亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Relation between Cartesian product andadjacent vertex distinguishing coloring

        2017-10-10 01:02:23WANGGuoxing
        關(guān)鍵詞:鄰點(diǎn)道床財(cái)經(jīng)大學(xué)

        WANG Guoxing

        (1. Gansu Business Development Research Center, Lanzhou University of Finance and Economics, Lanzhou 730020, China;2. College of Information Engineering, Lanzhou University of Finance and Economics, Lanzhou 730020, China)

        Relation between Cartesian product andadjacent vertex distinguishing coloring

        WANG Guoxing1,2

        (1. Gansu Business Development Research Center, Lanzhou University of Finance and Economics, Lanzhou 730020, China;2. College of Information Engineering, Lanzhou University of Finance and Economics, Lanzhou 730020, China)

        Cartesian product; proper edge coloring; proper total coloring; adjacent vertex distinguishing proper edge coloring; adjacent vertex distinguishing total coloring

        0 Introduction

        The graph coloring has a widely applications in many subject. We only consider simple, finite and undirected graph in this paper.

        The adjacent vertex distinguishing proper edge coloring of graphs is investigated in several papers[1-6]. The adjacent vertex distinguishing total coloring of graphs is proposed in [7] and studied in several papers[7-16]. Especially, the adjacent vertex distinguishing total chromatic number ofPmKnis obtained in [11] and the adjacent vertex distinguishing total chromatic numbers of the Cartesian products ofPmwithPnandCn, and the Cartesian product ofCmwithCnare given in [13]. We use the usual notation as can be found in any book on graph theory[17].

        1 Preliminaries

        Lemma2[18]χ″=(Cm□Cn)=5(m,n≥3).

        From lemma 2, we can obtain the following lemma 3 immediately since anr-regular graphGhas (equitable) total chromatic numberr+1 if and only ifGhas adjacent vertex distinguishing proper edge chromatic numberr+1.

        SupposeGis a graph. If a bijectionσfromV(G) toV(G) preserves the adjacency relation, i.e.,σ(u) is adjacent toσ(v) if and only ifuis adjacent tovfor any two distinct verticesuandvofG, thenσis called an automorphism of graphG.

        IfGhas an automorphismσ, such that for any vertexv∈V(G),vandσ(v) are adjacent (and thenv≠σ(v)), then we say that graphGis of property (P).

        The Cartesian product of two graphsGandH, denoted byG□H, is a graph with vertex setV(G)×V(H) and edge set {(u,v)(u′,v′)|uu′∈E(G),v=v′oru=u′,vv′∈E(H)}.

        LetQtdenotet-cube, i.e.,

        For two types of adjacent vertex distinguishing colorings of the Cartesian product of a graph with another graph which is of property (P), we will give some important results in section 2 and section 3.

        2 The relation between AVDPEC andCartesian product of two graphs

        Theorem1SupposeGis a graph without isolated edge andGhas property (P),tis a positive integer.

        Theorem 1 (i) follows.

        (ii) Since for any positive integerl,G□Qlis of property (P) whenGis of property (P), we can obtain (ii) by applying (i) repeatedly .

        (iv) We can obtain (iv) by using (iii) repeatedly.

        Fig.1 AVDPEC of Q3

        Lemma5For any graphG,G□K2has property (P).

        From theorem 1 and lemma 5, we may obtain the following corollary 1.

        Corollary1For any graphGwith no isolated edge and integert(≥1), we have

        Note that for any graphGand integer numberr(≥3),G□Crhas property (P), so we have the following corollary 2 by theorem 1.

        Theorem2Suppose that graphGhas property (P) and has no isolated edge,r(≥4) is an even integer.

        We will give an edge coloring ofG□Crusings+2 colors as follows:

        (4) 受注漿施工影響,隧道管片的水平位移和道床沉降在施工前期增長(zhǎng)較快,后期增長(zhǎng)緩慢;水平收斂和豎直收斂在施工前期增長(zhǎng)較慢,而后期增長(zhǎng)較快。

        From theorem 2, we will obtain the following corollary 3 immediately.

        Corollary3Suppose thatGis of property (P) and has no isolated edge,r1,r2,…,rsare even integers at least 4.

        ProofSimilar to the proof of theorem 2(i), we can complete the proof of theorem 3.

