫度誘導(dǎo)的脂質(zhì)運(yùn)載蛋白涉及非生物脅迫響應(yīng)[55-57]。溫度誘導(dǎo)的脂質(zhì)運(yùn)載蛋白是一種膜蛋白,在低溫脅迫下大量積累[57]。擬南芥中缺失突變體對(duì)光和冷敏感,與野生型相比,過(guò)氧化氫和活性氧的積累增多;而過(guò)表達(dá)植株對(duì)冷和強(qiáng)光脅迫的耐受性增強(qiáng)[58]。小麥和苜蓿都響應(yīng)低溫脅迫,轉(zhuǎn)煙草通過(guò)促進(jìn)活性氧的清除和調(diào)控下游耐冷相關(guān)基因的表達(dá)提高轉(zhuǎn)基因植株的耐冷性[56-57]。本研究通過(guò)酵母雙雜交技術(shù)篩選出的脂質(zhì)運(yùn)載蛋白、熱激蛋白、低溫誘導(dǎo)蛋白等都是和溫度脅迫相關(guān)的蛋白,它們可能通過(guò)與TaDi9A相互作用共同調(diào)控植物對(duì)低溫脅迫的響應(yīng),這可能部分解釋了轉(zhuǎn)基因擬南芥的耐冷性提高。
小麥?zhǔn)艿蜏孛{迫誘導(dǎo)表達(dá),過(guò)表達(dá)提高了轉(zhuǎn)基因擬南芥的耐冷性;TaDi19A可能通過(guò)與其他蛋白相互作用參與植物對(duì)低溫的響應(yīng)過(guò)程。
[1] Boyer J S, Plant productivity and environment., 1982, 218(4517): 443-448.
[2] Thomashow M F. Plant cold acclimation: Freezing tolerance genes and regulatory mechanisms.,1999, 50(50): 571-599.
[3] Xiong L, Schumaker K S, Zhu J K. Cell signaling during cold, drought, and salt stress., 2002, 14(Suppl): s165-s183.
[4] Zhu J, Dong C H, Zhu J K. Interplay between cold-responsive gene regulation, metabolism and RNA processing during plant cold acclimation., 2007, 10(3): 290-295.
[5] 馮勛偉, 才宏偉. 結(jié)縷草基因的同源克隆及其轉(zhuǎn)基因擬南芥的抗寒性驗(yàn)證. 作物學(xué)報(bào), 2014, 40(9): 1572-1578.
Feng X W, Cai H W. Cloning of zoysiagrass CBF gene and validation of cold tolerance in transgenic., 2014, 40(9): 1572-1578. (in Chinese)
[6] 裴麗麗, 郭玉華, 徐兆師, 李連城, 陳明, 馬有志. 植物逆境脅迫相關(guān)蛋白激酶的研究進(jìn)展. 西北植物學(xué)報(bào), 2012(5): 1052-1061.
Pei L L, Guo Y H, Xu Z S, Li L C, Chen M, Ma Y Z. The research progress of stress related protein kinase in plants., 2012(5): 1052-1061. (in Chinese)
[7] Chen W J, Zhu T. Networks of transcription factors with roles in environmental stress response., 2004, 9(12): 591-596.
[8] Sakamoto H, Maruyama K, Sakuma Y, Meshi T, Iwabuchi M, Shinozaki K,Yamaguchi-Shinozaki K.Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions., 2004, 136(1): 2734-2746.
[9] Yamaguchi-Shinozaki K, Shinozaki K. Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters., 2005, 10(2): 88-94.
[10] Pazares J, Ghosal D, Wienand U, Peterson P A, Saedler H. The regulatory c1 locus ofencodes a protein with homology to myb proto-oncogene products and with structural similarities to transcriptional activators., 1987, 6(12): 3553-3558.
