亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Relation between Cartesian product andadjacent vertex distinguishing coloring

        2017-10-10 01:02:23WANGGuoxing
        關(guān)鍵詞:鄰點(diǎn)道床財(cái)經(jīng)大學(xué)

        WANG Guoxing

        (1. Gansu Business Development Research Center, Lanzhou University of Finance and Economics, Lanzhou 730020, China;2. College of Information Engineering, Lanzhou University of Finance and Economics, Lanzhou 730020, China)

        Relation between Cartesian product andadjacent vertex distinguishing coloring

        WANG Guoxing1,2

        (1. Gansu Business Development Research Center, Lanzhou University of Finance and Economics, Lanzhou 730020, China;2. College of Information Engineering, Lanzhou University of Finance and Economics, Lanzhou 730020, China)

        Cartesian product; proper edge coloring; proper total coloring; adjacent vertex distinguishing proper edge coloring; adjacent vertex distinguishing total coloring

        0 Introduction

        The graph coloring has a widely applications in many subject. We only consider simple, finite and undirected graph in this paper.

        The adjacent vertex distinguishing proper edge coloring of graphs is investigated in several papers[1-6]. The adjacent vertex distinguishing total coloring of graphs is proposed in [7] and studied in several papers[7-16]. Especially, the adjacent vertex distinguishing total chromatic number ofPmKnis obtained in [11] and the adjacent vertex distinguishing total chromatic numbers of the Cartesian products ofPmwithPnandCn, and the Cartesian product ofCmwithCnare given in [13]. We use the usual notation as can be found in any book on graph theory[17].

        1 Preliminaries

        Lemma2[18]χ″=(Cm□Cn)=5(m,n≥3).

        From lemma 2, we can obtain the following lemma 3 immediately since anr-regular graphGhas (equitable) total chromatic numberr+1 if and only ifGhas adjacent vertex distinguishing proper edge chromatic numberr+1.

        SupposeGis a graph. If a bijectionσfromV(G) toV(G) preserves the adjacency relation, i.e.,σ(u) is adjacent toσ(v) if and only ifuis adjacent tovfor any two distinct verticesuandvofG, thenσis called an automorphism of graphG.

        IfGhas an automorphismσ, such that for any vertexv∈V(G),vandσ(v) are adjacent (and thenv≠σ(v)), then we say that graphGis of property (P).

        The Cartesian product of two graphsGandH, denoted byG□H, is a graph with vertex setV(G)×V(H) and edge set {(u,v)(u′,v′)|uu′∈E(G),v=v′oru=u′,vv′∈E(H)}.

        LetQtdenotet-cube, i.e.,

        For two types of adjacent vertex distinguishing colorings of the Cartesian product of a graph with another graph which is of property (P), we will give some important results in section 2 and section 3.

        2 The relation between AVDPEC andCartesian product of two graphs

        Theorem1SupposeGis a graph without isolated edge andGhas property (P),tis a positive integer.

        Theorem 1 (i) follows.

        (ii) Since for any positive integerl,G□Qlis of property (P) whenGis of property (P), we can obtain (ii) by applying (i) repeatedly .

        (iv) We can obtain (iv) by using (iii) repeatedly.

        Fig.1 AVDPEC of Q3

        Lemma5For any graphG,G□K2has property (P).

        From theorem 1 and lemma 5, we may obtain the following corollary 1.

        Corollary1For any graphGwith no isolated edge and integert(≥1), we have

        Note that for any graphGand integer numberr(≥3),G□Crhas property (P), so we have the following corollary 2 by theorem 1.

        Theorem2Suppose that graphGhas property (P) and has no isolated edge,r(≥4) is an even integer.

        We will give an edge coloring ofG□Crusings+2 colors as follows:

        (4) 受注漿施工影響,隧道管片的水平位移和道床沉降在施工前期增長(zhǎng)較快,后期增長(zhǎng)緩慢;水平收斂和豎直收斂在施工前期增長(zhǎng)較慢,而后期增長(zhǎng)較快。

        From theorem 2, we will obtain the following corollary 3 immediately.

        Corollary3Suppose thatGis of property (P) and has no isolated edge,r1,r2,…,rsare even integers at least 4.

        ProofSimilar to the proof of theorem 2(i), we can complete the proof of theorem 3.

