亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        ON A NEW NONTRIVIAL ELEMENT INVOLVING THE THIRD PERIODICITY γ-FAMILY IN π?S

        2017-09-15 05:57:51WANGYuyuWANGJianbo
        數(shù)學雜志 2017年5期
        關鍵詞:新元素天津師范大學天津大學

        WANG Yu-yu,WANG Jian-bo

        (1.School of Mathematics and Science,Tianjin Normal University,Tianjin 300387,China)

        (2.Department of Mathematics,School of Science,Tianjin University,Tianjin 300072,China)

        ON A NEW NONTRIVIAL ELEMENT INVOLVING THE THIRD PERIODICITY γ-FAMILY IN π?S

        WANG Yu-yu1,WANG Jian-bo2

        (1.School of Mathematics and Science,Tianjin Normal University,Tianjin 300387,China)

        (2.Department of Mathematics,School of Science,Tianjin University,Tianjin 300072,China)

        In this paper,we discuss stable homotopy groups of spheres.By making a nontrivial secondary dif f erential as geometric input in the Adams spectral sequence,the convergence of h0gn(n>3)in π?S is given.Furthermore,by the knowledge of Yoneda products,a new nontrivial element in π?S is detected.The scale of the nontrivial elements is expanded by our results.

        stable homotopy groups of spheres;Toda-Smith spectrum;Adams spectral sequence;May spectral sequence;Adams dif f erential

        1 Introduction

        Let S denote the sphere spectrum localized at p and p denote an odd prime.From [14],the homotopy group of n-dimensional sphere(r>0)is a fi nite group.So the determination ofhas become one of the central problems in algebraic topology.

        Ever since the introduction of the Adams spectral sequence(ASS)in the late 1950’s(see [1]),the study of the homotopy groups of spheres π?S was split into algebraic and geometric problems,including the computation ofand the detection which element ofcan survive to,here A is the mod p Steenrod algebra,is the E2-term of the ASS.By[2],

        and the Adams dif f erential is

        In addition,we also have the Adams-Novikov spectral sequence(ANSS)[12,13]based on the Brown-Peterson spectrum BP in the determination of π?S.

        Many wonderful results were obtained,however,it is still far from the total determination of π?S.After the detection ofS for p=2,j 6=2,by Mahowald in[11],which was represented bymany nontrivial elements in π?S were found.Please see references[5-9]for details.In recent years,the fi rst author established several convergence of elements by an arithmatic method,see[16-18,21].

        In[5],Cohen made the nontrivial secondary Adams di ff erential d2(hi)=a0bi-1(p>2,i>0)as geometric input,then,a nontrivial element ξi∈π(pi+1+1)qS(i≥0)is detected. In this paper,we also detect a new family in π?S by geometric method,the only geometric input used in the proof is the secondary nontrivial di ff erential given in[20].

        The main result is obtained as follows.

        Theorem 1.1Let 3≤s<p-1,n>3,p≥7,then

        is a permanent cycle in the Adams spectral sequence and converges to a nontrivial element of order p in

        The paper is organized as follows.After giving some necessary preliminaries and useful knowledge about the MSS in Section 2.The proof of Theorem 1.1 and some results on Ext groups will be given in Section 3.

        2 Related Spectrum and the May Spectral Sequence

        For the convenience of the reader,let us brief l y indicate the necessary preliminaries in the proof of the propositions and theorems.

        Let M be the Moore spectrum modulo an odd prime p given by the cof i bration

        Let α:PqM→M be the Adams map and V(1)be its cof i bre given by the cof i bration

        From[19],we know that the third periodicity family γsis represented by the third Greek letter family element

        in the ASS,which is represented by the element

        in the May spectral sequence(MSS).

        Let L be the cof i bre of α1=jαiS→S given by the cof i bration

        In the following,recall the Adams resolution of some spectra related to S from[4].Let

        be the minimal Adams resolution of the sphere spectrum S which satis fi es

        (B)KGsare the graded wedge sums of Eilenberg-Maclane spectrum KZpof type Zp. (C)πtKGsare the-terms of the ASS,

        To detect π?S with the ASS,we must compute the E2-term of the ASS,Ext?A,?(Zp,Zp). The most successful method for computing it is the MSS.

