張國(guó)娟,濮曉珍,張鵬鵬,張旺鋒
?
干旱區(qū)棉花秸稈還田和施肥對(duì)土壤氮素有效性 及根系生物量的影響
張國(guó)娟,濮曉珍,張鵬鵬,張旺鋒
(石河子大學(xué)農(nóng)學(xué)院/新疆生產(chǎn)建設(shè)兵團(tuán)綠洲生態(tài)農(nóng)業(yè)重點(diǎn)實(shí)驗(yàn)室,新疆石河子832003)
【目的】本研究探討干旱區(qū)棉田土壤氮素轉(zhuǎn)化過(guò)程及對(duì)棉花根系生物量的影響,明確棉田土壤氮素有效性對(duì)農(nóng)業(yè)管理措施的響應(yīng),為棉田制定高產(chǎn)高效管理措施,實(shí)現(xiàn)棉花高產(chǎn)優(yōu)質(zhì)低成本及環(huán)境友好生產(chǎn)服務(wù)?!痉椒ā吭诙ㄎ辉囼?yàn)條件下,采用裂區(qū)設(shè)計(jì),以秸稈不還田(S0)與秸稈還田(S1)為主區(qū),4種施肥處理(不施肥(F0)、施氮磷鉀化肥(F1)、施有機(jī)肥(F2)、施氮磷鉀化肥+有機(jī)肥(F3))為副區(qū),分析了秸稈還田和施肥對(duì)土壤氮素有效性的影響,探討了棉田土壤氮素轉(zhuǎn)化過(guò)程,包括凈礦化速率、凈硝化速率、總硝化速率和反硝化速率的變化,明確了土壤有效氮含量和棉花根系生物量對(duì)秸稈還田和施肥措施的響應(yīng)?!窘Y(jié)果】(1)秸稈還田和施肥顯著增加了土壤凈礦化速率、總硝化速率和反硝化速率,棉花不同生育時(shí)期不同施肥處理間各指標(biāo)的變化不同,但秸稈還田下施肥處理間差異不顯著,在盛花期均有最大速率;(2)秸稈還田和施肥顯著增加了土壤銨態(tài)氮、硝態(tài)氮和無(wú)機(jī)氮含量,但秸稈還田下施肥處理間差異不顯著,棉花盛花期和盛鈴期土壤無(wú)機(jī)氮含量顯著高于收獲期;(3)秸稈還田顯著降低了棉花根冠比,對(duì)根系生物量、細(xì)根/粗根比影響不顯著,施肥顯著增加了根冠比、根系生物量及細(xì)根生物量,施肥處理之間差異不顯著。綜上所述,秸稈還田能增加土壤凈礦化速率、凈硝化速率、總硝化速率、反硝化速率、硝態(tài)氮、銨態(tài)氮和可吸出無(wú)機(jī)氮含量以及根系生物量。有機(jī)肥無(wú)機(jī)肥配施有最大的土壤凈礦化速率、凈硝化速率、總硝化速率、反硝化速率、硝態(tài)氮和可吸出無(wú)機(jī)氮含量。有機(jī)肥無(wú)機(jī)肥配施也有最大的根系生物量和粗根細(xì)根比?!窘Y(jié)論】秸稈還田和施肥有利于促進(jìn)土壤氮素轉(zhuǎn)化過(guò)程,增加土壤有效氮含量,對(duì)根系生長(zhǎng)及生物量產(chǎn)生影響。在干旱區(qū)實(shí)施秸稈還田,結(jié)合有機(jī)無(wú)機(jī)肥配施技術(shù)有利于加速土壤養(yǎng)分轉(zhuǎn)化,提高肥料利用效率,增加有效養(yǎng)分含量,促進(jìn)作物根系生長(zhǎng)和地上部碳同化能力。
干旱區(qū);棉花;施肥;秸稈還田;氮素轉(zhuǎn)化;有效氮
【研究意義】新疆位于歐亞大陸腹地,光照資源豐富,具有發(fā)展棉花生產(chǎn)得天獨(dú)厚的優(yōu)勢(shì)。自20世紀(jì)90年代以來(lái),新疆植棉業(yè)進(jìn)入快速發(fā)展階段,植棉面積由90年代初的43.5萬(wàn)hm2猛增到目前的171.8萬(wàn)hm2[1]。新疆植棉業(yè)的發(fā)展伴隨著水肥投入的迅速增加,特別是化肥投入的增加是新疆棉花產(chǎn)量提高的重要原因[2]。然而,長(zhǎng)期過(guò)量施用化肥不僅導(dǎo)致種植成本居高,而且引起土壤質(zhì)量下降,土壤生產(chǎn)力降低,植棉經(jīng)濟(jì)效益下降[3]。因此,如何改善土壤質(zhì)量、提高土壤肥力、降低肥料投入已成為新疆植棉業(yè)亟待解決的問(wèn)題?!厩叭搜芯窟M(jìn)展】近年來(lái),研究者發(fā)現(xiàn)添加有機(jī)質(zhì)能有效緩解因過(guò)量施用化肥導(dǎo)致的棉花生長(zhǎng)不良及產(chǎn)量徘徊等諸多問(wèn)題,是提高新疆植棉業(yè)經(jīng)濟(jì)效益和實(shí)現(xiàn)棉田可持續(xù)發(fā)展的重要措施[4-5]。有研究表明,有機(jī)肥與化肥配施可以明顯改善土壤的氮素營(yíng)養(yǎng)供應(yīng)狀況[6-7],可使土壤中的無(wú)機(jī)氮較為平穩(wěn)的釋放。作物秸稈可作為一種有效的氮源,秸稈還田也將對(duì)整個(gè)棉田生態(tài)系統(tǒng)氮素循環(huán)過(guò)程產(chǎn)生顯著影響[8]。農(nóng)田添加有機(jī)質(zhì)必然引起土壤環(huán)境因子發(fā)生變化,并對(duì)地下生物化學(xué)過(guò)程產(chǎn)生影響[9-10]。土壤是植物氮素的主要來(lái)源,然而土壤中99%以上的氮素是以有機(jī)氮形式存在,不能被植物直接吸收利用。在農(nóng)田生態(tài)系統(tǒng)中,有機(jī)氮在微生物作用下礦化為NH4+-N(氮礦化過(guò)程);NH4+-N又會(huì)在硝化細(xì)菌的作用下被氧化為NO3--N(氮硝化過(guò)程)。適量施化肥促進(jìn)土壤凈氮礦化和硝化作用,但化肥量過(guò)大,土壤礦化和硝化作用降低,NO3--N的析出會(huì)增加。反硝化過(guò)程使氮素從硝態(tài)氮(NO3--N)轉(zhuǎn)化為氮?dú)猓∟2),損失一部分養(yǎng)分,造成土壤養(yǎng)分浪費(fèi)[11]。