        3 The relation between AVDTC andCartesian product of two graphs

        Theorem4SupposeGis of property (P), andtis a positive integer.

        The theorem 4(i) follows.

        (ii) Since for any positive integerl,G□Qlis of property (P) whenGis of property (P), we can obtain theorem 4(ii) by applying theorem 4(i) repeatedly.

        (iv) We can obtain theorem 4(iv) by using theorem 4(iii) repeatedly.

        From theorem 4 and thatG□K2is of property (P), we obtain the following corollary 5.

        Corollary5Supposet(≥2) is an integer.

        From theorem 4 and thatG□Cris of property (P), we obtain the following corollary 6.

        Theorem5Suppose thatGis of property (P),r(≥4) is even.

        ProofSimilar to the proof of theorem 2, we can complete the proof of theorem 5. The process is easy, so we omitted it.

        By generalizing theorem 5, we have

        Corollary7SupposeGis of property (P) andr1,r2,…,rs(≥4) are even.

        From lemma 4, theorem 4(iv) and corollary 7(ii), we may deduce the following corollary 8.

        Corollary8Ifm≥3,n≥3,t≥1,r1,r2,…,rs(≥4) are even, then

        ProofSimilar to the proof of theorem 5(i) or theorem 2(i), we can complete the proof of theorem 6.

        [1]BALISTERPN,GY?RIE,LEHELJ,etal.Adjacentvertexdistinguishingedge-colorings[J].SIAMJDiscreteMath,2007,21(1):237-250.

        [2] BARIL J L, KHEDDOUCI H, TOGNI O. Adjacent vertex distinguishing edge colorings of meshes[J].AustralasianJournalofCombinatorics,2006,35:89-102.

        [4] HATAMI H. Δ+300 is a bound on the adjacent vertex distinguishing edge chromatic number[J].JournalofCombinatorialTheory:SeriesB,2005,95:246-256.

        [6] ZHANG Z F, LIU L Z, WANG J F. Adjacent strong edge coloring of graphs[J].ApplMathLett,2002,15:623-626.

        [7] ZANG Z F, CHEN X E, LI J W, et al. On adjacent vertex distinguishing total coloring of graphs[J].ScienceinChina(SerA):Mathematics,2005,48(3):289-299.

        [8] CHEN X E. Adjacent-vertex-distinguishing total chromatic numbers onK2n+1-E(P3)[J].InternationalJournalofPureandAppliedMathematics,2004,13(1):21-29.

        [9] CHEN X E. On the adjacent vertex distinguishing total coloring numbers of graphs with Δ=3[J].DiscreteMathematics,2008,308:4003-4007.

        [10] CHEN X E, ZHANG Z F. AVDTC numbers of generalized Halin graphs with maximum degree at least 6[J].ActaMathematicaeApplicataeSinica:EnglishSeries,2008,24(1):55-58.

        [11] CHEN X E, ZHANG Z F. Adjacent-vertex-distinguishing total chromatic numbers ofPm×Kn[J].JMathematicalResearchandExposition,2006,26(3):489-494.

        [12] CHEN X E, ZHANG Z F, SUN Y R. Adjacent-vertex-distinguishing total chromatic numbers on monocycle graphs and the square of cycles[J].InternationalJournalofPureandAppliedMathematics,2005,18(4):481-491.

        [13] CHEN X E, ZHANG Z F, SUN Y R. A note on adjacent-vertex-distinguishing total chromatic numbers forPm×Pn,Pm×CnandCm×Cn[J].JMathematicalResearchandExposition,2008,28(4):789-798.

        [14] HULGAN J. Concise proofs for adjacent vertex distinguishing total colorings[J].DiscreteMathematics,2009,309:2548-2550.

        [15] SUN Y L, SUN L. The (adjacent) vertex-distinguishing total coloring of the Mycielski graphs and the Cartesian product graphs[C]//7-thChina-JapanConference,DiscreteGeometry,CombinatoricsandGraphTheory. Heidelberg: Springer-Verlag,2007:200-205.

        [16] WANG H Y. On the adjacent vertex distinguishing total chromatic numbers of graphs with Δ=3[J].JCombOptim,2007,14:87-109.

        [17] BONDY J A, MURTY U S R.GraphTheorywithApplications[M]. New York: Elsevier Science Publishing Co. Inc.,1976.