[11] Xu D Q, Huang J, Guo S Q, Yang X, Bao Y M, Tang H J, Zhang H S. Overexpression of a TFIIIA-type zinc finger protein gene ZFP252 enhances drought and salt tolerance in rice (L.)., 2008, 582(7): 1037-1043.
[12] Xu Z S, Chen M, Li L C, Ma Y Z. Functions and application of the AP2/ERF transcription factor family in crop improvement., 2011, 53(7): 570-585.
[13] Luo X, Bai X, Zhu D, Li Y, Ji W, Cai H, Wu J, Liu B, Zhu Y. GsZFP1, a new Cys2/His2-type zinc-finger protein, is a positive regulator of plant tolerance to cold and drought stress., 2012, 235 (6): 1141-1155.
[14] Medina J, Bargues M, Terol J, Pérez-Alonso M, Salinas J. TheCBF gene family is composed of three genes encoding AP2 domain-containing proteins whose expression is regulated by low temperature but not by abscisic acid or dehydration., 1999, 119(2): 463-470.
[15] Nordin K, Vahala T, Palva E T. Differential expression of two related, low-temperature-induced genes in(L.) Heynh., 1993, 21(2): 641-653.
[16] Welin B V, Olson A, Palva E T. Structure and organization of two closely related low-temperature-induced dhn/lea/rab-like genes inL. Heynh., 1995, 29(2): 391-395.
[17] Stockinger E J, Gilmour S J, Thomashow M F.CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit., 1997, 94(3): 1035-1040.
[18] Yamaguchi-Shinozaki K, Shinozaki K. A novel cisacting element in angene is involved in responsiveness to drought, low-temperature, or high-salt stress., 1994, 6(2): 251-264.
[19] Gilmour S J, Sebolt A M, Salazar M P, Everard J D, Thomashow M F. Overexpression of theCBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation., 2000, 124(4): 1854-1865.
[20] Jaglo-Ottosen K R, Gilmour S J, Zarka D G, Schabenberger O, Thomashow M F.CBF1 overexpression induces COR genes and enhances freezing tolerance., 1998, 280(5360): 104-106.
[21] Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature responsive gene expression, respectively, in., 1998, 10(8): 1391-1406.
[22] Novillo F, Alonso J M, Ecker J R, Salinas J. CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in., 2004, 101(11): 3985-3990.
[23] Chinnusamy V, Ohta M, Kanrar S, Lee B H, Hong X, Agarwal M, Zhu J K. ICE1: a regulator of cold-induced transcriptome and freezing tolerance in., 2003, 17(8): 1043-1054.
[24] Fursova O V, Pogorelko G V, Tarasov V A. Identification of, a gene involved in cold acclimation which determines freezing tolerance in., 2009, 429(1/2): 98-103.
[25] Dong C H, Pei H. Over-expression of miR397 improves plant tolerance to cold stress in., 2014, 57(4): 209-217.
[26] Matsui A, Ishida J, Morosawa T, Okamoto M, Kim J M, Kurihara Y, Kawashima M, Tanaka M, To T K, Nakaminami K, Kaminuma E, Endo T A, Mochizuki Y, Kawaguchi S, Kobayashi N, Shinozaki K, Toyoda T, Seki M.tiling array analysis to identify the stress-responsive genes., 2010, 639: 141-155.
[27] Xin Z, Mandaokar A, Chen J, Last R L, Browse J.ESK1 encodes a novel regulator of freezing tolerance., 2007, 49(5): 786-799.
[28] Chinnusamy V, Zhu J K, Sunkar R. Gene regulation during cold stress acclimation in plants., 2010, 639: 39-55.
[29] Davletova S, Schlauch K, Coutu J, Mittler R. The zinc-finger protein Zat12 plays a central role in reactive oxygen and abiotic stress signaling in., 2005, 139(2): 847-856.
