亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Classification of Phase Portraits of Z2- Equivariant Planar Hamiltonian Vector Field of Degree 7 (Ⅶ)

        2017-08-30 23:27:38YanmeiLi
        楚雄師范學(xué)院學(xué)報 2017年3期
        關(guān)鍵詞:向量場哈密頓出峰

        Yanmei Li

        (School of Mathematics and Statistics , Chuxiong Normal University, Yunnan Chuxiong, 675000, China)

        Classification of Phase Portraits ofZ2- Equivariant Planar Hamiltonian Vector Field of Degree 7 (Ⅶ)

        Yanmei Li

        (School of Mathematics and Statistics , Chuxiong Normal University, Yunnan Chuxiong, 675000, China)

        In this paper, by the use of the method of qualitative analysis of differential equations, 25 phase portraits of a newZ2- equivariant planar Hamiltonian vector fields of degree 7 are obtained and the parameter space is classified.

        Hamiltonian vector field of degree 7;Z2- equivariant property; singular point; phase portrait

        In[1―7], the phase portraits of planar Hamiltonian vector fields of degree 7 withZq- equivariant property have been discussed, but there are still many vector fields deserving to be studied. In this paper, we will deliberate a new planar Hamiltonian vector fields as follows and get 25 phase portraits

        (1)

        wherekis a parameter with k>1.

        1 Qualitative Analysis of the Singular Points

        The Jacobian of this system is

        in which

        Discussing the Jacobians of these singular points, we get the following result:

        Theorem 1 The singular points (0,0),(±1.2,0),(0,m),(±1,1),(±1.3,1),(±1.2,m),(±1,n)and (±1.3,n) are centers, and the others are saddle points.

        2 Phase Portraits of the System (1)

        The Hamiltonian of the system is

        Itiseasytoget

        H(±1,0)=-0.3892333, H(±1.2,0)=-0.385897,H(±1.3,0)=-0.3866327 ,

        H(0,1)=-(10.8k2-5.6k+1)/24, H(0,m)=(2.6k4-8.8k3)/24 ,

        H(0,n)=0.0486k4-0.324k3,

        H(0,m)-H(0,1)=(k-1)3(2.6k-1)/24, H(0,m)-H(0,n)=0.512k3(1.4k-1)/12,

        H(0,1)-H(0,n)=(1.8k-1)3(1-0.2k)/24,

        andH(±1,0)

        ComparingtheHamiltoniansofthesingularpoints,weobtainthefollowingresults.

        Theorem2Thereexist25phaseportraitsofsystem(1)showninFig(1),andeveryoneofthemcorrespondstothevalueofkinthefollowingscopes: (1)1

        (7)1.17555

        (11)1.320463.38523.

        ProofBecausethetrainofthoughtissimilar,weonlyprovethefirsttencases.

        WeseparatelydenoteH(0,0),H(±1,0),H(±1.2,0),H(±1.3,0),H(0,1),H(0,m),H(0,n),H(±1,1),H(±1,m),H(±1,n),H(±1.2,1),H(±1.2,m),H(±1.2,n),H(±1.3,1),H(±1.3,m)andH(±1.3,n)byh00,h10,hb0,hc0,h01,h0m,h0n,h11,h1m,h1n,hb1,hbm,hbn,hc1,hcmandhcm.

        Obviouslyhxy=hx0+h0y, h105, h01

        (1)When1

        h1n

        andthephaseportraitisshownasFig.1(1).

        (2)Whenk=1.12831,wehavehc0=h0n,andtheHamiltoniansofthesingularpointssatisfytheinequalities

        對于苯、甲苯、環(huán)己烷和甲基環(huán)己烷等組分的定量分析,由于在色譜圖中,苯和環(huán)己烷出峰的保留時間在n-C6和n-C7之間,甲苯和甲基環(huán)己烷在n-C7和n-C8之間出峰,對這幾個組分的定量可采用式(6)計算。

        h1n

        sothephaseportraitisshownasFig.1(2).

        (3)When1.12831

        h1n

        sothephaseportraitisshownasFig.1(3).

        (4)Whenk=1.13101,wegeth10=h0n,andtheHamiltoniansofthesingularpointssatisfytheinequalities

        h1n

        sothephaseportraitisshownasFig.1(4).

        (5)When1.13101

        h1n

        h1n

        h1n

        h1n

        sothephaseportraitisshownasFig.1(5).

        (6)Whenk=1.17555,weobtainh10=h01,andtheHamiltoniansofthesingularpointssatisfytheinequalities

        h1n

        sothephaseportraitisshownasFig.1(6).

        (7)When1.17555

        h1n

        sothephaseportraitisshownasFig.1(7).

        (8)Whenk=1.2025,weobtainhb1=hcm,andtheHamiltoniansofthesingularpointssatisfytheinequalities

        h1n

        sothephaseportraitofthesystem(1)isshownasFig.1(8).

        (9)If1.2025

        h1n

        sothephaseportraitofthesystem(1)isshownasFig.1(9).

        (10)Ifk=1.32046,theHamiltoniansofthesingularpointssatisfytheinequalities

        h1n

        sothephaseportraitofthesystem(1)isshownasFig.1(10).

