王帥,王克儉,馬伊,張寅靈,梁文斌,王旭,時(shí)姣,姜卓鈺
?
一種阻燃抗靜電聚丙烯的流變性能
王帥1,2,王克儉1,馬伊2,張寅靈2,梁文斌2,王旭1,時(shí)姣1,姜卓鈺1
(1北京化工大學(xué)機(jī)電工程學(xué)院,北京100029;2北京低碳清潔能源研究所,北京102211)
采用毛細(xì)管流變儀和旋轉(zhuǎn)流變儀分別研究了溴系阻燃劑、炭黑填充對(duì)聚丙烯熔體高剪切擠出畸變和動(dòng)態(tài)黏彈特性的影響。發(fā)現(xiàn)低含量下隨填充量的提高,發(fā)生擠出畸變的臨界剪切速率提高,擴(kuò)大了加工窗口。動(dòng)態(tài)流變?cè)囼?yàn)表明樹(shù)脂中添加更多炭黑后剪切變稀時(shí)的復(fù)數(shù)黏度、儲(chǔ)能模量和損耗模量都增大,但損耗因子下降。進(jìn)一步用纏結(jié)模型和Cross模型定量分析表明,填料吸附高分子鏈段而減少其壁面吸附,減輕擠出畸變,進(jìn)而提高臨界剪切速率;粒子分布網(wǎng)絡(luò)提高了平臺(tái)模量和纏結(jié)密度,縮短了松弛時(shí)間,恢復(fù)更快而減小擠出脹大比。復(fù)合材料中添加3.5%(質(zhì)量)炭黑后形成逾滲網(wǎng)絡(luò),表現(xiàn)為高零切黏度和長(zhǎng)松弛時(shí)間,發(fā)生“類液-類固”轉(zhuǎn)變;同時(shí)材料表面電阻下降明顯,此時(shí)黏彈逾滲點(diǎn)與導(dǎo)電逾滲點(diǎn)基本一致。
流變學(xué);聚合物;粒子;復(fù)合材料;擠出畸變;逾滲網(wǎng)絡(luò)
礦用聚丙烯(PP)材料必須具有良好的阻燃和抗靜電性能,一般通過(guò)加入阻燃劑(溴-銻體系或磷系)和抗靜電劑(導(dǎo)電炭黑、有機(jī)抗靜電劑等)來(lái)實(shí)現(xiàn)[1-4]。但這些填料的加入會(huì)影響PP的加工成型特性。另外,在生產(chǎn)中為提高產(chǎn)量需要高速流動(dòng),但其值超過(guò)臨界值時(shí)出現(xiàn)鯊魚(yú)皮、熔體破裂等現(xiàn)象[5-8]。這些高分子擠出加工性能常用毛細(xì)管流變儀模擬研究[9-10]。Tao等[11]和Fujiyama等[12]觀察到高剪切速率下PP擠出樣條出現(xiàn)螺旋畸變,這是壁面滑移、吸附-解吸附和纏結(jié)-解纏結(jié)等機(jī)理造成的[13-17]。吳其曄等[18]和Yannick等[19]將PP熔體的擠出畸變歸因于口模入口和毛細(xì)管壁面的擾動(dòng),通過(guò)填充碳納米管和液晶等取向填料改善了樣條外觀;而在PP中填充木粉[20]以及短玻纖[21]均會(huì)降低其畸變的臨界剪切速率。兩種差異可能是填料尺寸差異所致。本文將高剪切速率的毛細(xì)管流變儀和低剪切速率的旋轉(zhuǎn)流變儀測(cè)試關(guān)聯(lián)起來(lái),分析溴系阻燃劑和導(dǎo)電炭黑并用時(shí)對(duì)聚丙烯擠出畸變的影響,并用黏彈性定量關(guān)系深入分析影響規(guī)律。
1.1 主要原材料
等規(guī)聚丙烯PP,230℃下熔融指數(shù)(MFR)為1.4 g·(10 min)-1,寧煤集團(tuán);熱塑性彈性體POE 8150,190℃下MFR為0.5 g·(10 min)-1,陶氏化學(xué);導(dǎo)電炭黑(CB),捷克超強(qiáng)導(dǎo)電炭黑,JK-003;硬脂酸(St),南通蒙亞化工有限公司;十溴二苯乙烷,SAYTEX 8010,北京天恒健科技發(fā)展有限公司;三氧化二銻,山東科興化工有限公司;十溴二苯乙烷和三氧化二銻按溴、銻元素質(zhì)量比為3:1均勻分散得到混合阻燃劑(FR)。
