亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Studies on the Volterra Integral Equation with Linear Delay

        2017-09-03 10:13:32-
        關(guān)鍵詞:強(qiáng)校韓山國家自然科學(xué)基金

        -

        (Colloge of Mathematics and Statistics, Hanshan Normal University, Chaozhou 521041, China)

        Studies on the Volterra Integral Equation with Linear Delay

        ZHENGWei-shan*

        (Colloge of Mathematics and Statistics, Hanshan Normal University, Chaozhou 521041, China)

        This paper is concerned about the Volterra integral equation with linear delay. First we transfer the integral interval [0,T] into interval [-1, 1] through the conversion of variables. Then we use the Gauss quadrature formula to get the approximate solutions. After that the Chebyshev spectral-collocation method is proposed to solve the equation. With the help of Gronwall inequality and some other lemmas, a rigorous error analysis is provided for the proposed method, which shows that the numerical error decay exponentially in the innity norm and the Chebyshev weighted Hilbert space norms. In the end, numerical example is given to confirm the theoretical results.

        Chebyshev spectral-collocation method; linear delay; Volterra integral equations; error analysis

        The Volterra integral equation with linear delay is as follow:

        (1)

        where the unknown functiony(τ) is defined on [0,T],T<+∞ andqis constant with 0

        Equations of this type arise as models in many fields, such as the Mechanical problems of physics, the movement of celestial bodies problems of astronomy and the problem of biological population original state changes. They are also applied to network reservoir, storage system, material accumulation, different fields of industrial process etc, and solve a lot problems from mathematical models of population statistics, viscoelastic materials and insurance abstracted. The Volterra integral equation with linear delay is one of the important type of Volterra integral equations with great significance in both theory and applications. There are many methods to solve Volterra integral equations, such as Legendre spectral-collocation method[1], Jacobi spectral-collocation method[2], spectral Galerkin method[3-4], Chebyshev spectral-collocation method[5]and so on. In this paper, inspired by[5] and [6], we use a Chebyshev spectral-collocation method to solve Volterra integral equations with linear delay.

        1 Chebyshev spectral-collocation method

        (2)

        Then equation (1) becomes

        and the above equation can be rewritten as follows.

        (3)

        Obviously, the above equations hold atximentioned above,xi∈[-1,1]. Thus, we have

        (4)

        Using aN+1-point Legendre quadrature formula (2), corresponding weightwk, we can obtain that

        (5)

        2 Convergence analysis

        2.1ConvergenceanalysisinL∞(-1,1)space

        Theorem1Supposeu(x)istheexactsolutiontoequations(3)anduN(x)istheapproximatesolutionobtainedbyusingtheChebyshevspectralcollocationmethod.ThenforNsufficientlylarge,weget

        (6)

        where

        ProofMinusing(4)by(5)gives

        Notee(x)=u(x)-uN(x), then we have

        (7)

        By Theorem 4.3, 4.7 and 4.10 in [7], we get

        |J1(x)|≤CN-m|K(x,·)|Hm,N(-1,1)‖uN(sx(·))‖L2(-1,1).

        (8)

        u-uN+INu-u=e(x)+INu-u.

        (9)

        Now we are in the position to estimate the above inequality term by term. Firstly the second conclusion in Theorem 1.8.4 in [8] shows that

        (10)

        For the estimation of ‖INJ1‖L∞(-1,1), firstly using the first inequality in (8), we obtain

        CN-mK*(‖e‖L∞(-1,1)+‖u‖L∞(-1,1)).

        Then, due to Theorem 3.3 in [9], we have

        ‖INJ1(x)‖L∞(-1,1)≤‖IN‖L∞(-1,1)‖J1(x)‖L∞(-1,1)≤

        CN-m(logN)K*(‖e‖L∞(-1,1)+‖u‖L∞(-1,1)).

        For ‖J3(x)‖L∞(-1,1), applying (7) and lettingm=1, we get

        From what discussed above, we can see

        Since

        This completes the proof of this theorem.

        Theorem2Supposeu(x)istheexactsolutiontoequation(3)anduN(x)istheapproximatesolutionobtainedbytheChebyshevspectralcollocationmethodwhichdefinedin(5).ThenforNsufficientlylarge,weget

        ProofAsthesameprocedureinthedeductionfrom(7)to(9)inTheorem1,wecanderivethefollowinginequality

        Further more applying the generalized Hardy’s inequality with weights[10], we get

        Now we estimate each item from left to right for the above inequality. ForJ0(x), the first conclusion in Theorem 1.8.4 in [8] shows that

        (11)

        By Theorem 1 in [11] and (8), we get

        Due to the conclusion in Theorem 1, we get

        (12)

        3 Algorithm implementation and numerical experiment

        The corresponding exact solution is given byu(x)=e4x,x∈ [-1,1].

        a.The errors u-uN in L∞ and norms. b.The comparison between approximate solution uN and the exact solution u.Fig.1 Numerical results

        N68101214L∞?error0.0300419.0557×10-42.4424×10-55.6363×10-79.5384×10-9L2ωc?error0.0287919.2524×10-42.4507×10-55.2913×10-78.6576×10-9N1618202224L∞?error1.2083×10-101.1866×10-122.1316×10-141.4211×10-147.1054×10-15L2ωc?error1.0916×10-101.1034×10-128.6652×10-148.3351×10-149.2255×10-15

        [1] TANG T, XU X, CHENG J. On Spectral methods for Volterra integral equation and the convergence analysis[J]. J Comput Math, 2008,26(6):825-837.

