亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Empirical Likelihood Statistical Inference for Partially Linear Model with Restricted Condition

        2017-09-03 10:13:32-,-
        關(guān)鍵詞:湖南師范大學(xué)線性經(jīng)驗

        -, -

        (Department of Mathematics and Physics, Henan University of Urban Construction, Pingdingshan 467000, China)

        Empirical Likelihood Statistical Inference for Partially Linear Model with Restricted Condition

        LIUChang-sheng*,LIYong-xian

        (DepartmentofMathematicsandPhysics,HenanUniversityofUrbanConstruction,Pingdingshan467000,China)

        Inthispaper,weapplytheempiricallikelihoodmethodtopartiallylinearmodelwithparameterlinearrestrictedhypothesis.Forthesakeoftestinghypothesis,anempiricallog-likelihoodratioteststatisticbasedonthedifferenceofthenullandalternativehypothesesisconstructed.Furthermore,thelimitingdistributionoftheteststatisticsisprovedtobeastandardChi-squareddistribution.Numericalsimulationconfirmstheadvantageoftheproposedmethod.

        empiricallikelihood;restrictedcondition;partiallylinearmodel;hypothesistest;Chi-squaredistribution

        1 Empirical likelihood estimation on parameter

        For the need of constructing the test statistic, we first develop estimating approach for model (1) under the null hypothesis in this section. That is, we estimate the unknown quantities in model (1) with the restricted condition Aβ=b.Thenmodel(1)canbewrittenas

        (3)

        whereKh(·) =K(·/h)/h,K(·) is a kernel function andh=hnis a sequence of positive numbers tending to zero, called bandwidth. Simple calculation yields that

        (4)

        For 1≤i≤n, let

        In order to construct the empirical likelihood ratio function, we now introduce one auxiliary random vectorZi(β),

        (5)

        1.1 Empirical likelihood estimation on parameter without restriction

        Next we discuss profile empirical likelihood estimation without restriction conditionsAβ=b. Whenβis true parameter,E(Zi(β))=0. Thus, by the idea of Owen[1], an empirical likelihood-ratio forβcan similarly be defined as follows:

        (6)

        wherep=(p1,…,pn) is a probability vector.

        Ifβis true parameter, a unique maximum forpin (6) exists. By the Lagrange multiplier method, the supremum occurs at

        (7)

        whereλ(β) is the solution to

        (8)

        By (6) and (7), we can get

        (9)

        In the following, we define the profile empirical likelihood estimator without any restriction conditions

        (10)

        whereZi(β) andλ(β) satisfy (5) and (8), respectively.

        1.2 Empirical likelihood estimation on parameter with restrictionAβ=b

        (11)

        whereηis ak×1 vector that contains the Lagrange multipliers. By differentiating functionF(β,η) with respect toβandη, we obtain the following equations:

        (12)

        and

        (13)

        2 Test statistic and its properties

        In order to formulate the main results, we need the following assumptions. These assumptions are quite mild and can be easily satisfied.

        Lethj(Ti)=E(Xij|Ti),Vi=Xi-E(Xi|Ti), 1≤i≤n, 1≤j≤p.

        Assumption1 E(e|X,T)=0andE(|e|4|X,T)<∞.

        Assumption3 g(·)andhj(·)areofoneorderLipschitzcontinuousfunctions.

        Assumption 5 The kernel functionK(·) is a bounded symmetric density function with compact support and satisfies ∫K(u)du=1,∫uK(u)du=0 and ∫u2K(u)du<∞.

        Assumption 6 The density functionsf(t) ofTis bounded away from zero and have bounded continuous second partial derivatives. Namely, 0

        Under the above assumptions, we can get the following result, proved in Section 4.

        Theorem3Underthenullhypothesisoftestingproblem(1.2)andtheassumptions1-6,wehave

        3 Simulation studies

        In this section, we present the result of some simulations to illustrate our methods. In our simulations, the data are generated from the following model:

        yi=xi1β1+xi2β2+g(ti)+εi,i=1,…,n,

        (14)

        Tab.1 The rejection frequencies for H0:β1-β2=0?H1:β1-β1=c with α=0.05

        We summarize our findings as follows. When the null hypothesis is true (that is,c=0), the rejection frequencies (estimated sizes) of both our proposed test basedTnand the restricted least-squares approach test basedWnare quite good and close to their nominal levels 0.05 under different error distributions. Under the alternative hypothesis, the rejection rate seems very robust to the variation of the type of error distribution. With the increasing ofc, the test power of our proposed test is slightly better than the test based on the residual sum of squares.