        From[13],there is a MSS{Ers,t,?,dr},which converges to ExtsA,t(Zp,Zp)with E1-term

        where E()denotes the exterior algebra,P()denotes the polynomial algebra,and

        Furthermore,the May E1-term is graded commutative in the sense that

        The fi rst May di ff erential d1is given by

        For each element x∈E1s,t,?,if we denote dim x=s,deg x=t,we have

        Remark 2.2 Any positive integer t can be expressed uniquely as t=···+c1p+c0)+e,where 0≤ci<p(0≤i<n),0<cn<p,0≤e<q. Then,it is easy to get the following result from[16].

        Proposition 2.3 In the MSS,we have=0 for some j(0≤j≤n),s<cj,where s is also a positive integer with 0<s<p.

        3 Some Adams E2-Terms

        In this section,we mainly give some important results about Adams E2-terms.At the end,the proof of Theorem 1.1 will be given.

        Proposition 3.1 Let 3≤s<p-1,n>3,p≥7,then

        Proof Consider the structure ofin the MSS,where t=(s-1)pq+(s-1)q+s-3.Due to 3≤s<p-1,then 5≤s+2<p+1.

        Case 1 5≤s+2<p.Let h=x1x2···xmbe the generator of,where xiis one of ak,hi,jor bu,z,0≤k≤n+2,0<i+j≤n+2,0<u+z≤n+1,i>0,j≥0,u>0, z≥0.

        Assume that degxi=+ei,where ci,j=0 or 1,ei=1 if xi=akor ei=0,then

        where t′=sp2q+(s-1)pq+(s-1)q+s-3.

        We list all the possibilities of h′iin the following table(i=1,2,···,8),thus h doesn’t exist in this case.

        Table 1:the possibilities of

        Table 1:the possibilities of

        The possibilityAnalysisThe existence of h′ih′1h′2h′3h′4 s-3<m-3P i=1 ci,2=sNonexistent s-4<m-3P i=1 ci,2=sNonexistent s-3<h′4=as-33h22,0h1,0=0Nonexistent m-3P i=1 ci,2=sNonexistent h′5 s-1<m-2P i=1 ci,2=sNonexistent h′6 s-1<m-2P i=1 ci,2=sNonexistent h′7 s-2<m-2P i=1 ci,2=sNonexistent h′8 s-2<ci,2=sNonexistent m-3P i=1

        where ci,j=0 or 1,ei=1 if xi=akior ei=0,then

        this contradicts to q(pn+1+2pn+(p-2)p2+(p-3)p+(p-3))+p-5=(p-3)q+p-5(modp). For the same reasonimpossible to constitute p.

        From dimxi=1 or 2 and=p,we can see that r≤p.By Remark 2.2 andr≤p,ci,j=0 or 1,ei=0 or 1,we have

        where t(r)=sp2q+(s-1)pq+(s-1)q+s-2-r.

        Proof(1)Consider the second degrees(mod pn+1q)of the generators in the E1-terms of the MSS,where 0≤j≤n+1,

        For the second degree k=tq+rq+u(0≤r≤4,-1≤u≤2)=2pnq+rq+u(mod pn+1q), and excluding the factor which has second degree≥tq+pq,we can get that the possibility of the factor of the generators in

        b1,n,b1,n-1and b2,n-1.Thus from the degree we know that

        Since a0,b1,n-1,h1,nand h1,n+1are all permanent cycles in the MSS and converge to a0,bn-1,hnand hn+1,respectively,it is easy to get that a0b1,n-1h1,nh1,n+1is a permanent cycle in the MSS and converges to a0bn-1hnhn+1which equals 0∈(Zp,Zp)byhnhn+1=0.Furthermore,we have d2p-1(b2,n-1)=b1,nh1,n-b1,n-1h1,n+1from[10],then d2p-1(a0b2,n-1b1,n-1)6=0 and so(Zp,Zp)=0.