        Fig.1 The phase portraits of system (1)

        [1]YanmeiLi,ZhaoHu.ClassificationofPhasePortraitsofZ2-EquivariantPlanarHamiltonianVectorFieldofDegree7(Ⅰ)[J].JournalofChuxiongNormalUniversity, 2012, 27(6):1-5.

        [2]YanmeiLi.ClassificationofPhasePortraitsofZ2-EquivariantPlanarHamiltonianVectorFieldofDegree7(Ⅱ)[J].JournalofChuxiongNormalUniversity, 2012, 27(9):1-5.

        [3]YanmeiLi.ClassificationofPhasePortraitsofZ2-EquivariantPlanarHamiltonianVectorFieldofDegree7(Ⅲ)[J].JournalofChuxiongNormalUniversity, 2013, 28(9):1-4.

        [4]YanmeiLi.GlobalPhasePortraitsandClassificationofZ2-EquivariantPlanarHamiltonianVectorFieldsofDegree7withinfinitesingularpoints(Ⅰ)[J].JournalofChuxiongNormalUniversity, 2014, 29(3):1-4.

        [5]YanmeiLi.ClassificationofPhasePortraitsofZ2-EquivariantPlanarHamiltonianVectorFieldofDegree7(Ⅳ) [J].JournalofChuxiongNormalUniversity, 2014, 29(9):1-5.

        [6]YanmeiLi.ClassificationofPhasePortraitsofZ2-EquivariantPlanarHamiltonianVectorFieldofDegree7(Ⅴ) [J].JournalofChuxiongNormalUniversity, 2015, 30(6):1-4.

        [7]YanmeiLi.ClassificationofPhasePortraitsofZ2-EquivariantPlanarHamiltonianVectorFieldofDegree7(Ⅵ) [J].JournalofChuxiongNormalUniversity, 2015, 30(9):1-4.

        (責(zé)任編輯 司民真)

        楚雄師范學(xué)院國家自然科學(xué)基金孵化項目“具有Z-q等變量性質(zhì)的平面七次哈密頓向量場的相圖分類研究”。

        2017 - 03 - 25

        李艷梅(1966―),女,楚雄師范學(xué)院數(shù)學(xué)與統(tǒng)計學(xué)院教授,研究方向:非線性微分方程。

        O175.29

        A

        1671 - 7406(2017)03 - 0001 - 04

        具有Z2-等變性質(zhì)的平面七次哈密頓向量場的相圖分類(Ⅶ)

        李艷梅

        (楚雄師范學(xué)院數(shù)學(xué)與統(tǒng)計學(xué)院,云南 楚雄 675000)

        根據(jù)微分方程定性理論,本文得到了一類新的具有Z2-等變性質(zhì)的七次平面哈密頓向量場的25個相圖,并對參數(shù)空間進(jìn)行了劃分。

        七次哈密頓向量場;Z2-等變性質(zhì);奇點;相圖

        猜你喜歡
        向量場哈密頓出峰
        具有射影向量場的近Ricci-Bourguignon孤立子
        關(guān)于共形向量場的Ricci平均值及應(yīng)用
        氣相色譜永久性氣體分析應(yīng)用實例
        山西化工(2020年6期)2021-01-10 03:16:40
        AKNS系統(tǒng)的對稱約束及其哈密頓結(jié)構(gòu)
        一類四階離散哈密頓系統(tǒng)周期解的存在性
        H?rmander 向量場上散度型拋物方程弱解的Orlicz估計
        一類新的離散雙哈密頓系統(tǒng)及其二元非線性可積分解
        分?jǐn)?shù)階超Yang族及其超哈密頓結(jié)構(gòu)
        由H?rmander向量場構(gòu)成的拋物方程的正則性
        高效液相色譜法測定酚類化合物
        男人的天堂av网站一区二区| 久久婷婷综合缴情亚洲狠狠| 亚洲高清在线天堂精品| 亚洲成av人在线观看网址| 亚洲熟女乱综合一区二区| 99久久亚洲精品无码毛片| h国产视频| 男女上床视频在线观看| 亚洲一区二区三区在线高清中文| 国产在线91精品观看| 婷婷四虎东京热无码群交双飞视频| 国产精品成人va在线观看| 人妻少妇精品视频一区二区三区| 国产欧美精品一区二区三区–老狼 | 国产欧美va欧美va香蕉在| 黑人巨大无码中文字幕无码| 无遮高潮国产免费观看| 91免费永久国产在线观看| 国产精彩刺激对白视频| 久久亚洲一区二区三区四区五| 精品人妻av一区二区三区麻豆| 少妇被又大又粗又爽毛片| 中文字字幕在线精品乱码| 国产视频导航| 91在线观看国产自拍| 中文字幕一二三四五六七区| 亚洲成a人v欧美综合天堂| 国产国拍精品av在线观看按摩| 狠狠色狠狠色综合久久第一次| 日本一区二区三区中文字幕最新| 日本岛国视频在线观看一区二区 | 99在线播放视频| 日本成人三级视频网站| 二区视频在线免费观看| 国产精品久久久亚洲| 国产又滑又嫩又白| 成人综合亚洲欧美一区h| 中文字幕精品一区二区三区av| 亚洲中文字幕午夜精品| 午夜福利理论片高清在线观看| 97超级碰碰人妻中文字幕|