亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        BIFURCATION IN A RATIO-DEPENDENT PREDATOR-PREY SYSTEM WITH STAGE-STRUCTURED IN THE PREY POPULATION

        2017-09-15 05:58:15QIAOMeihongLIUAnping
        數(shù)學(xué)雜志 2017年5期
        關(guān)鍵詞:特征方程中國地質(zhì)大學(xué)食餌

        QIAO Mei-hong,LIU An-ping

        (1.School of Mathematics&Physics,China University of Geoscience,Wuhan 430074,China)

        (2.Center for Mathematical Sciences,Huazhong University of Science and Technology, Wuhan 430074,China)

        BIFURCATION IN A RATIO-DEPENDENT PREDATOR-PREY SYSTEM WITH STAGE-STRUCTURED IN THE PREY POPULATION

        QIAO Mei-hong1,2,LIU An-ping1

        (1.School of Mathematics&Physics,China University of Geoscience,Wuhan 430074,China)

        (2.Center for Mathematical Sciences,Huazhong University of Science and Technology, Wuhan 430074,China)

        In this paper,we study the bifurcation of ratio-dependent predator-prey system. By using the characteristic equation of the linearized system and the center manifold theorem,we derive the stability of the system and direction of the Hopf bifurcation.

        time delay;predator-prey model;stability;Hopf bifurcation

        1 Introduction

        Over the years,predator-prey models described by the ordinary di ff erential equations (ODEs),which were proposed and studied widely due to the pioneering theoretical works by Lotka[1]and Volterra[2].

        A most crucial element in these models is the functional response,the function that describes the number of prey consumed per predator per unit time for given quantities of prey x and predator y.

        Arditi and Ginzburg[3]suggested that the essential properties of predator-dependence could be rendered by a simpler form which was called ratio-dependence.The trophic function is assumed to depend on the single variablerather than on the two separate variables x and y.Generally,a ratio-dependent predator-prey model of Arditi and Ginzburg[3]is

        In this paper,we will focus our attention on the ratio-dependent type predator-prey

        model with Michaelis-Menten type functional response,which takes the form of

        where α,β,m,d3and β1are positive constants;d3,β,m and β1stand for the predator death rate,capturing rate,half saturation constant and conversion rate,respectively.The dynamics of predator-prey system was studied extensively[4-11].

        In order to ref l ect that the dynamical behaviors of models that depend on the past history of the system,it is often necessary to incorporate time-delays into the models.Suppose that in a certain environment there are the prey and predator species with respective population densities x(t)and y(t)at time t.

        Based on the above discussion,by incorporating age-structure of prey and time delay into system(1.2)and supposing that the predator species captures only the adult prey species,we establish the following model

        where x1(t),x2(t),y(t)represents the densities of immature prey,mature prey and predator, respectively,α,d1,d2,d3,β,γ,m,μand β1stand for the birth rate of prey,the immature prey death rate,the mature prey death rate,the predator death rate,capturing rate,the conversion rate of immature prey to mature prey,half saturation constant,the density dependence rate of the mature prey and conversion rate,respectively.τ is called the maturation time of the prey species.

        2 Stability of a Positive Equilibrium and the Existence of Hopf Bifurcations

        In this section,we will discuss the local stability of a positive equilibrium and the existence of Hopf bifurcations in system(1.3).It is easy to deduce that system(1.3)has a unique positive equilibriumif the following holds.

        Then we can get the linear part of system(1.3),

        where pi(i=1,2,3,4,5,6,7)are def i ned in(2.1).

        Therefore the corresponding characteristic equation[18]of system(2.2)is

        It is well-known that the zero steady state of system(2.2)is asymptotically stable if all roots of eq.(2.3)have negative real parts,and is unstable if eq.(2.3)has a root with positive real part.In the following,we will study the distribution of roots of eq.(2.3).

        Obviously,λ=p1=-d1<0 is a negative root of eq.(2.3).

        If iω(ω>0)is a root of eq.(2.3),then

        Separating the real and imaginary parts of above formula gives the following equations

        which implies that

        further note that if

        Solving for τ0,we get

        where n=0,1,2,3,···.

        The smallest τ0is obtained by choosing n=0,then from(2.5),we get

        then(τ0n,ω0)solves eq.(2.4).This means that when τ=τ0n,eq.(2.3)has a pair of purely imaginary roots±iω0.

