亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Empirical Likelihood Statistical Inference for Partially Linear Model with Restricted Condition

        2017-09-03 10:13:32-,-
        關(guān)鍵詞:湖南師范大學(xué)線性經(jīng)驗

        -, -

        (Department of Mathematics and Physics, Henan University of Urban Construction, Pingdingshan 467000, China)

        Empirical Likelihood Statistical Inference for Partially Linear Model with Restricted Condition

        LIUChang-sheng*,LIYong-xian

        (DepartmentofMathematicsandPhysics,HenanUniversityofUrbanConstruction,Pingdingshan467000,China)

        Inthispaper,weapplytheempiricallikelihoodmethodtopartiallylinearmodelwithparameterlinearrestrictedhypothesis.Forthesakeoftestinghypothesis,anempiricallog-likelihoodratioteststatisticbasedonthedifferenceofthenullandalternativehypothesesisconstructed.Furthermore,thelimitingdistributionoftheteststatisticsisprovedtobeastandardChi-squareddistribution.Numericalsimulationconfirmstheadvantageoftheproposedmethod.

        empiricallikelihood;restrictedcondition;partiallylinearmodel;hypothesistest;Chi-squaredistribution

        1 Empirical likelihood estimation on parameter

        For the need of constructing the test statistic, we first develop estimating approach for model (1) under the null hypothesis in this section. That is, we estimate the unknown quantities in model (1) with the restricted condition Aβ=b.Thenmodel(1)canbewrittenas

        (3)

        whereKh(·) =K(·/h)/h,K(·) is a kernel function andh=hnis a sequence of positive numbers tending to zero, called bandwidth. Simple calculation yields that

        (4)

        For 1≤i≤n, let

        In order to construct the empirical likelihood ratio function, we now introduce one auxiliary random vectorZi(β),

        (5)

        1.1 Empirical likelihood estimation on parameter without restriction

        Next we discuss profile empirical likelihood estimation without restriction conditionsAβ=b. Whenβis true parameter,E(Zi(β))=0. Thus, by the idea of Owen[1], an empirical likelihood-ratio forβcan similarly be defined as follows:

        (6)

        wherep=(p1,…,pn) is a probability vector.

        Ifβis true parameter, a unique maximum forpin (6) exists. By the Lagrange multiplier method, the supremum occurs at

        (7)

        whereλ(β) is the solution to

        (8)

        By (6) and (7), we can get

        (9)

        In the following, we define the profile empirical likelihood estimator without any restriction conditions

        (10)

        whereZi(β) andλ(β) satisfy (5) and (8), respectively.

        1.2 Empirical likelihood estimation on parameter with restrictionAβ=b

        (11)

        whereηis ak×1 vector that contains the Lagrange multipliers. By differentiating functionF(β,η) with respect toβandη, we obtain the following equations:

        (12)

        and

        (13)

        2 Test statistic and its properties

        In order to formulate the main results, we need the following assumptions. These assumptions are quite mild and can be easily satisfied.

        Lethj(Ti)=E(Xij|Ti),Vi=Xi-E(Xi|Ti), 1≤i≤n, 1≤j≤p.

        Assumption1 E(e|X,T)=0andE(|e|4|X,T)<∞.

        Assumption3 g(·)andhj(·)areofoneorderLipschitzcontinuousfunctions.

        Assumption 5 The kernel functionK(·) is a bounded symmetric density function with compact support and satisfies ∫K(u)du=1,∫uK(u)du=0 and ∫u2K(u)du<∞.

        Assumption 6 The density functionsf(t) ofTis bounded away from zero and have bounded continuous second partial derivatives. Namely, 0

        Under the above assumptions, we can get the following result, proved in Section 4.

        Theorem3Underthenullhypothesisoftestingproblem(1.2)andtheassumptions1-6,wehave

        3 Simulation studies

        In this section, we present the result of some simulations to illustrate our methods. In our simulations, the data are generated from the following model:

        yi=xi1β1+xi2β2+g(ti)+εi,i=1,…,n,

        (14)

        Tab.1 The rejection frequencies for H0:β1-β2=0?H1:β1-β1=c with α=0.05

        We summarize our findings as follows. When the null hypothesis is true (that is,c=0), the rejection frequencies (estimated sizes) of both our proposed test basedTnand the restricted least-squares approach test basedWnare quite good and close to their nominal levels 0.05 under different error distributions. Under the alternative hypothesis, the rejection rate seems very robust to the variation of the type of error distribution. With the increasing ofc, the test power of our proposed test is slightly better than the test based on the residual sum of squares.