        4 Proof of the main results

        In the sequel, letCdenote positive constant whose value may vary at each occurrence.

        Lemma 1 Suppose that Assumptions 1-6 hold.

        whereG0(·)=g(·) andGl(·)=hl(·)(j=1,…,p).

        ProofTheproofissimilartoLemmaA.1inLiang[9]etal.

        Lemma2SupposethatAssumptions1-6hold.Wecanobtain

        ProofTheproofissimilartoLemmaA.2inLiang[9]etal.

        Lemma3SupposethatAssumptions1-6hold.ifβ0istruevalueofβ, We can obtain

        ProofFromthedefinitionofZi(β), we have

        Lemma4SupposethatAssumptions1-6hold.Ifβ0istruevalueofβ,Wehavemax1≤i≤n‖Zi(β0)‖=op(n1/2).

        ProofAsimilarproofcanbefoundinLiang[10]etal.

        Lemma5SupposethatAssumptions1-6hold.Ifβ0isthetruevalueofβinmodel(3),satisfying(7)and(8),thenwehave

        ProofApplyingtheTaylorexpansion,from(8)andLemma1~4,weobtainthat

        (15)

        In view of Lemma 1~4, we have

        This completes the proof.

        TheproofofTheorem1

        (16)

        (17)

        (18)

        where

        (19)

        We can also get

        (20)

        This completes the proof.

        TheproofofTheorem2issimilarasthatofTheorem1andthusisleftforthereaders.

        TheproofofTheorem3

        ProofBy(10)andapplyingtheTaylorexpansion,wehave

        (21)

        where

        Similarly, we can also get

        (22)

        with |r2n|=op(1).

        From (21) and (22), we can get

        I1+I2+op(1).

        Op(n-1)·Op(n1/2)·op(n1/2)=op(1).

        (23)

        [1]OWENAB.Empiricallikelihoodratioconfidenceintervalsforasinglefunctional[J].Biometrika,1988,75(2):237-249.

        [2]OWENAB.Empiricallikelihoodratioconfidenceregions[J].AnnStat, 1990,18(1):90-120.

        [3]SHIJ,LAUTS.Empiricallikelihoodforpartiallylinearmodels[J].JMultivAnal, 2000,72(1):132-148.

        [4]WANGQH,JINGBY.Empiricallikelihoodforpartiallinearmodelswithfixeddesigns[J].StatProbLett, 1999,41(4):425-433.

        [5]WANGQH,JINGBY.Empiricallikelihoodforpartiallylinearmodels[J].AnnInstStatMath, 2003,55(3):585-595.

        [6]FANJ.Locallinearregressionsmoothersandtheirminimaxefficiencies[J].AnnStat, 1993,21(1):196-216.

        [7]FANJ,GIJBELSI.Localpolynomialmodellinganditsapplications[M].NewTork:Chapman&HallPress, 1996.

        [8]WEIC,WANGQ.Statisticalinferenceonrestrictedpartiallylinearadditiveerrors-in-variablesmodels[J].Test, 2012,21(4):757-774.

        [9]LIANGH,HRDLEW,CARROLLRJ.Estimationinasemiparametricpartiallylinearerrors-in-variablesmodel[J].AnnStat, 1999,27(5):1519-1535.

        [10] LIANG H, THURSTON S W, RUPPERT D,etal. Additive partial linear models with measurement errors[J].Biometrika, 2008,95(3):667-678.

        [11] LIANG H Y, JING B Y. Asymptotic normality in partial linear models based on dependent errors[J].J Stat Plan Infer, 2009,139(4):1357-1371.

        [12] 洪圣巖. 一類半?yún)?shù)回歸模型的估計理論[J]. 中國科學(xué):A 輯, 1991,34(12):1258-1272.

        [13] 孫耀東. 分歧泊松自回歸模型的馬爾可夫性[J]. 湖南師范大學(xué)自然科學(xué)學(xué)報, 2011,34(4):18-20.