        Now let us consider the behavior of roots of eq.(2.3)near τ0n.Denote λ(τ)=α(τ)+ iω(τ)as the root of eq.(2.3)such that

        Substituting λ(τ)into eq.(2.3i)and dif f erentiating both sides of it with respect to τ, we have

        Therefore,when the delay τ near τ0nis increased,the root of eq.(2.3)crosses the imaginary axis from left to right.In addition,note that when τ=0,eq.(2.3)has roots with negative real parts only if

        (H3)p3+p4+p7<0 and p3p7+p4p7-p5p6>0.

        Thus summarizing the above remarks and the well-known Rouche theorem,we have the following results on the distribution of roots of eq.(2.3).

        Lemma 2.1 Let τ0n(n=0,1,2,···)be def i ned as in(2.7),then all roots of eq.(2.3) have negative real parts for all τ∈[0,τ0).However,eq.(2.3)has at least one root with positive real part when τ>τ0,and eq.(2.3)has a pair of purely imaginary root±iω0, when τ=τ0.More detail,for τ∈(τ0n,τ0n+1](n=0,1,2,···),eq.(2.3)has 2(n+1)roots with positive real parts.Moreover,all roots of eq.(2.3)with τ=τ0n(n=0,1,2,···)have negative real parts except±iω0.

        Applying Lemma 2.1,Theorem 11.1 developed in[12],we have the following results. Theorem 2.1 Let(H1),(H2)and(H3)hold.Let ω0and τ0n(n=0,1,2,···)be def i ned as in(2.6)and(2.7),respectively.

        (i)The positive equilibrium E?of system(1.2)is asymptotically stable for all τ∈[0,τ0) and unstable for τ>τ0.

        (ii)System(1.3)undergoes a Hopf Bifurcation at the positive equilibrium E?when τ=τ0n(n=0,1,2,···).

        3 Direction of Hopf Bifurcation

        In Section 2,we have proven that system(1.3)has a series of periodic solutions bifurcating from the positive equilibrium E?at the critical values of τ.In this section,we derive explicit formulae to determine the properties of the Hopf bifurcation at critical values τ0nby using the normal form theory and center manifold reduction[13].

        Without loss of generality,denote the critical values τ0nbyˉτ,and set τ=ˉτ+μ.Then μ=0 is a Hopf bifurcation value of system(1.3).Thus we can work in the phase space C=C([-ˉτ,0],R3).

        Let u1(t)=x1(t)-x?1,u2(t)=x2(t)-x?2,u3(t)=y(t)-y?.Then system(1.3)is transformed into

        here f(1),f(2)and f(3)are def i ned in(2.1).

        For the simplicity of notations,we rewrite(3.1)as

        where u(t)=(u1(t),u2(t),u3(t))T∈R3,ut(θ)∈C is def i ned by ut(θ)=u(t+θ),and Lμ:C→R,f:R×C∈R are given by

        respectively.By Riesz representation theorem,there exists a function η(θ,μ)of bounded variation for θ∈[-ˉτ,0]such that

        for φ∈C.

        In fact,we can choose

        where δ is the vector,whose components are the Dirac delta functions.For φ∈C1([-ˉτ,0],R3), def i ne

        and

        Then system(3.2)is equivalent to

        where xt(θ)=x(t+θ)for θ∈[-ˉτ,0].

        For ψ∈C1([0,ˉτ],(R3)?),def i ne

        and a bilinear inner product

        where η(θ)=η(θ,0).Then A(0)and A?are adjoint operators.By discussions in Section 2 and foregoing assumption,we know that±iω0are eigenvalues of A(0).Thus,they are also eigenvalues of A?.We f i rst need to compute the eigenvector of A(0)and A?corresponding to iω0and-iω0,respectively.

        Suppose that q(θ)=(ρ1,1,ρ2)Teiω0θis the eigenvector of A(0),(3.5)and(3.6)that

        We therefore derive that

        On the other hand,suppose that q?(s)=D(σ1,1,σ2)eiω0sis the eigenvector of A?corresponding to-iω0.From the def i nition of A?,(3.5)and(3.6),we have

        which yields

        In order to assure hq?(s),q(θ)i=1,we need to determine the value of D.From(3.7), we have

        Thus we can choose

        such that hq?(s),q(θ)i=1,hq?(s),ˉq(θ)i=0.