        3 The relation between AVDTC andCartesian product of two graphs

        Theorem4SupposeGis of property (P), andtis a positive integer.

        The theorem 4(i) follows.

        (ii) Since for any positive integerl,G□Qlis of property (P) whenGis of property (P), we can obtain theorem 4(ii) by applying theorem 4(i) repeatedly.

        (iv) We can obtain theorem 4(iv) by using theorem 4(iii) repeatedly.

        From theorem 4 and thatG□K2is of property (P), we obtain the following corollary 5.

        Corollary5Supposet(≥2) is an integer.

        From theorem 4 and thatG□Cris of property (P), we obtain the following corollary 6.

        Theorem5Suppose thatGis of property (P),r(≥4) is even.

        ProofSimilar to the proof of theorem 2, we can complete the proof of theorem 5. The process is easy, so we omitted it.

        By generalizing theorem 5, we have

        Corollary7SupposeGis of property (P) andr1,r2,…,rs(≥4) are even.

        From lemma 4, theorem 4(iv) and corollary 7(ii), we may deduce the following corollary 8.

        Corollary8Ifm≥3,n≥3,t≥1,r1,r2,…,rs(≥4) are even, then

        ProofSimilar to the proof of theorem 5(i) or theorem 2(i), we can complete the proof of theorem 6.

        [1]BALISTERPN,GY?RIE,LEHELJ,etal.Adjacentvertexdistinguishingedge-colorings[J].SIAMJDiscreteMath,2007,21(1):237-250.

        [2] BARIL J L, KHEDDOUCI H, TOGNI O. Adjacent vertex distinguishing edge colorings of meshes[J].AustralasianJournalofCombinatorics,2006,35:89-102.

        [4] HATAMI H. Δ+300 is a bound on the adjacent vertex distinguishing edge chromatic number[J].JournalofCombinatorialTheory:SeriesB,2005,95:246-256.

        [6] ZHANG Z F, LIU L Z, WANG J F. Adjacent strong edge coloring of graphs[J].ApplMathLett,2002,15:623-626.

        [7] ZANG Z F, CHEN X E, LI J W, et al. On adjacent vertex distinguishing total coloring of graphs[J].ScienceinChina(SerA):Mathematics,2005,48(3):289-299.

        [8] CHEN X E. Adjacent-vertex-distinguishing total chromatic numbers onK2n+1-E(P3)[J].InternationalJournalofPureandAppliedMathematics,2004,13(1):21-29.

        [9] CHEN X E. On the adjacent vertex distinguishing total coloring numbers of graphs with Δ=3[J].DiscreteMathematics,2008,308:4003-4007.

        [10] CHEN X E, ZHANG Z F. AVDTC numbers of generalized Halin graphs with maximum degree at least 6[J].ActaMathematicaeApplicataeSinica:EnglishSeries,2008,24(1):55-58.

        [11] CHEN X E, ZHANG Z F. Adjacent-vertex-distinguishing total chromatic numbers ofPm×Kn[J].JMathematicalResearchandExposition,2006,26(3):489-494.

        [12] CHEN X E, ZHANG Z F, SUN Y R. Adjacent-vertex-distinguishing total chromatic numbers on monocycle graphs and the square of cycles[J].InternationalJournalofPureandAppliedMathematics,2005,18(4):481-491.

        [13] CHEN X E, ZHANG Z F, SUN Y R. A note on adjacent-vertex-distinguishing total chromatic numbers forPm×Pn,Pm×CnandCm×Cn[J].JMathematicalResearchandExposition,2008,28(4):789-798.

        [14] HULGAN J. Concise proofs for adjacent vertex distinguishing total colorings[J].DiscreteMathematics,2009,309:2548-2550.

        [15] SUN Y L, SUN L. The (adjacent) vertex-distinguishing total coloring of the Mycielski graphs and the Cartesian product graphs[C]//7-thChina-JapanConference,DiscreteGeometry,CombinatoricsandGraphTheory. Heidelberg: Springer-Verlag,2007:200-205.

        [16] WANG H Y. On the adjacent vertex distinguishing total chromatic numbers of graphs with Δ=3[J].JCombOptim,2007,14:87-109.

        [17] BONDY J A, MURTY U S R.GraphTheorywithApplications[M]. New York: Elsevier Science Publishing Co. Inc.,1976.