        [18] TONG C L, LIN X H, YANG Y S, et al. Equitable total coloring ofCmCn[J].DiscreteAppliedMathematics,2009,157:596-601.

        王國(guó)興1,2

        (1.蘭州財(cái)經(jīng)大學(xué) 甘肅商務(wù)發(fā)展研究中心,甘肅 蘭州 730020;2.蘭州財(cái)經(jīng)大學(xué) 信息工程學(xué)院, 甘肅 蘭州 730020)

        Cartesian積;正常邊染色;正常全染色;鄰點(diǎn)可區(qū)別邊染色;鄰點(diǎn)可區(qū)別全染色

        O 157.5

        :A

        :1008-9497(2017)05-520-06

        date:Dec.26, 2016.

        Supported by the National Natural Science Foundation of China (61662066), Gansu Business Development Research Center Project of Lanzhou University of Finance and Economics(JYYY201506) and Key Science and Research Project of Lanzhou University of Finance and Economics(LZ201302).

        Abouttheauthor:WANG Guoxing(1976-),ORCID:http://orcid.org/0000-0001-6582-650X, male, master, associate professor, the field of interest are the graph theory and its applications,E-mail: wanggx@lzufe.edu.cn.

        10.3785/j.issn.1008-9497.2017.05.004

        Cartesian積與鄰點(diǎn)可區(qū)別著色之間的關(guān)系.浙江大學(xué)學(xué)報(bào)(理學(xué)版),2017,44(5):520-525

        猜你喜歡
        鄰點(diǎn)道床財(cái)經(jīng)大學(xué)
        圍長(zhǎng)為5的3-正則有向圖的不交圈
        基于滲透性能的道床臟污評(píng)估標(biāo)準(zhǔn)研究
        尋找最美校園 吉林財(cái)經(jīng)大學(xué)
        文苑(2018年19期)2018-11-09 01:30:14
        CRTS—I型雙塊式無(wú)砟軌道到發(fā)線道床板施工方法的改進(jìn)
        科技資訊(2018年15期)2018-10-26 10:59:34
        Research on financing strategy for Small and Medium Enterprises
        高速鐵路膠粘道砟固化道床的動(dòng)力學(xué)特性
        鐵道建筑(2018年2期)2018-03-16 09:36:33
        城市地鐵區(qū)間道床沉降處理施工技術(shù)
        居業(yè)(2016年9期)2016-12-26 21:56:44
        特殊圖的一般鄰點(diǎn)可區(qū)別全染色
        改善商品包裝的若干思考
        塑料包裝(2014年4期)2014-09-16 03:41:29
        笛卡爾積圖Pm×Kn及Cm×Kn的鄰點(diǎn)可區(qū)別E-全染色研究
        日韩色久悠悠婷婷综合| 亚洲中文字幕无码一久久区| 免费人成视频xvideos入口| 国产熟妇搡bbbb搡bb七区| 亚洲国产成人精品91久久久| 国产日产免费在线视频| 国产av天堂亚洲av刚刚碰| 乱色精品无码一区二区国产盗| 精品无码一区二区三区亚洲桃色| 国产精品原创巨作av无遮| 日本中文字幕一区二区在线观看 | 国产精品香蕉网页在线播放| 久久一区av蜜桃人妻| 中文乱码字幕在线亚洲av| 丰满人妻被两个按摩师| 国产精品_国产精品_k频道| 国产喷水在线观看| 国产一区二区亚洲av| 黑人玩弄极品人妻系列视频| 成品人视频ww入口| 毛茸茸的中国女bbw| 亚洲欧美日韩国产精品网| 亚洲综合中文一区二区| 国产无套内射又大又猛又粗又爽| 欧美日韩国产码高清综合人成| 精品中文字幕久久久人妻| 韩国美女主播国产三级| 亚洲中文字幕在线综合| 久久久精品中文字幕麻豆发布| 美女又色又爽视频免费| 亚洲嫩模高清在线视频| 综合成人亚洲网友偷自拍| 伊人大杳焦在线| 法国啄木乌av片在线播放| 无码熟妇人妻av在线c0930| 日本高清视频在线观看一区二区| 国产特级毛片aaaaaa视频| 国产成人综合久久精品推| 久久麻豆精亚洲av品国产精品| 久久精品色福利熟妇丰满人妻91| 午夜成人鲁丝片午夜精品|