根系是作物與土壤接觸的器官,能感知土壤環(huán)境變化并作出響應(yīng),能反饋于棉株甚至整個(gè)棉田生態(tài)系統(tǒng)。土壤養(yǎng)分有效性可改變作物生物量分配及根系碳釋放等[12]。研究表明,施肥處理下作物根系直徑和根體積增大,使其總吸收面積增大,促進(jìn)了根系物質(zhì)累積[13];施肥會(huì)增加根系生物量,進(jìn)而增加了作物吸收養(yǎng)分的潛力[14]。盆栽實(shí)驗(yàn)證明,有機(jī)肥和化肥配施可顯著增加根系生物量,且主要誘導(dǎo)細(xì)根(d≤2 mm)的發(fā)生[15]。秸稈還田促進(jìn)了根系-微生物系統(tǒng)的物質(zhì)和能量交換,可以增加作物根系生物量;也有研究認(rèn)為,秸稈還田會(huì)降低作物根系生物量,因?yàn)榻斩拑?nèi)酚酸等自毒物質(zhì)增加根系細(xì)胞膜通透性、破壞了根系細(xì)胞結(jié)構(gòu)。這可能與作物種類、土壤類型和秸稈本身的生物特性有關(guān)[16]?!颈狙芯壳腥朦c(diǎn)】新疆棉田目前普遍實(shí)行秸稈還田,采用膜下滴灌植棉技術(shù)[17],與常規(guī)漫灌比較,膜下滴灌為局部灌溉,對(duì)根區(qū)水分和養(yǎng)分分布、根系生長(zhǎng)和功能的影響較常規(guī)漫灌作用更顯著[18]。然而有關(guān)膜下滴灌條件下,有機(jī)質(zhì)添加對(duì)棉田土壤氮素有效性及地下生態(tài)過(guò)程的影響機(jī)理研究報(bào)道較少。隨著新疆農(nóng)業(yè)產(chǎn)業(yè)結(jié)構(gòu)的調(diào)整,畜牧業(yè)快速發(fā)展,動(dòng)物糞便作為有機(jī)肥料已被棉農(nóng)們普遍采用。因此,開(kāi)展新疆棉田秸稈還田和施肥對(duì)土壤氮素有效性的影響及與根系生長(zhǎng)的關(guān)系,不僅有助于揭示秸稈還田和施肥影響棉田生態(tài)系統(tǒng)地下生態(tài)過(guò)程的機(jī)制,而且對(duì)制定棉田管理措施實(shí)現(xiàn)農(nóng)業(yè)高產(chǎn)高效發(fā)展具有重要指導(dǎo)意義?!緮M解決的關(guān)鍵問(wèn)題】本文在定位試驗(yàn)農(nóng)田基礎(chǔ)上,于棉花生育關(guān)鍵時(shí)期,測(cè)定秸稈還田和施肥不同處理下土壤礦化作用、硝化作用和反硝化作用的變化,分析土壤氮素轉(zhuǎn)化過(guò)程及有效氮的變化,以及對(duì)棉花根系生物量的影響進(jìn)行探討,為干旱區(qū)棉田合理施肥及農(nóng)田管理提供參考。
1.1 試驗(yàn)地概況
定位試驗(yàn)樣地在新疆烏蘭烏蘇農(nóng)業(yè)氣象試驗(yàn)站(44°17′ N,85°49′ E),本地區(qū)多年平均降水量210.6 mm,平均蒸發(fā)量1 664.1 mm,無(wú)霜期約170 d,年平均氣溫7.0℃,年日照時(shí)數(shù)為2 861.2 h。試驗(yàn)地土壤類型為灰漠土,質(zhì)地為砂壤土,前茬棉花,0—20 cm耕層土壤含有機(jī)質(zhì)17.0 g·kg-1、全氮1.25 g·kg-1、全磷2.04 g·kg-1、堿解氮84.0 mg·kg-1、速效磷91.5 mg·kg-1、速效鉀315 mg·kg-1;土壤的碳氮比(C﹕N)為7.89﹕1。
1.2 試驗(yàn)設(shè)計(jì)
采用裂區(qū)試驗(yàn)設(shè)計(jì),主區(qū)為秸稈還田(S1,前一年棉花收獲后將棉桿用機(jī)械打碎后翻入棉田,秸稈還田量約7 500 kg·hm-2),秸稈不還田(S0,棉花籽棉收獲后將棉桿拔除)為對(duì)照;副區(qū)為施肥處理,設(shè)4個(gè)處理,分別為(1)F0(不施肥);(2)F1(氮磷鉀化肥,代表新疆大面積棉田的施肥模式);(3)F2(腐熟雞糞,代表新疆有機(jī)棉施肥模式);(4)F3(氮磷鉀化肥和有機(jī)肥配施,代表新疆高效生產(chǎn)棉田施肥模式),其肥料種類和肥料量與當(dāng)前棉花生產(chǎn)的管理模式相同。各施肥處理間棉花生育期所施肥料根據(jù)試驗(yàn)要求,折合純N 440 kg·hm-2、P2O5420 kg·hm-2、K2O 270 kg·hm-2,有機(jī)肥30 t·hm-2。其中播種前基施30% N、70% P2O5和100% K2O及有機(jī)肥,其余根據(jù)棉花需肥情況在播種后采用隨水滴施?;瘜W(xué)肥料為尿素(N 46%)、磷酸二銨(N 18%,P2O546%)和硫酸鉀鎂(K2O 22%,Mg 5%,S 14%)。有機(jī)肥含有機(jī)質(zhì)235.2 g·kg-1、全氮17.8 g·kg-1、全磷13.7 g·kg-1、全鉀21.8 g·kg-1。試驗(yàn)共8個(gè)處理,每個(gè)處理3次重復(fù)。小區(qū)面積為24 m2(8 m×3 m),各小區(qū)間均埋深度為60 cm的防滲膜(聚乙烯膜),以防止各小區(qū)之間串水串肥。
定位試驗(yàn)于2010年開(kāi)始,連續(xù)6年處理。本文于2015年取樣,供試棉花(L.)品種為新陸早59號(hào),4月24日播種,10月15日收獲;種植模式為一膜4行,采用“30 cm + 50 cm + 30 cm”寬窄行距配置。除肥料因子外,其他田間管理按當(dāng)?shù)馗弋a(chǎn)田進(jìn)行。
1.3 測(cè)定項(xiàng)目及方法
1.3.1 根系取樣及生物量測(cè)定 在棉花盛花期(7月中旬)、盛鈴期(8月上旬)和收獲期(10月初),每個(gè)小區(qū)隨機(jī)選擇5株棉花,采用挖掘法(20 cm×20 cm×30 cm)將整株棉花挖出,從子葉節(jié)處將棉花分為地上和根系兩部分,以直徑2 mm為界,將根系分為粗根和細(xì)根,用去離子水清洗干凈后,將棉株地上部分、粗根、細(xì)根置于105℃烘箱中殺青30 min,在70℃烘干至恒重,稱重。