[30] Kim J C, Lee S H, Cheong Y H, Yoo C M, Lee S I, Chun H J, Yun D J, Hong J C, Lee S Y, Lim C O, Cho M J. A novel cold-inducible zinc finger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plants., 2001, 25(3): 247-259.
[31] Huang J, Sun S J, Xu D Q, Yang X, Bao Y M, Wang Z F, Tang H J, Zhang H. Increased tolerance of rice to cold, drought and oxidative stresses mediated by the overexpression of a gene that encodes the zinc finger protein ZFP245., 2009, 389(3): 556-561.
[32] Liu K, Wang L, Xu Y, Chen N, Ma Q, Li F, Chong K. Overexpression of, a putative cold inducible zinc finger protein, increased tolerance to chilling, salt and drought, and enhanced proline level in rice., 2007, 226(4): 1007-1016.
[33] Mukhopadhyay A, Vij S, Tyagi A K. Overexpression of a zinc-finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco., 2004, 101(16): 6309-6314.
[34] 智冠華, 史軍娜, 趙曉鑫, 劉勝利, 陳玉珍, 盧存福. 轉(zhuǎn)沙冬青鋅指蛋白基因煙草非生物脅迫抗性分析. 園藝學(xué)報(bào), 2013, 40(4): 713-723.
Zhi G H, Shi J N, Zhao X X, Liu S L, Chen Y Z, Lu C F. The abiotic stress resistance analysis of Zinc-finger protein genein tobacco., 2013, 40(4): 713-723. (in Chinese)
[35] Liu W X, Zhang F C, Zhang W Z, Song L F, Wu W H, Chen Y F.Di19 functions as a transcription factor and modulates,, andexpression in response to drought stress., 2013, 6(5): 1487-1502.
[36] Milla M A, Townsend J, Chang I F, Cushman J C. Thegene family encodes a novel type of Cys2/His2 zinc-finger protein implicated in ABA-independent dehydration, high-salinity stress and light signaling pathways., 2006, 61(1/2): 13-30.
[37] Wang L, Yu C, Chen C, He C, Zhu Y, Huang W. Identification of rice Di19 family revealsinvolved in drought resistance., 2014, 33(12): 2047-2062.
[38] Feng Z J, Cui X Y, Cui X Y, Chen M, Yang G X, Ma Y Z, He G Y, Xu Z S. The soybeaninteracts with GmLEA3.1 and increases sensitivity of transgenic plants to abiotic stresses., 2015, 6: 179.
[39] Wang L, Yu C, Xu S, Zhu Y, Huang W. OsDi19-4 acts downstream of OsCDPK14 to positively regulate ABA response in rice., 2016, 39 (12): 2740-2753.
[40] Li S, Xu C, Yang Y, Xia G. Functional analysis of, a salt-responsive gene in wheat., 2010, 33(1): 117-129.
[41] Kelley L A, Mezulis S, Yates C M, Wass M N, Sternberg M J. The Phyre2 web portal for protein modeling, prediction and analysis., 2015, 10(6): 845-858.
[42] He G H, Xu J Y, Wang Y X, Liu J M, Li P S, Chen M, Ma Y Z, Xu Z S. Drought-responsive WRKY transcription factor genes1 andfrom wheat confer drought and/or heat resistance in, 2016, 16(1): 116.
[43] 于太飛, 徐兆師, 李盼松, 陳明, 李連城, 張俊華, 馬有志. 小麥蛋白激酶TaMAPK2互作蛋白的篩選與驗(yàn)證. 中國(guó)農(nóng)業(yè)科學(xué), 2014, 47(13): 2494-2503.
