亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        BIFURCATION IN A RATIO-DEPENDENT PREDATOR-PREY SYSTEM WITH STAGE-STRUCTURED IN THE PREY POPULATION

        2017-09-15 05:58:15QIAOMeihongLIUAnping
        數(shù)學(xué)雜志 2017年5期
        關(guān)鍵詞:特征方程中國地質(zhì)大學(xué)食餌

        QIAO Mei-hong,LIU An-ping

        (1.School of Mathematics&Physics,China University of Geoscience,Wuhan 430074,China)

        (2.Center for Mathematical Sciences,Huazhong University of Science and Technology, Wuhan 430074,China)

        BIFURCATION IN A RATIO-DEPENDENT PREDATOR-PREY SYSTEM WITH STAGE-STRUCTURED IN THE PREY POPULATION

        QIAO Mei-hong1,2,LIU An-ping1

        (1.School of Mathematics&Physics,China University of Geoscience,Wuhan 430074,China)

        (2.Center for Mathematical Sciences,Huazhong University of Science and Technology, Wuhan 430074,China)

        In this paper,we study the bifurcation of ratio-dependent predator-prey system. By using the characteristic equation of the linearized system and the center manifold theorem,we derive the stability of the system and direction of the Hopf bifurcation.

        time delay;predator-prey model;stability;Hopf bifurcation

        1 Introduction

        Over the years,predator-prey models described by the ordinary di ff erential equations (ODEs),which were proposed and studied widely due to the pioneering theoretical works by Lotka[1]and Volterra[2].

        A most crucial element in these models is the functional response,the function that describes the number of prey consumed per predator per unit time for given quantities of prey x and predator y.

        Arditi and Ginzburg[3]suggested that the essential properties of predator-dependence could be rendered by a simpler form which was called ratio-dependence.The trophic function is assumed to depend on the single variablerather than on the two separate variables x and y.Generally,a ratio-dependent predator-prey model of Arditi and Ginzburg[3]is

        In this paper,we will focus our attention on the ratio-dependent type predator-prey

        model with Michaelis-Menten type functional response,which takes the form of

        where α,β,m,d3and β1are positive constants;d3,β,m and β1stand for the predator death rate,capturing rate,half saturation constant and conversion rate,respectively.The dynamics of predator-prey system was studied extensively[4-11].

        In order to ref l ect that the dynamical behaviors of models that depend on the past history of the system,it is often necessary to incorporate time-delays into the models.Suppose that in a certain environment there are the prey and predator species with respective population densities x(t)and y(t)at time t.

        Based on the above discussion,by incorporating age-structure of prey and time delay into system(1.2)and supposing that the predator species captures only the adult prey species,we establish the following model

        where x1(t),x2(t),y(t)represents the densities of immature prey,mature prey and predator, respectively,α,d1,d2,d3,β,γ,m,μand β1stand for the birth rate of prey,the immature prey death rate,the mature prey death rate,the predator death rate,capturing rate,the conversion rate of immature prey to mature prey,half saturation constant,the density dependence rate of the mature prey and conversion rate,respectively.τ is called the maturation time of the prey species.

        2 Stability of a Positive Equilibrium and the Existence of Hopf Bifurcations

        In this section,we will discuss the local stability of a positive equilibrium and the existence of Hopf bifurcations in system(1.3).It is easy to deduce that system(1.3)has a unique positive equilibriumif the following holds.

        Then we can get the linear part of system(1.3),

        where pi(i=1,2,3,4,5,6,7)are def i ned in(2.1).

        Therefore the corresponding characteristic equation[18]of system(2.2)is

        It is well-known that the zero steady state of system(2.2)is asymptotically stable if all roots of eq.(2.3)have negative real parts,and is unstable if eq.(2.3)has a root with positive real part.In the following,we will study the distribution of roots of eq.(2.3).

        Obviously,λ=p1=-d1<0 is a negative root of eq.(2.3).

        If iω(ω>0)is a root of eq.(2.3),then

        Separating the real and imaginary parts of above formula gives the following equations

        which implies that

        further note that if

        Solving for τ0,we get

        where n=0,1,2,3,···.

        The smallest τ0is obtained by choosing n=0,then from(2.5),we get

        then(τ0n,ω0)solves eq.(2.4).This means that when τ=τ0n,eq.(2.3)has a pair of purely imaginary roots±iω0.