1.2 主要設(shè)備及儀器
高攪機(jī),張家港市強(qiáng)大塑料機(jī)械有限公司;密煉機(jī),利拿機(jī)械實(shí)業(yè)有限公司;壓片機(jī),Platen press P300PM,德國(guó)Collin公司;雙筒毛細(xì)管流變儀,RH2000,英國(guó)Malvern公司;旋轉(zhuǎn)流變儀,HR-2,美國(guó)TA公司;表面電阻測(cè)試儀,Victor38,深圳驛生勝利科技有限公司。
1.3 材料制備
按表1所列質(zhì)量分?jǐn)?shù)稱取各原料,各樣品添加1%硬脂酸(St)作為塑化潤(rùn)滑劑;高攪機(jī)干態(tài)充分混合各原料,再倒入密煉機(jī)于200℃下混煉14 min,轉(zhuǎn)速600 r·min-1。各組樣品中PP/POE質(zhì)量比恒定為85:15。密煉均勻后迅速剪切為小塊,其中少量在平板硫化機(jī)上模壓成25 mm直徑圓片。
表1 復(fù)合材料組成
1.4 性能測(cè)試與表征
雙筒毛細(xì)管擠出流變測(cè)試:口模直徑為1 mm,長(zhǎng)口模長(zhǎng)徑比為16:1,零口模長(zhǎng)徑比為0.25:1;設(shè)置剪切速率20~5000 s-1,分10段進(jìn)行剪切速率掃描,210℃測(cè)試。擠出過(guò)程對(duì)擠出物進(jìn)行拍照觀察表面狀態(tài)。
動(dòng)態(tài)流變性能測(cè)試:平行板夾具。頻率掃描:應(yīng)變1%下0.05~100 rad·s-1,測(cè)試溫度210℃。
2.1 毛細(xì)管擠出流變性能和擠出物表面狀況
圖1是PP基料及不同填料填充下體系的毛細(xì)管剪切應(yīng)力-剪切速率曲線。在同一剪切速率下,基料單獨(dú)填充阻燃劑或炭黑后復(fù)合材料的剪切應(yīng)力增加,表明黏度上升,兩種填料共同填充后黏度進(jìn)一步上升。
4種樣品在不同剪切速率下的擠出樣條外觀如圖2所示(圖中左側(cè)樣條為長(zhǎng)口模擠出樣條,右側(cè)樣條為零口模擠出樣條)。隨著剪切速率的提高,長(zhǎng)口模擠出外觀為光滑-竹節(jié)狀-熔體破裂,零口模擠出外觀為光滑-螺旋狀-無(wú)規(guī)破裂。這與Tao等[11]對(duì)PP(Atofina 3181)毛細(xì)管高速擠出的研究結(jié)果一致。
不同填料對(duì)擠出樣條外觀影響不同,只添加阻燃劑時(shí)長(zhǎng)口模出現(xiàn)擠出畸變的臨界剪切速率()為430 s-1,較PP基料沒(méi)有升高;而只添加CB時(shí),長(zhǎng)口模的臨界剪切速率提高為795 s-1;同時(shí)添加兩種填料時(shí),臨界剪切速率大幅上升,甚至在整個(gè)考察剪切速率范圍內(nèi)長(zhǎng)口模擠出物外觀始終平滑,零口模擠出物外觀畸變也大幅改善,即兩種填料協(xié)同改善了基料高速擠出穩(wěn)定性。
阻燃劑含量(18%)相同的聚丙烯熔體中,添加不同含量CB的剪切應(yīng)力-剪切速率曲線繪于圖3,在同一高剪切速率(1469 s-1)下長(zhǎng)(零)口模毛細(xì)管的擠出樣條外觀見(jiàn)圖4。隨著CB含量的升高,體系的黏度上升,該高速率平滑區(qū)內(nèi)擠出樣條外觀畸變得到改善。添加0、2%、3.5%質(zhì)量分?jǐn)?shù)CB材料的長(zhǎng)口模發(fā)生擠出畸變的臨界剪切速率依次為430、795、1469 s-1,而添加5% CB的擠出樣條始終光滑,沒(méi)有發(fā)生擠出畸變。