1.3.2 土壤取樣及指標(biāo)測(cè)定 在棉花盛花期(7月中旬)、盛鈴期(8月上旬)和收獲期(10月初),在每個(gè)小區(qū)采用典型“Z”形六點(diǎn)法隨機(jī)取土樣,用標(biāo)準(zhǔn)土鉆取0—20 cm表層土,然后將同一小區(qū)所有土樣混合成為一個(gè)土樣,用冰袋保存帶回實(shí)驗(yàn)室。將土樣過(guò)2 mm篩,置于4℃冰箱保存,用于土壤硝態(tài)氮和銨態(tài)氮的測(cè)定。
礦化作用采用PVC頂蓋原位培育法[19]測(cè)定。試驗(yàn)開(kāi)始前,先去除各樣點(diǎn)植株,防止培養(yǎng)過(guò)程中植物吸收管中的無(wú)機(jī)氮而影響試驗(yàn)結(jié)果,在每個(gè)小區(qū)設(shè)PVC管(內(nèi)徑7.5 cm、長(zhǎng)15 cm),用PVC管取0—15 cm的土樣2個(gè),用作初始NH4+-N、NO3--N含量的測(cè)定。然后在每個(gè)處理隨機(jī)取出6個(gè)土樣,盡可能不破壞其原有結(jié)構(gòu),分別用透氣塑料薄膜包住上口和下口,用細(xì)鐵絲扎住,防止出現(xiàn)管內(nèi)無(wú)機(jī)氮與管外交換;再插入原孔,培養(yǎng)30 d后取出土樣,測(cè)定NH4+-N、NO3--N含量。培養(yǎng)后與培養(yǎng)前無(wú)機(jī)氮含量(NH4+-N+NO3--N)的差值為土壤凈礦化率,NO3--N含量的差值為凈硝化率。總硝化速率采用土壤培養(yǎng)法測(cè)定[20-21],培養(yǎng)0 d、7 d后,分別測(cè)定其硝態(tài)氮含量,培養(yǎng)前后硝態(tài)氮含量的差值表示凈硝化速率;反硝化速率采用硝態(tài)氮消失法測(cè)定[20-21],培養(yǎng)0 d、5 d天取出土樣,用比色法測(cè)樣品中剩余硝態(tài)氮。銨態(tài)氮(NH4+-N)測(cè)定采用氯化鉀浸提-靛酚藍(lán)比色法[20];硝態(tài)氮(NO3--N)測(cè)定采用雙波長(zhǎng)紫外分光光度校正因數(shù)法[21]。
1.4 數(shù)據(jù)分析
試驗(yàn)數(shù)據(jù)采用Excel 2010軟件進(jìn)行統(tǒng)計(jì),SPSS 16.0軟件進(jìn)行方差分析,OriginPro 9.0軟件制圖。
2.1 秸稈還田和施肥對(duì)土壤氮素轉(zhuǎn)化過(guò)程的影響
試驗(yàn)表明,除凈硝化速率受施肥措施的影響小外(圖1-B,= 0.168),秸稈還田和施肥對(duì)土壤凈礦化、凈硝化、總硝化和反硝化速率均有顯著影響(圖1,<0.05),秸稈還田顯著增加了凈礦化、凈硝化、總硝化和反硝化速率。施肥增加了土壤氮素轉(zhuǎn)化速率,但3個(gè)施肥方式之間的差異不同取樣時(shí)期變化不一致。同一時(shí)期相同秸稈管理下,化肥和有機(jī)肥混施處理與單施化肥的轉(zhuǎn)化率差異不顯著。在秸稈還田條件下,單施有機(jī)肥盛花期凈硝化最高,收獲期硝化速率和反硝化速率最高。氮轉(zhuǎn)化速率受季節(jié)變化的影響顯著,整體表現(xiàn)為盛花期轉(zhuǎn)化率最大,而收獲期最?。▓D1)。
Fs:秸稈還田對(duì)測(cè)量指標(biāo)的影響顯著性,F(xiàn)f:施肥對(duì)測(cè)量指標(biāo)的影響顯著性,F(xiàn)d:測(cè)量時(shí)期對(duì)測(cè)量指標(biāo)的影響顯著性。S0:秸稈不還田,S1:秸稈還田,F(xiàn)0:不施肥,F(xiàn)1:施NPK化肥,F(xiàn)2:施有機(jī)肥,F(xiàn)3:施NPK化肥+有機(jī)肥。下同
2.2 秸稈還田和施肥對(duì)無(wú)機(jī)氮含量的影響
秸稈還田和施肥對(duì)土壤銨態(tài)氮、硝態(tài)氮和總無(wú)機(jī)氮含量均有顯著影響,且3個(gè)指標(biāo)變化趨勢(shì)相似(圖2,<0.05)。秸稈還田顯著增加了銨態(tài)氮、硝態(tài)氮和總無(wú)機(jī)氮含量,化肥處理最為顯著;施肥增加了土壤無(wú)機(jī)氮含量,但3個(gè)施肥方式間在不同取樣時(shí)期的變化不一致。在同一時(shí)期同一秸稈管理下,化肥和有機(jī)肥混施的無(wú)機(jī)氮含量與單施化肥的差異不大。在秸稈還田處理中,盛鈴期單施化肥銨態(tài)氮含量最高,化肥和有機(jī)肥混施硝態(tài)氮和總無(wú)機(jī)氮含量最高。無(wú)機(jī)氮含量受取樣時(shí)期影響顯著,且整體表現(xiàn)為盛鈴期無(wú)機(jī)氮含量最大,而收獲期最?。▓D2)。
2.3 秸稈還田和施肥對(duì)棉花根系生物量的影響
秸稈還田顯著降低了棉花根冠比(圖3,<0.05),對(duì)根系生物量、細(xì)根/粗根比影響不顯著(圖3-A、B,= 0.477)。施肥顯著增加了棉花根冠比、根系生物量和細(xì)根/粗根比,3個(gè)施肥處理之間差異不顯著(圖3)。
在同一時(shí)期相同秸稈管理下,化肥和有機(jī)肥混施的棉花根冠比、根系生物量和細(xì)根/粗根比與單施化肥處理的差異不大。在秸稈還田處理中,單施有機(jī)肥根系生物量收獲期最大,細(xì)根/粗根比和根冠比盛鈴期最高。棉花根冠比、根系生物量和細(xì)根/粗根比均受取樣時(shí)期的顯著影響,根系生物量在收獲期最大、盛花期最小,而細(xì)根/粗根比和根冠比整體表現(xiàn)盛鈴期最大、收獲期最?。▓D3)。