        Now let us consider the behavior of roots of eq.(2.3)near τ0n.Denote λ(τ)=α(τ)+ iω(τ)as the root of eq.(2.3)such that

        Substituting λ(τ)into eq.(2.3i)and dif f erentiating both sides of it with respect to τ, we have

        Therefore,when the delay τ near τ0nis increased,the root of eq.(2.3)crosses the imaginary axis from left to right.In addition,note that when τ=0,eq.(2.3)has roots with negative real parts only if

        (H3)p3+p4+p7<0 and p3p7+p4p7-p5p6>0.

        Thus summarizing the above remarks and the well-known Rouche theorem,we have the following results on the distribution of roots of eq.(2.3).

        Lemma 2.1 Let τ0n(n=0,1,2,···)be def i ned as in(2.7),then all roots of eq.(2.3) have negative real parts for all τ∈[0,τ0).However,eq.(2.3)has at least one root with positive real part when τ>τ0,and eq.(2.3)has a pair of purely imaginary root±iω0, when τ=τ0.More detail,for τ∈(τ0n,τ0n+1](n=0,1,2,···),eq.(2.3)has 2(n+1)roots with positive real parts.Moreover,all roots of eq.(2.3)with τ=τ0n(n=0,1,2,···)have negative real parts except±iω0.

        Applying Lemma 2.1,Theorem 11.1 developed in[12],we have the following results. Theorem 2.1 Let(H1),(H2)and(H3)hold.Let ω0and τ0n(n=0,1,2,···)be def i ned as in(2.6)and(2.7),respectively.

        (i)The positive equilibrium E?of system(1.2)is asymptotically stable for all τ∈[0,τ0) and unstable for τ>τ0.

        (ii)System(1.3)undergoes a Hopf Bifurcation at the positive equilibrium E?when τ=τ0n(n=0,1,2,···).

        3 Direction of Hopf Bifurcation

        In Section 2,we have proven that system(1.3)has a series of periodic solutions bifurcating from the positive equilibrium E?at the critical values of τ.In this section,we derive explicit formulae to determine the properties of the Hopf bifurcation at critical values τ0nby using the normal form theory and center manifold reduction[13].

        Without loss of generality,denote the critical values τ0nbyˉτ,and set τ=ˉτ+μ.Then μ=0 is a Hopf bifurcation value of system(1.3).Thus we can work in the phase space C=C([-ˉτ,0],R3).

        Let u1(t)=x1(t)-x?1,u2(t)=x2(t)-x?2,u3(t)=y(t)-y?.Then system(1.3)is transformed into

        here f(1),f(2)and f(3)are def i ned in(2.1).

        For the simplicity of notations,we rewrite(3.1)as

        where u(t)=(u1(t),u2(t),u3(t))T∈R3,ut(θ)∈C is def i ned by ut(θ)=u(t+θ),and Lμ:C→R,f:R×C∈R are given by

        respectively.By Riesz representation theorem,there exists a function η(θ,μ)of bounded variation for θ∈[-ˉτ,0]such that

        for φ∈C.

        In fact,we can choose

        where δ is the vector,whose components are the Dirac delta functions.For φ∈C1([-ˉτ,0],R3), def i ne

        and

        Then system(3.2)is equivalent to

        where xt(θ)=x(t+θ)for θ∈[-ˉτ,0].

        For ψ∈C1([0,ˉτ],(R3)?),def i ne

        and a bilinear inner product

        where η(θ)=η(θ,0).Then A(0)and A?are adjoint operators.By discussions in Section 2 and foregoing assumption,we know that±iω0are eigenvalues of A(0).Thus,they are also eigenvalues of A?.We f i rst need to compute the eigenvector of A(0)and A?corresponding to iω0and-iω0,respectively.

        Suppose that q(θ)=(ρ1,1,ρ2)Teiω0θis the eigenvector of A(0),(3.5)and(3.6)that

        We therefore derive that

        On the other hand,suppose that q?(s)=D(σ1,1,σ2)eiω0sis the eigenvector of A?corresponding to-iω0.From the def i nition of A?,(3.5)and(3.6),we have

        which yields

        In order to assure hq?(s),q(θ)i=1,we need to determine the value of D.From(3.7), we have

        Thus we can choose

        such that hq?(s),q(θ)i=1,hq?(s),ˉq(θ)i=0.