        [14] WU C. Some algorithmic aspects of the empirical likelihood method in survey sampling[J]. Stat Sin, 2004,14(4):1057-1068.

        [15] XUE L G, ZHU L X. Empirical likelihood for a varying coefficient model with longitudinal data[J]. J Am Stat Assoc, 2007,102(478):642-654.

        [16] ZHU L, XUE L. Empirical likelihood confidence regions in a partially linear single-index model[J].J Royal Stat Soc: Ser B, 2006,68(3):549-570.

        (編輯 HWJ)

        2016-03-27

        河南省科技計劃項目資助(112300410191)

        O

        A

        1000-2537(2017)04-0075-08

        具有限制條件的部分線性模型的經(jīng)驗似然推斷

        劉常勝*,李永獻(xiàn)

        (河南城建學(xué)院數(shù)理系, 中國 平頂山 467000)

        本文將經(jīng)驗似然方法應(yīng)用到具有限制假設(shè)條件的部分線性模型中. 為了檢驗假設(shè)條件, 構(gòu)造基于零假設(shè)和對立假設(shè)條件下的極大經(jīng)驗對數(shù)似然比估計值的差值統(tǒng)計量. 而且在零假設(shè)下證明該統(tǒng)計量的極限分布為標(biāo)準(zhǔn)的χ2分布. 數(shù)值模擬表明所提出的檢驗統(tǒng)計量的優(yōu)勢.

        經(jīng)驗似然; 限制條件; 部分線性模型; 假設(shè)檢驗; χ2分布

        10.7612/j.issn.1000-2537.2017.04.013

        *通訊作者,E-mail:csliu@hncj.edu.cn

        猜你喜歡
        湖南師范大學(xué)線性經(jīng)驗
        漸近線性Klein-Gordon-Maxwell系統(tǒng)正解的存在性
        2021年第20期“最值得推廣的經(jīng)驗”評選
        黨課參考(2021年20期)2021-11-04 09:39:46
        湖南師范大學(xué)作品
        大眾文藝(2021年8期)2021-05-27 14:05:54
        線性回歸方程的求解與應(yīng)用
        湖南師范大學(xué)美術(shù)作品
        大眾文藝(2020年11期)2020-06-28 11:26:50
        湖南師范大學(xué)作品
        大眾文藝(2019年16期)2019-08-24 07:54:00
        湖南師范大學(xué)作品欣賞
        大眾文藝(2019年10期)2019-06-05 05:55:32
        經(jīng)驗
        2018年第20期“最值得推廣的經(jīng)驗”評選
        黨課參考(2018年20期)2018-11-09 08:52:36
        二階線性微分方程的解法
        精品蜜臀国产av一区二区| 抽搐一进一出试看60秒体验区| 久久国产亚洲高清观看5388| 蜜桃在线一区二区三区| 一区二区视频中文字幕| 国产亚洲精品精品精品| 亚洲男人av香蕉爽爽爽爽| 亚洲高清一区二区三区在线观看 | 白色白在线观看免费2| 亚洲熟妇无码久久精品| 国产精品白浆在线观看无码专区| 中文字幕乱码一区av久久不卡| 天天做天天爱天天综合网| 精品丝袜国产在线播放| 日本一道高清在线一区二区| 色中文字幕在线观看视频| 亚洲成av人片在线观看ww| 免费一本色道久久一区| 亚洲另类国产精品中文字幕| 曰韩内射六十七十老熟女影视 | 天天av天天爽无码中文| 亚洲国产日韩精品综合| 久久一道精品一区三区| 久久综合狠狠色综合伊人| 国产免费一级高清淫日本片| 国产91精品清纯白嫩| 色噜噜亚洲男人的天堂| 精品亚洲欧美无人区乱码| 狠狠色噜噜狠狠狠狠97俺也去| 免费人妻精品区一区二区三 | 自拍偷自拍亚洲一区二区| 人妻丰满熟妇av无码区不卡| 国产成人户外露出视频在线| 国产人妖直男在线视频| 国产精品videossex国产高清| 亚洲级αv无码毛片久久精品| 亚洲国产日韩av一区二区 | 精品国产一区二区三区av| 亚洲aⅴ天堂av天堂无码麻豆| 国产一区二区欧美丝袜| 国产中文字幕免费视频一区 |