圖2 秸稈還田和施肥對(duì)土壤NH4+-N(A)、NO3–-N(B)和可吸出無(wú)機(jī)氮(C)的影響(平均值±標(biāo)準(zhǔn)偏差)
Fig. 2 Effects of stubble returning to soil and fertilization on soil ammonium (A), nitrate (B) and extractable inorganic nitrogen (C) (mean ± SD)
圖3 秸稈還田和施肥對(duì)棉花根系生物量(A)、細(xì)根/粗根比(B)和根冠比(C)的影響(平均值±標(biāo)準(zhǔn)偏差)
Fig. 3 Effects of stubble returning to soil and fertilization on root biomass of cotton (A), fine/coarse root biomass ratio (B) and root-shoot ratio (C) (mean±SD)
2.4 秸稈還田和施肥對(duì)土壤理化性質(zhì)的影響
土壤酸堿性是土壤重要的化學(xué)性質(zhì)以及土壤肥力特征的綜合反映。由表1可知,棉花秸稈還 田處理土壤pH顯著高于秸稈不還田處理(<0.05);不同施肥處理下,與不施肥處理相比,土壤pH表現(xiàn)為有機(jī)無(wú)機(jī)肥配施顯著降低了土壤pH (<0.05);不同取樣時(shí)期,盛花期土壤pH最低。棉花秸稈還田和有機(jī)無(wú)機(jī)肥配施顯著降低了土壤堿性。
土壤容重是土壤肥力的一個(gè)重要物理指標(biāo)。由表1可知,秸稈還田處理土壤容重低于秸稈不還田處理,差異顯著(<0.05);不同施肥處理下,與不施肥處理相比,土壤容重表現(xiàn)有機(jī)肥顯著降低了土壤容重(<0.05);棉花秸稈還田條件下施用有機(jī)肥顯著降低了土壤容重,改善土壤結(jié)構(gòu)。
3.1 秸稈還田和施肥能促進(jìn)土壤氮素轉(zhuǎn)化過(guò)程
前人研究表明,低施肥量促進(jìn)土壤凈氮礦化作用,尤其在氮素缺乏的地區(qū),施肥顯著提高了土壤的潛在氮礦化[22];但施肥量過(guò)多土壤水勢(shì)降低,微生物活性受到抑制,土壤礦化作用和硝化作用下降[23-24]。本研究結(jié)果表明,在秸稈還田及有機(jī)肥與無(wú)機(jī)肥混施條件下,土壤礦化作用表現(xiàn)出隨棉花生育時(shí)期的推移呈下降趨勢(shì);施肥顯著影響土壤的硝化作用,不施肥處理土壤的硝化作用較弱,有機(jī)肥和化肥配施土壤的硝化作用強(qiáng)度明顯高于單施化肥處理,表明有機(jī)肥的施入可以促進(jìn)土壤的硝化作用,這可能與土壤有機(jī)質(zhì)含量的增加有關(guān),而土壤有機(jī)質(zhì)經(jīng)氨化作用產(chǎn)生的銨根離子是硝化過(guò)程所需氧化基質(zhì)的來(lái)源之一,從而促進(jìn)硝化作用的進(jìn)行[25-36];目前通常都以凈硝化速率來(lái)衡量土壤硝化作用能力,然而凈硝化速率只能表征一種競(jìng)爭(zhēng)關(guān)系的結(jié)果,因此對(duì)于氮素轉(zhuǎn)化過(guò)程總硝化速率研究顯得尤為重要[26-27]。本研究中秸稈還田和施肥條件下土壤凈硝化和總硝化作用均隨著生育時(shí)期的推移逐漸降低,這可能與氣溫變化有關(guān),在本區(qū)域,盛花期溫度最高,收獲期最低,土壤溫度是影響土壤硝化作用的重要因子,亞硝酸鹽轉(zhuǎn)化者對(duì)溫度較為敏感[28]。
表1 秸稈還田和施肥對(duì)棉田土壤理化性質(zhì)的影響
S×F:秸稈還田與施肥的交互作用。表中小寫(xiě)字母分別表示在0.05 水平上差異顯著,*為0.05水平顯著;**為0.01水平顯著
S×F: Straw returning to soil interactions with fertilization. Value followed by different lowercase letters indicate significant difference at 0.05 level, * represents significantly different at 0.05 level, ** represents significantly different at 0.01 level
本試驗(yàn)表明,秸稈還田和施肥均顯著提高了土壤反硝化速率,這可能與秸稈還田增強(qiáng)了棉田土壤厭氧微生物的活性,而施肥處理增加了厭氧微生物的養(yǎng)分來(lái)源,從而加大了土壤反硝化作用[29]。同時(shí),pH降低則表現(xiàn)出微生物活性增強(qiáng)[30-31],也能促進(jìn)土壤反硝化作用。研究表明,秸稈還田處理土壤容重低于秸稈不還田處理,表明秸稈還田能改善土壤狀況,降低土壤容重;施用有機(jī)肥顯著降低了容重,這可能因?yàn)橛袡C(jī)質(zhì)添加使有機(jī)物聚集在表層,從而降低了表層的土壤容重。本試驗(yàn)結(jié)果表明,有機(jī)肥無(wú)機(jī)肥配施的反硝化作用要大于單施化肥,這可能與長(zhǎng)期施用化肥導(dǎo)致農(nóng)田土壤的通氣性較差有關(guān),而施用有機(jī)肥能改善土壤結(jié)構(gòu)[32],使農(nóng)田土質(zhì)疏松,通氣性好,進(jìn)而降低了厭氧細(xì)菌的數(shù)量和活性,最終導(dǎo)致單施化肥的反硝化作用小于有機(jī)無(wú)機(jī)配施處理。
3.2 秸稈還田和施肥對(duì)無(wú)機(jī)氮含量的影響