        Theorem 3.4 Let p≥7,n>3,then

        is a permanent cycle in the ASS,and converges to a nontrivial element in πpn+1q+2pnq+q-3S.

        Proof From[20,Theorem 1.1],there is a nontrivial di ff erential d2(gn)=a0ln(n≥1) in the ASS,the elements gnand lnare called a pair of a0-related elements.The condition of Theorem A in[7]can be established by the Zp-bases of(s≤3)in[10] and Proposition 3.3 in the above.Furthermore,we have κ·(α1)L=(1E4∧p)f with f∈L,E4](see[7],9.2.34),then(1E4∧i)κ·(α1)L=0.Thus

        So we can get that(1L∧i)?φ?(gn)(H?L∧M,Zp)is a permanent cycle in the ASS.Then Theorem 3.4 will be concluded by Theorem C in[7],here φ∈S,L], κ∈πtq+1E4.

        The Proof of Theorem 1.1 From Theorem 3.4,h0gn∈is a permanent cycle in the ASS and converges to a nontrivial elementS for n>3.

        Consider the following composition of mappings

        because φ is represented by h0gnin the ASS,then the above?f is represented by

        in the ASS.Furthermore,we know thatπ?S is represented byin the ASS.By using the Yoneda products,we know that the composition

        is a multiplication(up to nonzero scalar)by

        Hence,the composite map?f is represented(up to nonzero scalar)by

        in the ASS.

        From Proposition 3.1,we see that?γsh0gn6=0.Moreover,from Proposition 3.2,it follows that?γsh0gncan not be hit by any dif f erential in the ASS.Thus?γsh0gnsurvives nontrivially to a homotopy element in π?S.

        [1]Adams J F.On the structure and application of Steenrod algebra[J].Comm.Math.Helv.,1958, 32(1):180-214.

        [2]Adams J F.Stable homotopy and generalized homotopy[M].Chicago:Univ.Chicago Press,1974.

        [3]Aikawa T.3-dimensional cohomology of the mod p Steenrod algebra[J].Math.Scand.,1980,47:91-115.

        [4]Cohen R,Goeress P.Secondary cohomology operations that detect homotopy class[J].Topology, 1984,23(2):177-194.

        [5]Cohen R.Odd primary inf i nite families in the stable homotopy theory[M].Providence RI:AMS, 1981.

        [6]Lin J K.Third periodicity families in the stable homotopy of spheres[J].J.P.J.Geom.Topology, 2003,3(3):179-219.

        [7]Lin J K.Adams spectral sequence and stable homotopy groups of spheres(in Chinese)[M].Beijing:Science Press,2007,163-185.

        [8]Liu X G.A new family represented by b1g0?γsin the stable homotopy of spheres[J].Sys.Sci.Math., 2006,26(2):129-136.

        [9]Lee C N.Detection of some elements in the stable homotopy groups of spheres[J].Math.Z.,1996, 222(2):231-246.

        [10]Liulevicius A.The factorizations of cyclic reduced powers by secondary cohomology operations[M]. Providence RI:AMS,1962.

        [11]Mahowald M.A new inf i nite family in π?S[J].Topology,1977,16(3):249-256.

        [12]Miller H R,Ravenel D C,Wilson W S.Periodic phenomena in the Adams-Novikov spectral sequence[J].Ann.Math.,1977,106(3):469-516.

        [13]Ravenel D C.Complex cobordism and stable homotopy groups of spheres[M].New York:Academic Press,1986.

        [14]Serre J P.Groupes d′homotopie et classes de groupes abeliens[J].Ann.Math.,1953,58(2):258-294.

        [15]Toda H.On spectra realizing exterior parts of the Steenrod algebra[J].Topology,1971,10(1):53-65.

        [16]Wang Y Y.A new familiy of f i ltration s+5 in the stable homotopy groups of spheres[J].Acta. Math.Sci.,2008,28(2):321-332.

        [17]Wang Y Y,Wang J L.A new family of elements in the stable homotopy groups of spheres[J].J. Math.,2015,35(2):294-306.