        In the remainder of this section,we will compute the coordinates to describe the center manifold C0atμ=0.Let utbe the solution of eq.(3.2)withμ=0.

        Def i ne

        On the center manifold C0,we have W(t,θ)=W(z(t),ˉz(t),θ),where

        z andˉz are local coordinates for center manifold C0in the direction of q?andˉq?.

        Note that W is real if utis real.We only consider real solutions.For the solution ut∈C0of(3.2),sinceμ=0,we have

        We rewrite(3.10)as˙z=iω0z+g(z,ˉz)with

        Noting that

        thus it follows from(3.4)and(3.11)that

        We now compute W20(θ)and W11(θ).It follows from(3.7)and(3.9)that

        and

        where η(θ)=η(0,θ).From(3.13),it follows that

        we obtain

        which leads to

        It follows that

        Similarly,substituting(3.21)and(3.25)into(3.23),we get

        Thus we can determine W20(θ)and W11(θ)from(3.20)and(3.21).Furthermore,we can determine g21.Therefore,each gijin(3.12)is determined by the parameters and delay in system(3.1).Thus we can compute the following values

        which determine the quantities of bifurcating periodic solutions in the center manifold at the critical valueˉτ,i.e.,μ2determines the direction of the Hopf bifurcation:ifμ2>0(μ2<0), then the Hopf bifurcation is supercritical(subcritical)and the bifurcating periodic solutions exist for τ>ˉτ(τ<ˉτ);β2determines the stability of the bifurcating periodic solutions:the period increase(decrease)if T2>0(T2<0).

        From what has been discussed above,we could determine the stability and direction of periodic solutions bifurcating from the positive equilibrium E?at the critical pint τ0n.

        [1]Lotka A J.Elements of physical biology[M].New York,Baltimore:Will.Wil.,1925.

        [2]Volterra V.Variazionie f l uttuazioni del numero d’individui in specie animali conviventi[J].Mem. Acad.Licei.,1926,2:31-113.

        [3]Arditi R,Ginzburg L R.Coupling in predator-prey dynamics:ratio-dependence[J].J.Theor.Biol., 1989,139:311-326.

        [4]Berezovskaya F,Karev G,Arditi R.Parametric analysis of the ratio-dependent predator-prey model[J].J.Math.Biol.,2001,43:221-246.

        [5]Hsu S B,Hwang T W,Kuang Y.Global analysis of the Michaelis-Menten type ratio dependent predator-prey system[J].J.Math.Biol.,2001,42:489-506.

        [6]Jost C,Arino O,Arditi R.About deterministic extinction in ratio-dependent predator-prey models[J].Bull.Math.Biol.,1999,61:19-32.

        [7]Ruan S,Wolkowicz G S K,Wu J.Dif f erential equations with applications to biology[J].Fields Inst. Commun.,Providence,RI:AMS,1999,21:325-337.

        [8]Kuang Y,Beretta E.Global qualitative analysis of a ratio-dependent predator-prey system[J].J. Math.Biol.,1998,36:389-406.

        [9]Gao S J,Chen L S,Teng Z D.Hopf bifurcation and global stability for a delayed predator-prey system with stage structure for predator[J].Appl.Math.Comput.,2008,202:721-729.

        [10]Qiao M H,Liu A P.Qualitative analysis for a Reaction-dif f usion predator-prey model with disease in the prey species[J].J.Appl.Math.,Article ID:236208,2014.

        [11]Urszula F,Qiao M H,Liu A P.Asymptotic dynamics of a deterministic and stochastic predator-prey model with disease in the prey species[J].Math.Meth.Appl.Sci.,2014,37(3):306-320.

        [12]Zhang F Q,Zhang Y J.Hopf bifurcation for Lotka-Volterra Mutualist systems with three time delays[J].J.Biomath.,2011,26(2):223-233.

        [13]Hale J,Lunel S.Introduction to functional dif f erential equations[M].New York:Springer-Verlag, 1993.

        [14]Hassard B,Kazarinof fD,Wan Y.Theory and applications of Hopf bifurcation[M].Cambridge:Cambridge University Press,1981.

        [15]Zhou L,Shawgy H.Stability and Hopf Bifurcation for a competition delay model with dif f usion[J]. J.Math.,1999,19(4):441-446.