土壤NH4+-N和NO3--N是有效氮的主要存在形式,其含量受土壤水分、溫度、pH、土壤養(yǎng)分狀況等條件的影響[33]。本研究表明秸稈還田和施肥能顯著增加棉田土壤NH4+-N和NO3--N的含量。秸稈還田使土壤有機(jī)物活躍,能促進(jìn)棉花吸收利用大量的土壤氮素[8],這主要是因?yàn)榻斩掃€田不僅能夠增加土壤養(yǎng)分,培肥土壤,且可增加土壤有機(jī)質(zhì)含量,同時(shí)也改善土壤理化性質(zhì),再配施化肥和有機(jī)肥,更有利于作物與土壤微生物氮素的吸收利用。
本研究中不施肥處理氮素含量最低,施肥處理下土壤NO3--N和NH4+-N含量高,這與大多數(shù)研究所報(bào)道的施用化肥顯著增加土壤有效氮含量的結(jié)果相一致[34-35]。試驗(yàn)表明,施肥后土壤NO3--N和NH4+-N含量顯著增加,單施有機(jī)肥和有機(jī)肥與無(wú)機(jī)肥混施條件下效果較好,這可能是因?yàn)橛袡C(jī)肥和化肥配合施用可以有效地增加土壤中可利用銨態(tài)氮的含量,而且有機(jī)肥的施入能促進(jìn)土壤有機(jī)氮的礦化,使得銨態(tài)氮含量在土壤中大量積累[36]。本研究結(jié)果表明,在秸稈還田及有機(jī)肥與無(wú)機(jī)肥混施條件下,土壤有效氮含量表現(xiàn)出隨棉花生育時(shí)期的推移呈下降趨勢(shì),生育后期微生物活性較低,土壤氮礦化和硝化等有效氮的釋放過(guò)程減弱,使得其含量在收獲期略低。
3.3 秸稈還田和施肥能促進(jìn)棉花根系生長(zhǎng),增加根系生物量
植物光合產(chǎn)物在根系和地上部之間的分配是植株生長(zhǎng)調(diào)節(jié)的關(guān)鍵過(guò)程,根系生物量能反映根系發(fā)達(dá)程度[37]。前人研究表明,植株高效吸收氮素的前提是有較龐大的根系,施肥能顯著增加根系生物量[38],本研究結(jié)果顯示,與不施肥處理相比,施肥使得根系生物量增加了20%左右,這可能是由于有機(jī)肥和化肥配施能促進(jìn)植株生長(zhǎng),增強(qiáng)養(yǎng)分的吸收能力,干物質(zhì)累積量增加,提高了肥料利用效率[39]。
細(xì)根作為植物吸收水分和養(yǎng)分的重要器官,其性狀特征對(duì)植物的生長(zhǎng)具有重要的指示作用,施肥增加了土壤養(yǎng)分有效性,必將對(duì)植物細(xì)根生長(zhǎng)產(chǎn)生影響[40]。前人研究表明,植物根系生物量在施肥處理下沒(méi)有明顯變化[41],也有研究認(rèn)為施肥可以增加細(xì)根生物量[42-43]。本試驗(yàn)研究表明,施肥處理和秸稈還田均顯著增加了棉花細(xì)根生物量。在3個(gè)施肥處理間,有機(jī)肥和化肥配施處理下細(xì)根生物量小,這可能是有機(jī)肥和化肥配施所引起的土壤中氮素有效性的增加,有利于根系對(duì)氮的吸收與累積,細(xì)根發(fā)生適應(yīng)性變化,導(dǎo)致棉花細(xì)根生長(zhǎng)比單施化肥和單施有機(jī)肥呈顯著下降趨勢(shì)。試驗(yàn)結(jié)果還表明,棉花根系在收獲期趨于成熟與衰老,具有吸收功能的細(xì)根逐步減少,因此,細(xì)根生物量在收獲期下降;根系生物量增加的幅度小于地上部生物量增加的幅度,從而造成根冠比隨著棉花生育時(shí)期的推移呈下降趨勢(shì)。值得一提的是,在本研究中得出秸稈還田降低了棉花根冠比,這與前人研究結(jié)果不一致,分析認(rèn)為由于秸稈內(nèi)酚酸等自毒物質(zhì)導(dǎo)致根系細(xì)胞膜通透性增加,破壞了根系細(xì)胞結(jié)構(gòu)。這可能與棉花秸稈本身的生物特性有關(guān)[16]。因此,秸稈還田條件下棉株根冠比較不還田處理有所下降。
秸稈還田和施肥有利于促進(jìn)土壤氮素轉(zhuǎn)化過(guò)程,增加土壤有效氮含量,對(duì)根系生長(zhǎng)及生物量產(chǎn)生影響。在干旱區(qū)實(shí)施秸稈還田,結(jié)合有機(jī)無(wú)機(jī)肥配施技術(shù)有利于加速土壤養(yǎng)分轉(zhuǎn)化,提高肥料利用效率,增加有效養(yǎng)分含量,促進(jìn)作物根系生長(zhǎng)和地上部碳同化能力,為干旱區(qū)實(shí)現(xiàn)作物高產(chǎn)優(yōu)質(zhì)低成本及環(huán)境友好生產(chǎn)目標(biāo)奠定了基礎(chǔ)。
[1] 新疆維吾爾自治區(qū)統(tǒng)計(jì)局. 新疆統(tǒng)計(jì)年鑒. 北京: 中國(guó)統(tǒng)計(jì)出版社, 2014.
Xinjiang Uygur Autonomous Region Statistical Bureau.. Beijing: China Statistical Publishing House, 2014.(in Chinese)
[2] 楊忠娜, 唐繼軍, 喻曉玲. 新疆棉花產(chǎn)業(yè)對(duì)國(guó)民經(jīng)濟(jì)的影響及對(duì)策研究. 農(nóng)業(yè)現(xiàn)代化研究, 2013, 34(3): 298-302.
YANG Z N, TANG J J, YU X L. Xinjiang cotton industry present situation and countermeasure research., 2013, 34(3): 298-302. (in Chinese)
[3] 彭世彰, 楊士紅, 徐俊增. 控制灌溉對(duì)稻田CH4和N2O綜合排放及溫室效應(yīng)的影響. 水科學(xué)進(jìn)展, 2010, 21(2): 235-240.