        4 Proof of the main results

        In the sequel, letCdenote positive constant whose value may vary at each occurrence.

        Lemma 1 Suppose that Assumptions 1-6 hold.

        whereG0(·)=g(·) andGl(·)=hl(·)(j=1,…,p).

        ProofTheproofissimilartoLemmaA.1inLiang[9]etal.

        Lemma2SupposethatAssumptions1-6hold.Wecanobtain

        ProofTheproofissimilartoLemmaA.2inLiang[9]etal.

        Lemma3SupposethatAssumptions1-6hold.ifβ0istruevalueofβ, We can obtain

        ProofFromthedefinitionofZi(β), we have

        Lemma4SupposethatAssumptions1-6hold.Ifβ0istruevalueofβ,Wehavemax1≤i≤n‖Zi(β0)‖=op(n1/2).

        ProofAsimilarproofcanbefoundinLiang[10]etal.

        Lemma5SupposethatAssumptions1-6hold.Ifβ0isthetruevalueofβinmodel(3),satisfying(7)and(8),thenwehave

        ProofApplyingtheTaylorexpansion,from(8)andLemma1~4,weobtainthat

        (15)

        In view of Lemma 1~4, we have

        This completes the proof.

        TheproofofTheorem1

        (16)

        (17)

        (18)

        where

        (19)

        We can also get

        (20)

        This completes the proof.

        TheproofofTheorem2issimilarasthatofTheorem1andthusisleftforthereaders.

        TheproofofTheorem3

        ProofBy(10)andapplyingtheTaylorexpansion,wehave

        (21)

        where

        Similarly, we can also get

        (22)

        with |r2n|=op(1).

        From (21) and (22), we can get

        I1+I2+op(1).

        Op(n-1)·Op(n1/2)·op(n1/2)=op(1).

        (23)

        [1]OWENAB.Empiricallikelihoodratioconfidenceintervalsforasinglefunctional[J].Biometrika,1988,75(2):237-249.

        [2]OWENAB.Empiricallikelihoodratioconfidenceregions[J].AnnStat, 1990,18(1):90-120.

        [3]SHIJ,LAUTS.Empiricallikelihoodforpartiallylinearmodels[J].JMultivAnal, 2000,72(1):132-148.

        [4]WANGQH,JINGBY.Empiricallikelihoodforpartiallinearmodelswithfixeddesigns[J].StatProbLett, 1999,41(4):425-433.

        [5]WANGQH,JINGBY.Empiricallikelihoodforpartiallylinearmodels[J].AnnInstStatMath, 2003,55(3):585-595.

        [6]FANJ.Locallinearregressionsmoothersandtheirminimaxefficiencies[J].AnnStat, 1993,21(1):196-216.

        [7]FANJ,GIJBELSI.Localpolynomialmodellinganditsapplications[M].NewTork:Chapman&HallPress, 1996.

        [8]WEIC,WANGQ.Statisticalinferenceonrestrictedpartiallylinearadditiveerrors-in-variablesmodels[J].Test, 2012,21(4):757-774.

        [9]LIANGH,HRDLEW,CARROLLRJ.Estimationinasemiparametricpartiallylinearerrors-in-variablesmodel[J].AnnStat, 1999,27(5):1519-1535.

        [10] LIANG H, THURSTON S W, RUPPERT D,etal. Additive partial linear models with measurement errors[J].Biometrika, 2008,95(3):667-678.

        [11] LIANG H Y, JING B Y. Asymptotic normality in partial linear models based on dependent errors[J].J Stat Plan Infer, 2009,139(4):1357-1371.

        [12] 洪圣巖. 一類半?yún)?shù)回歸模型的估計理論[J]. 中國科學(xué):A 輯, 1991,34(12):1258-1272.

        [13] 孫耀東. 分歧泊松自回歸模型的馬爾可夫性[J]. 湖南師范大學(xué)自然科學(xué)學(xué)報, 2011,34(4):18-20.