        [16]Keeling M J,Grenfell B T.Ef f ect of variability in infection period on the persistence and spatial spread of infectious diseases[J].Math.Biosci.,1998,147(2):207-226.

        [17]Natali H.Stability analysis of Volterra integral equations with applications to age-structured population models[J].Nonl.Anal.,2009,71:2298-2304.

        [18]David A.Sanchez,ODEs and stability theory[M].Mineola,New York:Dover Publ.,2012.

        具有比率依賴和年齡結(jié)構(gòu)的捕食食餌系統(tǒng)的分支研究

        喬梅紅1,2,劉安平1

        (1.中國地質(zhì)大學(xué)(武漢)數(shù)理學(xué)院,湖北武漢430074)
        (2.華中科技大學(xué)數(shù)學(xué)中心,湖北武漢430074)

        本文研究了具有比率依賴的捕食食餌的分支問題.利用線性特征方程的方法,獲得了方程解的穩(wěn)定性結(jié)果,得到了Hopf分支的方向和穩(wěn)定性的充分條件.

        時滯;捕食食餌模型;穩(wěn)定性;Hopf分支

        O175.13

        A

        0255-7797(2017)05-0956-13

        ?Received date:2014-07-26Accepted date:2015-01-04

        Supported by the Basic Research Program of Hubei Province(2014CFB898); NSFC(11571326;11601496).

        Biography:Qiao Hongmei(1982-),female,born at Linfen,Shanxi,lecturer,major in biomathematics.

        2010 MR Subject Classif i cation:34D20

        猜你喜歡
        特征方程中國地質(zhì)大學(xué)食餌
        捕食-食餌系統(tǒng)在離散斑塊環(huán)境下強(qiáng)迫波的唯一性
        相鄰三項線性遞推關(guān)系數(shù)列通項的簡便求法
        一類具有修正的Leslie-Gower項的捕食-食餌模型的正解
        中國地質(zhì)大學(xué)(北京)土地利用與生態(tài)修復(fù)課題組
        一些常系數(shù)非齊次線性微分方程的復(fù)數(shù)解法
        具有兩個食餌趨化項的一個Ronsenzwing-MacArthur捕食食餌模型的全局分歧
        中國地質(zhì)大學(xué)(北京)珠寶學(xué)院2020屆本科生畢業(yè)作品展
        中國寶玉石(2020年3期)2020-08-08 02:58:10
        不尋常的“石頭”——探訪中國地質(zhì)大學(xué)逸夫博物館
        羅云 中國地質(zhì)大學(xué)(北京)教授、博士生導(dǎo)師
        安全(2020年3期)2020-04-25 06:53:50
        一類帶有交叉擴(kuò)散的捕食-食餌模型的正解
        国产成人精品午夜二三区波多野| 天堂av在线免费播放| 国产精品久久夜伦鲁鲁| 91久久国产香蕉熟女线看| 日本一本免费一二区| 亚洲av永久精品爱情岛论坛| 亚洲av第一成肉网| 美女被射视频在线观看91| 国产av一啪一区二区| 久久精品国产亚洲超碰av| 中文人妻熟妇乱又伦精品| 久久久久亚洲精品无码网址 | 精品日本免费观看一区二区三区| 国产一区白浆在线观看| 久久久久久欧美精品se一二三四| 亚洲欧美成人一区二区在线电影 | 夜色视频在线观看麻豆| 不卡一区二区视频日本| 日韩av无码精品一二三区| 国产在线精品一区二区三区不卡 | 中文国产日韩欧美二视频 | 久草视频在线这里只有精品| 亚洲av少妇一区二区在线观看 | 色爱av综合网站| 国产精品成人99一区无码| 亚洲日日噜噜噜夜夜爽爽| 加勒比av在线一区二区| 蜜桃av精品一区二区三区| 一个人看的视频www免费| 中文字幕人妻中文| 男女啪啪免费视频网址| 极品一区二区在线视频观看| 亚洲av无码专区在线播放| 欧洲熟妇乱xxxxx大屁股7| 精品中文字幕日本久久久| 日本一区二区三区视频免费在线 | 午夜精品久视频在线观看| 日本免费精品一区二区三区视频| 麻豆国产一区二区三区四区| 精品无码久久久久成人漫画 | 少妇人妻无奈的跪趴翘起|