        [18]Wang Y Y,Wang J B.The nontrivility of ζn-related elements in the stable homotopy groups of sphere[J].Math.Scand.,2015,117:304-319.

        [19]Wang X J,Zheng Q B.The convergencein Adams spectral sequence[J].Sci.China Math.,1998,41(6):622-628.

        [20]Zhao H,Wang X J.Two nontrivial di ff erentials in the Adams spectral sequence[J].Chinese Ann. Math.,2008,29A(1):557-566.

        [21]Zhong L N,Wang Y Y.Detection of a nontrivial product in the stable homotopy groups of spheres[J]. Alge.Geom.Top.,2013,13:3009-3029.

        球面穩(wěn)定同倫群中第三周期γ類非平凡新元素

        王玉玉1,王健波2

        (1.天津師范大學數(shù)學科學學院,天津300387)
        (2.天津大學理學院數(shù)學系,天津300072)

        本文研究了球面穩(wěn)定同倫群的問題.以Adams譜序列中的第二非平凡微分為幾何輸入,給出了球面穩(wěn)定同倫群中h0gn(n>3)的收斂性.同時,由Yoneda乘積的知識,發(fā)掘了球面穩(wěn)定同倫群中的一個非平凡新元素.非平凡元素的范圍將被我們的結(jié)果進一步擴大.

        球面穩(wěn)定同倫群;Toda-Smith譜;Adams譜序列;May譜序列;Adams微分

        O189.23

        A

        0255-7797(2017)05-0898-13

        ?Received date:2016-05-14Accepted date:2016-07-22

        Supported by NSFC(11301386);NSFC(11001195)and Beiyang Elite Scholar Program of Tianjin University(0903061016);The Project Sponsored by the Scientif i c Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry.

        Biography:Wang Yuyu(1979-),female,born at Handan,Hebei,professor,major in stable homotopy theory.

        2010 MR Subject Classif i cation:55Q45

        猜你喜歡
        新元素天津師范大學天津大學
        “不速之客”
        天津師范大學美術與設計學院作品選登
        《天津大學學報(社會科學版)》簡介
        An Experimental Study of Tone and Tone Sandhi in the New School of Nanjing Dialect
        蘭花
        學生寫話
        “請客戶坐飛機”為新元素奧迪帶來四成客戶
        汽車生活(2014年6期)2014-08-01 01:24:27
        天津大學學報(社會科學版)2014年總目次
        成都新元素奧迪
        汽車生活(2013年6期)2013-04-29 23:09:57
        天津大學學報(社會科學版)2013年總目次
        日韩精品有码中文字幕在线| 亚洲日韩中文字幕一区| 中文字幕欧美一区| 国产无遮挡又黄又爽无VIP| 亚洲成人av大片在线观看| 超碰人人超碰人人| 人妻丰满熟妇av无码处处不卡| 亚洲国产成人精品激情| 久久综合五月天啪网亚洲精品| 国产欧美日韩va另类在线播放| 国外亚洲成av人片在线观看| 精品少妇人妻成人一区二区| 亚洲hd高清在线一区二区| 一本久久综合亚洲鲁鲁五月天| 久久人妻少妇嫩草av蜜桃| 精品一区二区三区影片| 成人免费播放视频影院| 国产电影一区二区三区| 亚洲精品无码av片| 亚洲av粉色一区二区三区| 媚药丝袜美女高清一二区| 性欧美老人牲交xxxxx视频| 久久久国产精品樱花网站| 国内偷拍第一视频第一视频区| 久久久久亚洲av无码a片| 日本边添边摸边做边爱的网站| 亚洲午夜久久久久中文字幕久| 久久99精品久久只有精品| 久久天天躁狠狠躁夜夜不卡| 97se亚洲国产综合自在线图片 | 国产熟妇一区二区三区网站| 国产女人好紧好爽| 中文字幕无码av激情不卡| 欧美zozo另类人禽交| 99精品久久精品一区| 一本色道久久88综合日韩精品| 无码一区二区三区AV免费换脸| 久久综合九色综合久久久| 国产精品国产三级国产av品爱网 | 国产高潮国产高潮久久久| 国产成人丝袜在线无码|