        [14] WU C. Some algorithmic aspects of the empirical likelihood method in survey sampling[J]. Stat Sin, 2004,14(4):1057-1068.

        [15] XUE L G, ZHU L X. Empirical likelihood for a varying coefficient model with longitudinal data[J]. J Am Stat Assoc, 2007,102(478):642-654.

        [16] ZHU L, XUE L. Empirical likelihood confidence regions in a partially linear single-index model[J].J Royal Stat Soc: Ser B, 2006,68(3):549-570.

        (編輯 HWJ)

        2016-03-27

        河南省科技計劃項目資助(112300410191)

        O

        A

        1000-2537(2017)04-0075-08

        具有限制條件的部分線性模型的經(jīng)驗似然推斷

        劉常勝*,李永獻(xiàn)

        (河南城建學(xué)院數(shù)理系, 中國 平頂山 467000)

        本文將經(jīng)驗似然方法應(yīng)用到具有限制假設(shè)條件的部分線性模型中. 為了檢驗假設(shè)條件, 構(gòu)造基于零假設(shè)和對立假設(shè)條件下的極大經(jīng)驗對數(shù)似然比估計值的差值統(tǒng)計量. 而且在零假設(shè)下證明該統(tǒng)計量的極限分布為標(biāo)準(zhǔn)的χ2分布. 數(shù)值模擬表明所提出的檢驗統(tǒng)計量的優(yōu)勢.

        經(jīng)驗似然; 限制條件; 部分線性模型; 假設(shè)檢驗; χ2分布

        10.7612/j.issn.1000-2537.2017.04.013

        *通訊作者,E-mail:csliu@hncj.edu.cn

        猜你喜歡
        湖南師范大學(xué)線性經(jīng)驗
        漸近線性Klein-Gordon-Maxwell系統(tǒng)正解的存在性
        2021年第20期“最值得推廣的經(jīng)驗”評選
        黨課參考(2021年20期)2021-11-04 09:39:46
        湖南師范大學(xué)作品
        大眾文藝(2021年8期)2021-05-27 14:05:54
        線性回歸方程的求解與應(yīng)用
        湖南師范大學(xué)美術(shù)作品
        大眾文藝(2020年11期)2020-06-28 11:26:50
        湖南師范大學(xué)作品
        大眾文藝(2019年16期)2019-08-24 07:54:00
        湖南師范大學(xué)作品欣賞
        大眾文藝(2019年10期)2019-06-05 05:55:32
        經(jīng)驗
        2018年第20期“最值得推廣的經(jīng)驗”評選
        黨課參考(2018年20期)2018-11-09 08:52:36
        二階線性微分方程的解法
        又大又长粗又爽又黄少妇视频| 无码一区二区三区久久精品| 人妻少妇偷人精品久久人妻 | 亚洲人成电影在线观看天堂色| 欧美精品中文字幕亚洲专区| 青青草久热手机在线视频观看 | 女人做爰高潮呻吟17分钟| 无码av一区在线观看| 亚洲国产日韩综合天堂| 五月色丁香婷婷网蜜臀av| 少妇人妻中文久久综合| 久久久久久亚洲av成人无码国产 | 欧美日韩国产色综合一二三四| 中文字幕一区,二区,三区| 日本高清视频在线观看一区二区 | 无套内谢孕妇毛片免费看| 国产成人久久精品激情| 亚洲欧美另类精品久久久| 国产成人一区二区三区| 一区二区和激情视频| 999国内精品永久免费视频| 久久久久久久国产精品电影| 丰满巨臀人妻中文字幕| a级国产乱理伦片| 中国精学生妹品射精久久| 久久精品国产亚洲av成人擦边| 久久丝袜熟女av一区二区| 狠狠躁天天躁中文字幕 | 久久国产精品超级碰碰热| 蜜桃人妻午夜精品一区二区三区 | 一本久久a久久免费综合| 最新高清无码专区| 中文字幕日产人妻久久| 99久久精品人妻一区| 国产老熟女网站| 免费人成又黄又爽的视频在线| 在线免费观看国产视频不卡| 丰满人妻久久中文字幕| 日本乱人伦在线观看| 人片在线观看无码| 亚洲一区二区三区99|