倪 峰(德清縣高級(jí)中學(xué) 浙江 湖州 313200)
內(nèi)壁粗糙碗中的動(dòng)力學(xué)問(wèn)題深度探究(二)
倪 峰
(德清縣高級(jí)中學(xué) 浙江 湖州 313200)
為更深入探究?jī)?nèi)壁粗糙碗中的動(dòng)力學(xué)問(wèn)題,利用Mathematica數(shù)學(xué)軟件計(jì)算和畫(huà)出了物體逆時(shí)針運(yùn)動(dòng)的角度θ與運(yùn)動(dòng)時(shí)間t的圖像關(guān)系和物體逆時(shí)針運(yùn)動(dòng)的角速度ω與運(yùn)動(dòng)時(shí)間t的圖像關(guān)系,從圖像關(guān)系可以準(zhǔn)確得到在某時(shí)刻對(duì)應(yīng)的角度、角速度、速度.
內(nèi)壁粗糙的碗 豎直軌道 動(dòng)力學(xué) 二階非線性常微分方程 Mathematica
具體模型如圖1所示,物體(可看成質(zhì)點(diǎn)的物體)在內(nèi)壁粗糙的碗中從A點(diǎn)向下逆時(shí)針下滑,物體與粗糙內(nèi)壁的動(dòng)摩擦因數(shù)為μ.
圖1 情境圖
從A點(diǎn)下滑到第一次速度為零的位置的整個(gè)過(guò)程,物體受到3個(gè)力的作用,分別是重力mg,摩擦力Ff,支持力FN.除重力外,其他兩個(gè)力都是變力.在文獻(xiàn)[1]中,筆者推導(dǎo)出物體逆時(shí)針運(yùn)動(dòng)的角速度ω與轉(zhuǎn)過(guò)的角度θ的函數(shù)關(guān)系,即給出了ω與θ的解析解
并利用Excel畫(huà)出了ω與θ的圖像關(guān)系,可以得到物體在粗糙碗中從A點(diǎn)下滑做逆時(shí)針圓周運(yùn)動(dòng)到第一次速度為零這個(gè)過(guò)程,軌道上各個(gè)位置所對(duì)應(yīng)的角速度和速度.那么,θ與t,ω與t之間又有什么關(guān)系呢?
根據(jù)推導(dǎo)得出的ω與θ的解析解
(1)
對(duì)式(1)兩邊積分得
(2)
式(2)比較復(fù)雜,筆算無(wú)法推導(dǎo)θ與t的解析解和ω與t的解析函數(shù).
取g=9.8 m/s2,r=1 m.分別畫(huà)出μ=0,0.1,0.5,0.8時(shí),θ與t,ω與t的圖像,具體編程如下所示:
Quit
PlotStyle0={{Red,Thickness[0.015]},{Green,
Thickness[0.015]},{Black,Thickness[0.015]},{Blue,
Thickness[0.015]},{Purple,Dashing[{0.01,0.05,0.01}],Thickness[0.005]},{Green,Dashing[{0.01,
0.02,0.05}],Thickness[0.005]}};θf(wàn)[μ_]:=
((1-2μ2)Sin[θ]+3μCos[θ]-3μExp[-2θ]))-1/2,{ θ,0, θθ}]
fig[μ_,style_]:=ParametricPlot[{Re[tjie[,θθ]],θθ},{θ,0,θf(wàn)[μ]},PlotStyle→PlotStyle0[[style]],
AxesLabel→{ "t","θ"},BaseStyle→{Large},AxesStyle→Arrowheads[0.06],RotateLabel→True,PlotRange→All,AxesOrigin→{0,0}]
figA[μ_,style_]:=ParametricPlot[{Re[tjie
3μCos[θθ]-3μExp[-2μθθ]))1/2},{θθ,0, θf(wàn)[μ]},
PlotStyle→PlotStyle0[[style]],AxesLabel→{"t","dθ/dt"},BaseStyle→{Large},AxesStyle→Arrowheads[0.06],RotateLabel→True,PlotRange→
All,AxesOrigin→{0,0}]
"μ=0,t[0]" →tjie[0,0.0001]"μ=0.1,t[0]" →tjie[0.1,0.0001]
"μ=0.5,t[0]" →tjie[0.5,0.0001]
"μ=0.8,t[0]" →tjie[0.8,0.0001]
"μ=0, θf(wàn)"→f[0]
"μ=0.1, θf(wàn)"→θf(wàn)[0.1]
"μ=0.5, θf(wàn)"→θf(wàn)[0.5]
"μ=0.8, θf(wàn)"→θf(wàn)[0.8]
μ=0,t[0] →0.00451754
μ=0.1,t[0] →0.00451755
μ=0.5,t[0] →0.0045176
μ=0.8,t[0] →0.00451763-2.36667
μ=0, θf(wàn)→3.14159
μ=0.1, θf(wàn)→2.67214
μ=0.5, θf(wàn)→1.72223
μ=0.8, θf(wàn)→1.33753
寫(xiě)完倒數(shù)第二行程序后,按Shift+Enter運(yùn)行,得到角度θ與時(shí)間t的圖像,如圖2所示.從圖2可以得到,物體在粗糙碗中從A點(diǎn)下滑做逆時(shí)針圓周運(yùn)動(dòng)到第一次速度為零這個(gè)過(guò)程,某時(shí)刻物體對(duì)應(yīng)在軌道上的位置.寫(xiě)完最后一行程序后,按Shift+Enter運(yùn)行,得到角速度ω與時(shí)間t的圖像,如圖3所示.從圖3可以得到,物體在粗糙碗中從A點(diǎn)下滑做逆時(shí)針圓周運(yùn)動(dòng)到第一次速度為零這個(gè)過(guò)程,某時(shí)刻物體對(duì)應(yīng)的角速度.
圖2 角度θ與時(shí)間t的關(guān)系
圖3 角速度ω與時(shí)間t的關(guān)系
在具體應(yīng)用過(guò)程中,對(duì)應(yīng)不同的動(dòng)摩擦因數(shù)μ,求不同時(shí)刻對(duì)應(yīng)的角度和角速度,只需要在程序當(dāng)中改變?chǔ)踢@個(gè)參數(shù)的大小即可,然后再按Shift+Enter運(yùn)行,就能得到相應(yīng)的圖像關(guān)系.若讀者需要以上程序,或進(jìn)行學(xué)術(shù)交流,可直接與筆者聯(lián)系.
1 程守洙,江之勇.普通物理學(xué)2(第5版).北京:高等教育出版社,2003.25~28
2 馬文蔚.物理學(xué)(第3版).北京:高等教育出版社,1994.5~203 董鍵.Mathematica與大學(xué)物理計(jì)算(第2版). 北京:清華大學(xué)出版社,2010
In-depthResearchontheDynamicIssueinRoughBowlWall(II)
Ni Feng
(Deqing Senior high school, Huzhou, Zhejiang 313200)
The author deduced the relationships between angular velocity ω and angle of turn θ and drew the picture of ω with θ in the in-depth dynamic research in rough bowl wall(I). We can get corresponding ω and velocity v in the different orbit positions when the object rolls down from A point in the rough bowl wall to the position with zero velocity for the first time. In order to research the dynamic in rough bowl wall deeply, in this paper we calculate and draw the pictures of θ with t and ω with t by Mathematica when the object do anticlockwise motion. We can get corresponding θ, ω and v accurately in different time from the pictures.
rough bowl wall; a vertical track; dynamic; the second order ordinary differential equation;mathematica
2016-08-29)