        [2] CHEN Y, TANG T. Convergence analysis of the Jacobi spectral-collocation methods for Volterra integral equation with a weakly singular kernel[J]. Math Comput, 2010,79(269):147-167.

        [3] WAN Z, CHEN Y, HUANG Y. Legendre spectral Galerkin method for second-kind Volterra integral equations[J]. Front Math China, 2009,4(1):181-193.

        [4] XIE Z, LI X, TANG T. Convergence analysis of spectral galerkin methods for Volterra type integral equations[J]. J Sci Comput, 2012,53(2):414-434.

        [5] GU Z, CHEN Y. Chebyshev spectral collocation method for Volterra integral equations[J]. Contem Math, 2013,586:163-170.

        [6] LI J, ZHENG W, WU J. Volterra integral equations with vanishing delay[J]. Appl Comput Math, 2015,4(3):152-161.

        [7] CANUTO C, HUSSAINI M, QUARTERONI A,etal. Spectral method fundamentals in single domains[M]. New York: Spring-Verlag, 2006.

        [8] SHEN J, TANG T. Spectral and high-order methods with applications[M]. Beijing: Science Press, 2006.

        [9] MASTROIANNI G, OCCORSIO D. Optional system od nodes for Lagrange interpolation on bounded intervals[J]. J Comput Appl Math, 2001,134(1-2):325-341.

        [10] KUFNER A, PERSSON L. Weighted inequality of Hardy’s Type[M]. New York: World Scientific, 2003.

        [11] NEVAI P. Mean convergence of Lagrange interpolation[J]. Trans Amer Math Soc, 1984,282:669-698.

        (編輯 HWJ)

        2016-10-29

        國家自然科學(xué)基金資助項目(11626074);韓山師范學(xué)院創(chuàng)新強(qiáng)校項目(Z16027);中山大學(xué)廣東省計算科學(xué)重點實驗室開放基金資助項目(2016011);韓山師范學(xué)院扶持項目(201404)

        O242.2

        A

        1000-2537(2017)04-0083-06

        帶線性延遲項的Volterra積分方程研究

        鄭偉珊*

        (韓山師范學(xué)院數(shù)學(xué)與統(tǒng)計學(xué)院, 中國 潮州 521041)

        Chebyshev譜配置方法; 線性延遲項; Volterra型積分方程; 誤差分析

        10.7612/j.issn.1000-2537.2017.04.014

        *通訊作者,E-mail:weishanzheng@yeah.net

        猜你喜歡
        強(qiáng)校韓山國家自然科學(xué)基金
        蘇州國畫院名宿展·韓山篇
        常見基金項目的英文名稱(一)
        立足農(nóng)耕 特色強(qiáng)校
        甘肅教育(2020年6期)2020-09-11 07:45:12
        我校喜獲五項2018年度國家自然科學(xué)基金項目立項
        另類懲罰
        故事會(2018年15期)2018-08-08 02:49:56
        2017 年新項目
        劉會軍作品
        我院召開“創(chuàng)新強(qiáng)校工程”建設(shè)工作推進(jìn)會
        蘇南高職院校人才強(qiáng)校的制度安排
        國家自然科學(xué)基金項目簡介
        午夜精品一区二区三区在线观看| 日韩精品在线视频一二三| 国产精品人人做人人爽人人添| 国产一区二区内射最近更新| 色综合一本| 日本久久精品在线播放| 亚洲国产精品久久无人区| 娜娜麻豆国产电影| 夜色阁亚洲一区二区三区| 女同成片av免费观看| 亚洲av高清一区二区在线观看| 日本护士xxxx视频| 老熟女毛茸茸浓毛| 国产优质女主播在线观看| 自由成熟女性性毛茸茸应用特色| 蜜桃av抽搐高潮一区二区| 亚洲综合欧美日本另类激情| 日韩狼人精品在线观看| 风骚人妻一区二区三区| 欧美中日韩免费观看网站| 中文字幕国产欧美| av天堂一区二区三区精品| 日韩无码专区| 亚洲av无码精品色午夜| 无码人妻专区免费视频| 久久午夜一区二区三区 | 成熟丰满熟妇av无码区| 色窝窝免费播放视频在线| 亚洲国产成人aⅴ毛片大全| 久久综合久久综合久久| 亚洲日产一线二线三线精华液| 中文字幕第1页中文字幕在| 蜜桃av噜噜一区二区三区免费| 日韩精品亚洲一区二区| 亚洲精品久久久久久久久av无码| 一区二区三区内射视频在线观看| 国产又黄又湿又爽的免费视频| 亚洲欧美一区二区成人片| xxxx国产视频| 亚洲精品成人久久av| 中文字幕有码无码人妻av蜜桃 |