PENG S Z, YANG S H, XU J Z. Influence of controlled irrigation on CH4and N2O emissions from paddy fields and subsequent greenhouse effect., 2010, 21(2): 235-240. (in Chinese)
[4] 陶磊, 褚貴新, 劉濤, 唐誠(chéng), 李俊華, 梁永超. 有機(jī)肥替代部分化肥對(duì)長(zhǎng)期連作棉田產(chǎn)量、土壤微生物數(shù)量及酶活性的影響. 生態(tài)學(xué)報(bào), 2014, 34(21): 6137-6146.
TAO L, CHU G X, LIU T, TANG C, LI J H, LIANG Y C. Impacts of organic manure partial substitution for chemical fertilizer on cotton yield, soil microbial community and enzyme activities in mono-cropping system in drip irrigation condition., 2014, 34(21): 6137-6146. (in Chinese)
[5] 楊景成, 韓興國(guó), 黃建輝, 潘慶民. 土壤有機(jī)質(zhì)對(duì)農(nóng)田管理措施的動(dòng)態(tài)響應(yīng). 生態(tài)學(xué)報(bào), 2003, 23(4): 787-796.
YANG J C, HAN X G, HUANG J H, PAN Q M. The dynamics of soil organic matter in cropland responding to agricultural practices., 2003, 23(4): 787-796. (in Chinese)
[6] 張娟, 沈其榮, 冉煒, 徐勇, 徐陽(yáng)春. 施用預(yù)處理秸稈對(duì)土壤供氮特征及菠菜產(chǎn)量和品質(zhì)的影響. 土壤, 2004, 36(1): 37-42.
ZHANG J, SHEN Q R, RAN W, XU Y, XU Y C. Effects of the application of pretreated rice straw with nitrogen fertilizer on soil nitrogen supply and spinach growth and quality., 2004, 36(1): 37-42. (in Chinese)
[7] 冀建華, 劉秀梅, 李祖章, 劉益仁, 侯紅乾, 劉光榮, 羅奇祥. 長(zhǎng)期施肥對(duì)黃泥田碳和氮及氮素利用的影響. 中國(guó)農(nóng)業(yè)科學(xué), 2011, 44(12): 2484-2494.
JI J H, LIU X M, LI Z Z, LIU Y R, HOU H Q, LIU G R, LUO Q X. Effects of long-term fertilization on carbon and nitrogen in yellow clayey soil and its nitrogen utilization., 2011, 44(12): 2484-2494. (in Chinese)
[8] 崔新衛(wèi), 張楊珠, 吳金水, 彭福元. 秸稈還田對(duì)土壤質(zhì)量與作物生長(zhǎng)的影響研究進(jìn)展. 土壤通報(bào), 2014, 45(6): 1527-1532.
CUI X W, ZHANG Y Z, WU J S, PENG F Y. Research progress on the effects of returning straw to fields on soil quality and crop growth., 2014, 45(6): 1527-1532. (in Chinese)
[9] 寧川川, 王建武, 蔡昆爭(zhēng). 有機(jī)肥對(duì)土壤肥力和土壤環(huán)境質(zhì)量的影響研究進(jìn)展. 生態(tài)環(huán)境學(xué)報(bào), 2016, 25(1): 175-181.
NING C C, WANG J W, CAI K Z. The effects of organic fertilizers on soil fertility and soil environmental quality: A review., 2016, 25(1): 175-181. (in Chinese)
[10] 丁雪麗, 韓曉增, 喬云發(fā), 李祿軍, 李娜, 宋顯軍. 農(nóng)田土壤有機(jī)碳固存的主要影響因子及其穩(wěn)定機(jī)制. 土壤通報(bào), 2012(3): 737-744.
DING X L, HAN X Z, QIAO Y F, LI L J, LI N, SONG X J. Sequestration of organic carbon in cultivated soils: Main factors and their stabilization mechanisms., 2012(3): 737-744. (in Chinese)
[11] Fenn M E, Poth M A, Terry J D. Nitrogen mineralization and nitrification in a mixed-conifer forest in southern California: Controlling factors, fluxes, and nitrogen fertilization response at a high and low nitrogen deposition site., 2005, 35(6): 1464-1486.
[12] YIN H, LI Y, XIAO J, XU Z, CHENG X, LIU Q. Enhanced root exudation stimulates soil nitrogen transformations in a subalpine coniferous forest under experimental warming., 2013, 19(7): 2158-2167.
[13] 閆麗娟, 楊洪強(qiáng), 蘇倩, 門(mén)秀巾, 張瑋瑋. 炭化秸稈對(duì)蘋(píng)果根系一氧化氮生成及根區(qū)土壤硝酸鹽代謝的影響. 中國(guó)農(nóng)業(yè)科學(xué), 2014, 47(19): 3850-3856.
YAN L J, YANG H Q, SU Q, MEN X J, ZHANG W W. Effects of carbonized straw on the nitric oxide formation and nitrate metabolism in apple roots and its root zone soil., 2014, 47(19): 3850-3856. (in Chinese)
[14] Ahmad N, Karim K, Masoud A, Fateme A. Selectivity of three miticides to spider mite predator, phytoseius plumifer (Acari: Phytoseiidae) under laboratory conditions., 2009, 28(3): 326-331.
[15] M?kip?? R, Karjalainen T, Pussinen A, Kellom?ki S. Effects of climate change and nitrogen deposition on the carbon sequestration of a forest ecosystem in the boreal zone., 1999, 29(1): 1490-1501.
[16] 嚴(yán)奉君, 孫永健, 馬均, 徐徽, 李玥, 楊志遠(yuǎn), 蔣明金, 呂騰飛. 秸稈覆蓋與氮肥運(yùn)籌對(duì)雜交稻根系生長(zhǎng)及氮素利用的影響. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2015, 21(1): 23-35.
YAN F J, SUN Y J , MA J, XU H, LI Y, YANG Z Y, JIANG M J, Lü T F. Effects of straw mulch and nitrogen management on root growth and nitrogen utilization characteristics of hybrid rice., 2015, 21(1): 23-35. (in Chinese)
[17] 胡兆璋. 加快農(nóng)業(yè)現(xiàn)代化步伐的科學(xué)技術(shù)體系—精準(zhǔn)農(nóng)業(yè)技術(shù)體系. 中國(guó)棉花, 2005(S1): 2-6.