        [18] TONG C L, LIN X H, YANG Y S, et al. Equitable total coloring ofCmCn[J].DiscreteAppliedMathematics,2009,157:596-601.

        王國(guó)興1,2

        (1.蘭州財(cái)經(jīng)大學(xué) 甘肅商務(wù)發(fā)展研究中心,甘肅 蘭州 730020;2.蘭州財(cái)經(jīng)大學(xué) 信息工程學(xué)院, 甘肅 蘭州 730020)

        Cartesian積;正常邊染色;正常全染色;鄰點(diǎn)可區(qū)別邊染色;鄰點(diǎn)可區(qū)別全染色

        O 157.5

        :A

        :1008-9497(2017)05-520-06

        date:Dec.26, 2016.

        Supported by the National Natural Science Foundation of China (61662066), Gansu Business Development Research Center Project of Lanzhou University of Finance and Economics(JYYY201506) and Key Science and Research Project of Lanzhou University of Finance and Economics(LZ201302).

        Abouttheauthor:WANG Guoxing(1976-),ORCID:http://orcid.org/0000-0001-6582-650X, male, master, associate professor, the field of interest are the graph theory and its applications,E-mail: wanggx@lzufe.edu.cn.

        10.3785/j.issn.1008-9497.2017.05.004

        Cartesian積與鄰點(diǎn)可區(qū)別著色之間的關(guān)系.浙江大學(xué)學(xué)報(bào)(理學(xué)版),2017,44(5):520-525

        猜你喜歡
        鄰點(diǎn)道床財(cái)經(jīng)大學(xué)
        圍長(zhǎng)為5的3-正則有向圖的不交圈
        基于滲透性能的道床臟污評(píng)估標(biāo)準(zhǔn)研究
        尋找最美校園 吉林財(cái)經(jīng)大學(xué)
        文苑(2018年19期)2018-11-09 01:30:14
        CRTS—I型雙塊式無(wú)砟軌道到發(fā)線道床板施工方法的改進(jìn)
        科技資訊(2018年15期)2018-10-26 10:59:34
        Research on financing strategy for Small and Medium Enterprises
        高速鐵路膠粘道砟固化道床的動(dòng)力學(xué)特性
        鐵道建筑(2018年2期)2018-03-16 09:36:33
        城市地鐵區(qū)間道床沉降處理施工技術(shù)
        居業(yè)(2016年9期)2016-12-26 21:56:44
        特殊圖的一般鄰點(diǎn)可區(qū)別全染色
        改善商品包裝的若干思考
        塑料包裝(2014年4期)2014-09-16 03:41:29
        笛卡爾積圖Pm×Kn及Cm×Kn的鄰點(diǎn)可區(qū)別E-全染色研究
        日韩人妻不卡一区二区三区| 九色九九九老阿姨| 黑人大荫道bbwbbb高潮潮喷| 日子2020一区二区免费视频| 国产一级r片内射免费视频| 中文字幕一区二区人妻性色av| 免费不卡无码av在线观看| a人片在线观看苍苍影院| 久久久无码一区二区三区| 亚洲人成影院在线高清| 午夜视频在线观看国产| 日本污视频| 中文乱码字幕在线中文乱码 | 精品少妇人妻av一区二区蜜桃| 刚出嫁新婚少妇很紧很爽| 国产精品欧美久久久久久日本一道 | 国产日产韩国av在线| 日本怡春院一区二区三区| 五月婷婷六月激情| 日韩美女人妻一区二区三区| 国产乱子伦一区二区三区国色天香| 精品一区二区av天堂色偷偷| 九九久久自然熟的香蕉图片| 九九久久精品国产| 国产无遮挡又黄又爽无VIP| 青青草好吊色在线观看| 亚洲va国产va天堂va久久| 久久久国产精品ⅤA麻豆| 激情视频在线观看国产中文| 开心五月天第四色婷婷| 精品水蜜桃久久久久久久| 免费 无码 国产在线观看不卡 | 91久久国产香蕉熟女线看| 尤物在线精品视频| 亚洲中文字幕乱码| 亚洲国产成人av第一二三区 | 亚洲毛片网| 精品午夜中文字幕熟女| 男女肉粗暴进来动态图| 久久精品视频在线看99| 爱v天堂在线观看|