Yu T F, Xu Z S, Li P S, Chen M, Li L C, Zhang J H, Ma Y Z. Screening and identification of proteins interacting with TaMAPK2 in wheat., 2014, 47(13): 2494-2503. (in Chinese)
[44] 張艷, 楊傳平. 金屬硫蛋白的研究進(jìn)展. 分子植物育種, 2006(S1): 73-78.
zhang Y, Yang C P. The research progress of metallothionein., 2006(S1): 73-78. (in Chinese)
[45] 丁安琪, 馮瑩, 朱里瑩, 徐世榮, 秦軍, 潘東明. 水仙溫度誘導(dǎo)脂質(zhì)運(yùn)載蛋白基因的克隆與表達(dá)分析. 園藝學(xué)報(bào), 2016, 43(1): 161-167.
Ding A Q, Feng Y, Zhu L Y, Xu S R, Qin J, Pan D M. Cloning and expressional analysis of narcissus temperature stress-induced lipocalin gene., 2016, 43(1): 161-167. (in Chinese)
[46] 栗振義, 龍瑞才, 張鐵軍, 楊青川, 康俊梅. 植物熱激蛋白研究進(jìn)展. 生物技術(shù)通報(bào), 2016(2): 7-13.
Li Z Y, Long R C, Zhang T J, Yang Q C, Kang J M. The research progress of plant heat shock proteins., 2016(2): 7-13. (in Chinese)
[47] 齊妍, 徐兆師, 李盼松, 陳明, 李連城, 馬有志. 植物熱激蛋白70的分子作用機(jī)理及其利用研究進(jìn)展. 植物遺傳資源學(xué)報(bào), 2013(3): 507-511.
Qi Y, Xu Z S, Li P S, Chen M, Li L C, Ma Y Z. The molecular mechanism and research progress of plant heat shock protein 70., 2013(3): 507-511. (in Chinese)
[48] 楊玉珍, 雷志華, 彭方仁. 低溫誘導(dǎo)蛋白及其與植物的耐寒性研究進(jìn)展. 西北植物學(xué)報(bào), 2007(2): 421-428.
Yang Y Z, Lei Z H, Peng F R. The research progress of low temperature induced protein and cold tolerance in plants., 2007(2): 421-428. (in Chinese)
[49] Shinozaki K, Yamaguchi-Shinozaki K. Gene networks involved in drought stress response and tolerance., 2007, 58(2): 221-227.
[50] Kang X, Chong J, Ni M. HYPERSENSITIVE TO RED AND BLUE 1, a ZZ-type zinc finger protein, regulates phytochrome B-mediated red and cryptochrome-mediated blue light responses., 2005, 17(3): 822-835.
[51] Milla M A R, Townsend J, Chang I F, Cushman J C. Thegene family encodes a novel type of Cys2/His2 Zinc-finger protein implicated in ABA-independent dehydration, high-salinity stress and light signaling pathways., 2006, 61(1/2): 13-30.
[52] Fan Y, Zhang S, Meng Y, Huang Z. Increase in salt tolerance ofby., 2015, 35(1): 163-171.
[53] Timperio A M, Egidi M G, Zolla L. Proteomics applied on plant abiotic stresses: role of heat shock proteins (HSP)., 2008, 71(4): 391-411.
[54] Wang W, Vinocur B, Shoseyov O, Altman A. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response., 2004, 9(5): 244-252.
[55] Abo-Ogiala A, Carsjens C, Diekmann H, Fayyaz P, Herrfurth C, Feussner I, Polle A. Temperature-induced lipocalin (TIL) is translocated under salt stress and protects chloroplasts from ion toxicity., 2014, 171(3/4): 250-259.
[56] Charron J B, Ouellet F, Pelletier M, Danyluk J, Chauve C, Sarhan F. Identification, expression, and evolutionary analyses of plant lipocalins., 2005, 139(4): 2017-2028.
[57] He X, Sambe M A, Zhuo C, Tu Q, Guo Z. A temperature induced lipocalin gene from() confers tolerance to cold and oxidative stress., 2015, 87(6): 645-654.
[58] Charron J B, Ouellet F, Houde M, Sarhan F. The plant apolipoprotein D ortholog protectsagainst oxidative stress., 2008, 8: 86-98.