HU Z Z. Science and technology system to speed up the pace of agricultural modernization—Precision agriculture technology system., 2005(S1): 2-6. (in Chinese)
[18] 買(mǎi)文選, 田長(zhǎng)彥. 膜下滴灌棉花早衰發(fā)生的可能機(jī)制研究—從生長(zhǎng)與養(yǎng)分的角度. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2012, 18(1): 132-138.
MAI W X, TIAN C Y. The possible mechanism of cotton premature senescence under drip irrigation below mulch film-From the perspective of growth and nutrient., 2012, 18(1): 132-138. (in Chinese)
[19] Raison R J, Connell M J, Khanna P K. Methodology for studying fluxes of soil mineral-N in situ., 1987, 19(5): 521- 530.
[20] 魯如坤. 土壤農(nóng)業(yè)化學(xué)分析方法. 北京: 中國(guó)農(nóng)業(yè)科技出版社, 1999: 107-147.
LU R K.. Beijing: Chinese Agricultural Science and Technology Press, 1999: 107-147. (in Chinese)
[21] 黃冠華, 詹衛(wèi)華. 土壤水分特性曲線的分形模擬. 水科學(xué)進(jìn)展, 2002, 13(1): 55-60.
HUANG G H, ZHAN W H. Modeling soil water retention curve with fractal theory., 2002, 13(1): 55-60. (in Chinese)
[22] Vourlitis G L, Zorba G. Nitrogen and carbon mineralization of semi-arid shrubland soil exposed to long-term atmospheric nitrogen deposition., 2007, 43(5): 611-615.
[23] Walecka-Hutchison C M, Walworth J L. Evaluating the effects of gross nitrogen mineralization, immobilization, and nitrification on nitrogen fertilizer availability in soil experimentally contaminated with diesel., 2007, 18(2): 133-144.
[24] 秦子?jì)? 張宇亭, 周志峰, 石孝均, 郭濤. 長(zhǎng)期施肥對(duì)中性紫色水稻土氮素礦化和硝化作用的影響. 中國(guó)農(nóng)業(yè)科學(xué), 2013, 46(16): 3392-3400.
QIN Z X, ZhANG Y T, ZHOU Z F, SHI X J, GUO T. Characteristics of mineralization and nitrification in neutral purple paddy soil from a long-term fertilization experiment., 2013, 46(16): 3392-3400. (in Chinese)
[25] CUI M, SUN X C, HU C X. Effective mitigation of nitrate leaching and nitrous oxide emissions in intensive vegetable production systems using a nitrification inhibitor, dicyandiamide., 2011, 22(1): 38-41, 66.
[26] Hart S C, Nason G E, Myrold D D, Perry D A. Dynamics of gross nitrogen transformations in an old-growth forest-the carbon connection., 1994, 75(4): 880-891.
[27] Booth M S, Stark J M, Rastetter E. Controls on nitrogen cycling in terrestrial ecosystems: A synthetic analysis of literature data., 2005, 75(2): 139-157.
[28] Gundersen P, Rasmussen L. Nitrification in forest soils: Effects of nitrogen deposition on soil acidification and aluminium release., 1990, 113(4): 1-45.
[29] Gao W L, Yang H, Kou L, Li S G. Effects of nitrogen deposition and fertilization on N transformations in forest soils: A review.2015, 15(4): 863-879.
[30] 蔡澤江, 孫楠, 王伯仁, 徐明崗, 張會(huì)民, 張璐, 李冬初, 盧昌艾. 幾種施肥模式對(duì)紅壤氮素形態(tài)轉(zhuǎn)化和pH的影響. 中國(guó)農(nóng)業(yè)科學(xué), 2012, 45(14): 2877-2885.
CAI Z J, SUN N, WANG B R, XU M G, ZHANG H M, ZHANG L, LI D C, LU C A. Experimental research on effects of different fertilization on nitrogen transformation and pH of red soil., 2012, 45(14): 2877-2885. (in Chinese)
[31] 鄧仁菊, 楊萬(wàn)勤, 胡建利, 馮瑞芳. 亞高山針葉林土壤有機(jī)層有效氮?jiǎng)討B(tài)及其對(duì)外源C、N增加的響應(yīng). 生態(tài)學(xué)報(bào), 2009, 29(5): 2716-2724.
DENG R J, YANG W Q, HU J L, FENG R F. Dynamics on soil available nitrogen in organic layer and its responses to carbon and nitrogen supply in two subalpine coniferous forests of western Sichuan., 2009, 29(5): 2716-2724. (in Chinese)
[32] 仝少偉, 時(shí)連輝, 劉登民, 姜遠(yuǎn)茂, 高東升, 束懷瑞, 胡雨彤. 不同有機(jī)堆肥對(duì)土壤性狀及微生物生物量的影響. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2014, 20 (1): 110-117.
TONG S W, SHI L H, LIU D M, JIANG Y M, GAO D S, SHU H R, HU Y T. Effects of different organic composts on soil characteristics and microbial biomass., 2014, 20(1): 110-117. (in Chinese)
[33] 李平, 郎漫. 硝化和反硝化過(guò)程對(duì)林地和草地土壤N2O排放的貢獻(xiàn). 中國(guó)農(nóng)業(yè)科學(xué), 2013, 46(22): 4726-4732.
LI P, LANG M. Contribution of nitrification and denitrification to the nitrous oxide emission from forest and grassland soils., 2013, 46(22): 4726-4732. (in Chinese)
[34] 高菊生, 黃晶, 董春華, 徐明崗, 曾希柏, 文石林. 長(zhǎng)期有機(jī)無(wú)機(jī)肥配施對(duì)水稻產(chǎn)量及土壤有效養(yǎng)分影響. 土壤學(xué)報(bào), 2014, 51(2): 314-324.
GAO J S, HUANG J, Dong C H, XU M G, ZENG X B, WEN S L. Effects of long-term combined application of organic and chemical fertilizers on rice yield and soil available nutrients., 2014, 51(2): 314-324. (in Chinese)
[35] 陶瑞, 唐誠(chéng), 李銳, 譚亮, 褚貴新. 有機(jī)肥部分替代化肥對(duì)滴灌棉田氮素轉(zhuǎn)化及不同形態(tài)氮含量的影響. 中國(guó)土壤與肥料, 2015(1): 50-56.
TAO R, TANG C, LI R, TAN L, CHU G X. Effects of using organic fertilizer as partial substitution for chemical fertilizer on soil nitrogen transformation and amount of different nitrogen forms in drip irrigation., 2015(1): 50-56. (in Chinese)
[36] 鮑俊丹, 石美, 張妹婷, 梁東麗, 吳雄平. 中國(guó)典型土壤硝化作用與土壤性質(zhì)的關(guān)系. 中國(guó)農(nóng)業(yè)科學(xué), 2011, 44(7): 1390-1398.