        In the remainder of this section,we will compute the coordinates to describe the center manifold C0atμ=0.Let utbe the solution of eq.(3.2)withμ=0.

        Def i ne

        On the center manifold C0,we have W(t,θ)=W(z(t),ˉz(t),θ),where

        z andˉz are local coordinates for center manifold C0in the direction of q?andˉq?.

        Note that W is real if utis real.We only consider real solutions.For the solution ut∈C0of(3.2),sinceμ=0,we have

        We rewrite(3.10)as˙z=iω0z+g(z,ˉz)with

        Noting that

        thus it follows from(3.4)and(3.11)that

        We now compute W20(θ)and W11(θ).It follows from(3.7)and(3.9)that

        and

        where η(θ)=η(0,θ).From(3.13),it follows that

        we obtain

        which leads to

        It follows that

        Similarly,substituting(3.21)and(3.25)into(3.23),we get

        Thus we can determine W20(θ)and W11(θ)from(3.20)and(3.21).Furthermore,we can determine g21.Therefore,each gijin(3.12)is determined by the parameters and delay in system(3.1).Thus we can compute the following values

        which determine the quantities of bifurcating periodic solutions in the center manifold at the critical valueˉτ,i.e.,μ2determines the direction of the Hopf bifurcation:ifμ2>0(μ2<0), then the Hopf bifurcation is supercritical(subcritical)and the bifurcating periodic solutions exist for τ>ˉτ(τ<ˉτ);β2determines the stability of the bifurcating periodic solutions:the period increase(decrease)if T2>0(T2<0).

        From what has been discussed above,we could determine the stability and direction of periodic solutions bifurcating from the positive equilibrium E?at the critical pint τ0n.

        [1]Lotka A J.Elements of physical biology[M].New York,Baltimore:Will.Wil.,1925.

        [2]Volterra V.Variazionie f l uttuazioni del numero d’individui in specie animali conviventi[J].Mem. Acad.Licei.,1926,2:31-113.

        [3]Arditi R,Ginzburg L R.Coupling in predator-prey dynamics:ratio-dependence[J].J.Theor.Biol., 1989,139:311-326.

        [4]Berezovskaya F,Karev G,Arditi R.Parametric analysis of the ratio-dependent predator-prey model[J].J.Math.Biol.,2001,43:221-246.

        [5]Hsu S B,Hwang T W,Kuang Y.Global analysis of the Michaelis-Menten type ratio dependent predator-prey system[J].J.Math.Biol.,2001,42:489-506.

        [6]Jost C,Arino O,Arditi R.About deterministic extinction in ratio-dependent predator-prey models[J].Bull.Math.Biol.,1999,61:19-32.

        [7]Ruan S,Wolkowicz G S K,Wu J.Dif f erential equations with applications to biology[J].Fields Inst. Commun.,Providence,RI:AMS,1999,21:325-337.

        [8]Kuang Y,Beretta E.Global qualitative analysis of a ratio-dependent predator-prey system[J].J. Math.Biol.,1998,36:389-406.

        [9]Gao S J,Chen L S,Teng Z D.Hopf bifurcation and global stability for a delayed predator-prey system with stage structure for predator[J].Appl.Math.Comput.,2008,202:721-729.

        [10]Qiao M H,Liu A P.Qualitative analysis for a Reaction-dif f usion predator-prey model with disease in the prey species[J].J.Appl.Math.,Article ID:236208,2014.

        [11]Urszula F,Qiao M H,Liu A P.Asymptotic dynamics of a deterministic and stochastic predator-prey model with disease in the prey species[J].Math.Meth.Appl.Sci.,2014,37(3):306-320.

        [12]Zhang F Q,Zhang Y J.Hopf bifurcation for Lotka-Volterra Mutualist systems with three time delays[J].J.Biomath.,2011,26(2):223-233.

        [13]Hale J,Lunel S.Introduction to functional dif f erential equations[M].New York:Springer-Verlag, 1993.

        [14]Hassard B,Kazarinof fD,Wan Y.Theory and applications of Hopf bifurcation[M].Cambridge:Cambridge University Press,1981.

        [15]Zhou L,Shawgy H.Stability and Hopf Bifurcation for a competition delay model with dif f usion[J]. J.Math.,1999,19(4):441-446.