(責(zé)任編輯 李莉)
Response of Wheat Zinc-finger Transcription Factor TaDi19A to Cold and its screening of interacting proteins
RU JingNa1,2, YU TaiFei2, CHEN Jun2, CHEN Ming2, ZHOU YongBin2, MA YouZhi2, XU ZhaoShi2, MIN DongHong1
(1Northwest A & F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling 712100, Shaanxi;2Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement/ Key Laboratory of Biology and Genetic Improvement of Triticeae Crop, Ministry of Agriculture, Beijing 100081)
【Objective】Zinc-finger transcription factors play an important role in stress signal transduction and abiotic stress response in plants. In this study, the function ofwas identified under low temperature stress and its interacting proteins were screened by yeast two-hybrid system to explore the regulation mechanism of.【Method】gene was isolated from the cold-treated wheat transcriptome profile. Bioinformatics method was used to analyze the molecular properties of thegene, SMART online tools were used for protein structure analysis; GSDS and PHYRE2 online tools were used to analyze gene structure and tertiary structure ofTaDi19A protein; NetPhos 2.0 Server database was used to predict phosphorylation sites ofTaDi19A protein. The quantitative real-time PCR (qRT-PCR), conducted using the cold-treated wheat cDNA based on SYBR Green technology, was used to analyze the expression pattern ofunder cold temperature stress treatment in different time periods.was fused with PBI121 to transform into wild-type (WT)plants (Columbia-0) mediated by the floral dip method, homozygous T3seeds of transgenic lines and WT were used for cold tolerance analysis which the root length, fresh weight, and survival rate were measured before and after cold treatment. The expressions of four stress-response genes were investigated in transgenic lines and WT under normal and low temperature conditions to analyze the cold-resistant regulation mechanism of. Bait plasmid pGBKT7-was constructed and the self-activation was detected. The pGBKT7-and wheat cDNA library was co-transformed into yeast cell AH109 by two-hybrid system, and the positive clones were screened via SD/-Trp/-Leu/-His/-Ade and SD/-Trp/-Leu/-His/-Ade/X-α-gal plate and these single clones were sequenced and analyzed by BLAST to obtain the interaction candidate proteins.【Result】The full length ofgene was 747 bp with 4 exons, encoding 248 amino acids, and the protein molecular weight and isoelectric point of were 28.03 kDa and 4.74, respectively. TaDi19A protein included Zinc-finger binding domain, Di19 domain and the predicted tertiary structure contained 2 alpha helix. Phosphorylation site analysis showed that there were 12 serine, 9 threonine, and 3 tyrosine phosphorylation sites in TaDi19A protein. qRT-PCR analysis showed thatwas induced by low temperature. The root length and cold tolerance assays revealed thattransgenicincreased the cold tolerance. the expression of several cold-stress-responsive genes was monitored through PCR analysis, the expression of genes,,andshowed elevated levels in both WT and transgenicplants under cold-stress condition, and the expression levels in transgenic plants were significantly higher than those in WT. analysis of candidate proteins screened by yeast two-hybrid system revealed that those proteins mainly affected the signal transduction and abiotic stress response, which demonstrated thatis critical to stress signal transduction and abiotic stress response in plants. 【Conclusion】Cold-inducibleimproved cold tolerance in transgenic;might work via interacting with other proteins.
; zinc-finger transcription factor; cold tolerance; yeast two-hybrid; protein interaction
2017-01-23;接受日期:2017-03-07
國(guó)家轉(zhuǎn)基因生物新品種培育科技重大專項(xiàng)(2014ZX08009-016B)、國(guó)家自然科學(xué)基金(31371620)、西北農(nóng)林科技大學(xué)唐仲英育種基金
茹京娜,E-mail:rujingna1993@163.com。通信作者閔東紅,E-mail:mdh2493@126.com。通信作者徐兆師,E-mail:xuzhaoshi@caas.cn