BAO J D, SHI M, ZHANG M T, LIU D L, WU X P. Nitrification of main soils in China and its relationship with soil properties., 2011, 44(7): 1390-1398. (in Chinese)
[37] 鄒琦. 植物生理生化實(shí)驗(yàn)指導(dǎo). 北京: 中國(guó)農(nóng)業(yè)出版社, 1995: 130-311.
ZOU Q.. Beijing: Chinese Agricultural Press, 1995: 130-311. (in Chinese)
[38] 劉代平, 宋海星, 劉強(qiáng), 榮湘民, 彭建偉, 謝桂先, 劉浩榮. 油菜根系形態(tài)和生理特性與其氮效率的關(guān)系. 土壤, 2008, 40(5): 765-769.
LIU D P, SONG H X, LIU Q, RONG X M, PENG J W, XIE G X, LIU H R. Relationship between root morphologic and physiological properties and nitrogen efficiency of oilseed rape cultivars., 2008, 40(5): 765-769. (in Chinese)
[39] Adeniyan O N, Ojo A O, Akinbode O A. Comparative study of different organic manures and NPK fertilizer for improvement of soil chemical properties and dry matter yield of maize in two different soils., 2011, 2(1): 9-13.
[40] 李晶, 姜遠(yuǎn)茂, 門(mén)永閣, 李洪娜, 周樂(lè), 魏紹沖. 供應(yīng)銨態(tài)和硝態(tài)氮對(duì)蘋(píng)果幼樹(shù)生長(zhǎng)及15N利用特性的影響. 中國(guó)農(nóng)業(yè)科學(xué), 2013, 46(18): 3818-3825.
LI J, JIANG Y M, MEN Y G, LI H N, ZHOU L, WEI S C. Effects of ammonium and nitrate nitrogen on growth and properties of15N distribution of apple trees., 2013, 46(18): 3818-3825. (in Chinese)
[41] Johansson M. The influence of ammonium nitrate on the root growth and ericoid mycorrhizal colonization of(L.) hull from a Danish heathland., 2000, 123(3): 418-424.
[42] 竇晶鑫, 劉景雙, 王洋, 趙光影. 模擬氮沉降對(duì)濕地植物生物量與土壤活性碳庫(kù)的影響. 應(yīng)用生態(tài)學(xué)報(bào), 2008, 19(8): 1714-1720.
DOU J X, LIU J S, WANG Y, ZHAO G Y. Effects of simulated nitrogen deposition on biomass of wetland plant and soil active carbon pool., 2008, 19(8): 1714-1720. (in Chinese)
[43] Majdi H. Changes in fine root production and longevity in relation to water and nutrient availability in a Norway spruce stand in northern Sweden., 2001, 21(14): 1057-1061.
(責(zé)任編輯 楊鑫浩)
Effects of Stubble Returning to Soil and Fertilization on Soil Nitrogen Availability and Root Biomass of Cotton in Arid Region
ZHANG GuoJuan, PU XiaoZhen, ZHANG PengPeng, ZHANG WangFeng
(Agricultural College of Shihezi University/Key Laboratory of Oasis Ecology Agriculture of the Xinjiang production and Construction Corps, Shihezi 832003, Xinjiang)
【Objective】The objective of this paper was to study the cotton soil nitrogen transformation process in arid region and it’s influence on the root biomass of cotton. The availability of cotton soil nitrogen which responds to agriculture management measures was clarified which respond to agriculture management measures, made high yield and high efficiency management measures for cotton, which implement high yield, good quality and low cost, serve for environmental friendly production of cotton.【Method】The main plot treatment consisted of two stubble management measures: stubble-removed (S0) and stubble returning to soil (S1). The split-plot treatment was composed of four fertilizer treatments: no fertilization (F0), NPK fertilizer (F1), organic fertilizer (F2) and combined application of NPK fertilizer and organic fertilizer (F3). The influences of stubble returning to soil and fertilization on soil nitrogen availability were studied and the process of cotton soil nitrogen transformation, including the change of net mineralization, net nitrification, gross nitrification and denitrification was discussed and the response of soil available nitrogen content and root biomass of cotton to stubble returning to soil and fertilization was clarified. 【Result】Stubble returning to soil and fertilization increased the net mineralization, gross nitrification and denitrification of soil in cotton field significantly, each index among different fertilization treatments and at different growth stages had different variations, there was no significant difference among the three fertilizer treatments, but the maximum rate was observed at full-bloom stage. Stubble returning to soil and fertilization increased ammonium, nitrate and inorganic N significantly, but there was no significant difference among the three fertilizer treatments, the content of inorganic N at full-bloom stage and full-boll stage was higher than at harvesting stage. Stubble returning to soil decreased the root-shoot ratio significantly, had no significant effect on root biomass and fine/coarse root biomass ratio. Fertilization increased the root-shoot ratio, root biomass and fine root biomass, there was no significant difference among the three fertilizer treatments. In summary, stubble returning to soil increased soil net mineralization, net nitrification, gross nitrification, denitrification, nitrate nitrogen, ammonium nitrogen and absorbable inorganic nitrogen content and root biomass. Combined application of NPK fertilizer and organic fertilizer had the largest soil net mineralization, net nitrification, gross nitrification, denitrification, nitrate nitrogen and absorbable inorganic nitrogen content. Combined application of NPK fertilizer also has the largest root biomass and fine/coarse root biomass ratio.【Conclusion】Stubble returning to soil and fertilization are beneficial to promotion of soil nitrogen transformation and available nitrogen content, thus affecting cotton root growth and biomass. Adoption of stubble returning to soil and different fertilization measures in cotton field in arid areas can promote soil nitrogen availability. Implementation of stubble returning to soil in arid areas, combined with application of NPK fertilizer and chicken manure, are helpful to accelerate the transformation of soil nutrient, improve efficiency of fertilizer, increase the effective content of nutrient, and promote the root growth and carbon assimilation ability of crop aboveground part.
arid region; cotton; fertilizer; stubble returning to soil; nitrogen transformation; available nitrogen
2016-10-04;接受日期:2017-03-03
國(guó)家自然科學(xué)基金項(xiàng)目(31471450)
張國(guó)娟,E-mail:729614829@qq.com。通信作者張旺鋒,Tel:0993-2057326;E-mail:zhwf_agr@shzu.edu.cn