        [16]Keeling M J,Grenfell B T.Ef f ect of variability in infection period on the persistence and spatial spread of infectious diseases[J].Math.Biosci.,1998,147(2):207-226.

        [17]Natali H.Stability analysis of Volterra integral equations with applications to age-structured population models[J].Nonl.Anal.,2009,71:2298-2304.

        [18]David A.Sanchez,ODEs and stability theory[M].Mineola,New York:Dover Publ.,2012.

        具有比率依賴和年齡結(jié)構(gòu)的捕食食餌系統(tǒng)的分支研究

        喬梅紅1,2,劉安平1

        (1.中國地質(zhì)大學(xué)(武漢)數(shù)理學(xué)院,湖北武漢430074)
        (2.華中科技大學(xué)數(shù)學(xué)中心,湖北武漢430074)

        本文研究了具有比率依賴的捕食食餌的分支問題.利用線性特征方程的方法,獲得了方程解的穩(wěn)定性結(jié)果,得到了Hopf分支的方向和穩(wěn)定性的充分條件.

        時滯;捕食食餌模型;穩(wěn)定性;Hopf分支

        O175.13

        A

        0255-7797(2017)05-0956-13

        ?Received date:2014-07-26Accepted date:2015-01-04

        Supported by the Basic Research Program of Hubei Province(2014CFB898); NSFC(11571326;11601496).

        Biography:Qiao Hongmei(1982-),female,born at Linfen,Shanxi,lecturer,major in biomathematics.

        2010 MR Subject Classif i cation:34D20

        猜你喜歡
        特征方程中國地質(zhì)大學(xué)食餌
        捕食-食餌系統(tǒng)在離散斑塊環(huán)境下強(qiáng)迫波的唯一性
        相鄰三項線性遞推關(guān)系數(shù)列通項的簡便求法
        一類具有修正的Leslie-Gower項的捕食-食餌模型的正解
        中國地質(zhì)大學(xué)(北京)土地利用與生態(tài)修復(fù)課題組
        一些常系數(shù)非齊次線性微分方程的復(fù)數(shù)解法
        具有兩個食餌趨化項的一個Ronsenzwing-MacArthur捕食食餌模型的全局分歧
        中國地質(zhì)大學(xué)(北京)珠寶學(xué)院2020屆本科生畢業(yè)作品展
        中國寶玉石(2020年3期)2020-08-08 02:58:10
        不尋常的“石頭”——探訪中國地質(zhì)大學(xué)逸夫博物館
        羅云 中國地質(zhì)大學(xué)(北京)教授、博士生導(dǎo)師
        安全(2020年3期)2020-04-25 06:53:50
        一類帶有交叉擴(kuò)散的捕食-食餌模型的正解
        久久精品国产72国产精福利| 中文字幕女优av在线| 中文字幕免费在线观看动作大片| 国产精品无码久久久久| 无码国产一区二区三区四区| 香蕉视频毛片| 91日本在线精品高清观看| 国产一区二区毛片视频| 你懂的视频网站亚洲视频| 又色又爽又黄的视频软件app| 免费无码又爽又刺激网站| 东京热加勒比在线观看| 中文在线最新版天堂av| 久久伊人精品色婷婷国产| 国产小视频在线看不卡| 成年女人黄小视频| 精品香蕉久久久爽爽 | 欧美精品色婷婷五月综合| 大肉大捧一进一出视频出来呀| 国产午夜精品福利久久| 男女动态视频99精品| 亚洲最大在线视频一区二区| 免费成人在线电影| 日本国产视频| 国产精品一区二区午夜久久| 少妇我被躁爽到高潮在线影片 | 口爆吞精美臀国产在线| 午夜精品久久久久久久99老熟妇| 国内露脸少妇精品视频| 国产av成人精品播放| 国产av午夜精品一区二区入口| 一本久道高清视频在线观看| 亚洲日韩av无码| 中文字幕Aⅴ人妻一区二区苍井空 亚洲中文字幕久久精品蜜桃 | 国产AV边打电话边出轨| 亚洲欧美国产成人综合不卡| 老女人下面毛茸茸的视频| 波多野结衣绝顶大高潮| 青青青国产精品一区二区| 中文字幕无码免费久久9一区9| 蜜臀av一区二区三区精品|