取不同含量炭黑樣品在230 s-1的擠出樣條,分別測(cè)試長(zhǎng)口模、零口模的擠出脹大比繪于圖5。零口模擠出脹大比均高于長(zhǎng)口模擠出脹大比,這是因?yàn)殚L(zhǎng)口模的口模長(zhǎng)度較大為16 mm,高分子熔體在擠出時(shí)經(jīng)歷口模過(guò)程中,被外力約束的分子鏈已經(jīng)得到一段時(shí)間的松弛,而零口模口模長(zhǎng)度僅為0.25 mm,高分子熔體經(jīng)過(guò)零口模后分子鏈迅速回復(fù)原狀,因而擠出脹大比遠(yuǎn)高于長(zhǎng)口模擠出脹大比。隨著炭黑含量的增加,長(zhǎng)口模和零口模的擠出脹大總體上都呈現(xiàn)出下降的趨勢(shì),表明添加低填充量的炭黑降低了基體樹(shù)脂的熔體彈性,進(jìn)而改善阻燃抗靜電(雙抗)材料在高剪切速率下的擠出穩(wěn)定性,拓寬了擠出加工窗口,可實(shí)現(xiàn)高產(chǎn)率下的高質(zhì)量生產(chǎn)。
2.2 CB粒子“網(wǎng)絡(luò)”對(duì)擠出畸變的改善機(jī)理
在210℃下研究不同CB含量復(fù)合材料的動(dòng)態(tài)流變性能。圖6給出儲(chǔ)能模量(′)、損耗模量(″)、復(fù)數(shù)黏度()和損耗角正切值(tan)隨頻率的變化。相同頻率下,隨CB含量上升,′和″值增大,尤其在低頻區(qū)差異更大,似乎在形成“第二平臺(tái)”特征[22-24]。仿照de Genees蠕動(dòng)理論和Doi Edwards管子理論定義復(fù)合材料“纏結(jié)”分子量e和“纏結(jié)”密度e[25-26]為
e=RT/0(1)
e=/e=0/(2)
式中,0為平臺(tái)模量,為密度,為氣體常數(shù),為熱力學(xué)溫度。纏結(jié)密度反映“纏結(jié)”程度,平臺(tái)模量由廣義Maxwell模型[27-28]擬合得到
(4)
式中,′為彈性模量,″為損耗模量,0和分別為廣義Maxwell模型的模量和松弛時(shí)間,為頻率,平臺(tái)模量為
利用最小二乘法擬合圖6(a)、(b)流變數(shù)據(jù),得到0和e的值列于表2。CB粒子表面粗糙、易自聚,容易物理吸附高分子鏈段形成復(fù)合“網(wǎng)絡(luò)”?!袄p結(jié)”平臺(tái)模量以及“纏結(jié)”密度隨CB的增多而提高。
圖6 ′、″、η和tan隨角頻率的變化
Fig.6 Curves of ′,″, ηandtan angular frequency
表2 平臺(tái)模量和纏結(jié)密度
將不同CB含量下臨界剪切速率對(duì)應(yīng)“纏結(jié)”密度繪在圖7。填充CB含量增大,平臺(tái)模量和纏結(jié)密度越高,對(duì)應(yīng)毛細(xì)管高速擠出畸變的臨界剪切速率將更高。
對(duì)于非牛頓流體,某一剪切速率下的剪切應(yīng)力可以寫(xiě)為[29]
式中,為表征粒子“網(wǎng)絡(luò)”分布系數(shù),其值是穩(wěn)態(tài)剪切柔量和平臺(tái)模量乘積,=0e0;為Deborah參數(shù),是松弛時(shí)間與剪切速率的乘積,即。
式(6)表明,剪切應(yīng)力一定時(shí),纏結(jié)平臺(tái)模量越高,Deborah數(shù)越低,而通常Deborah數(shù)低的聚合物在流動(dòng)時(shí)儲(chǔ)存能量較少[30]。當(dāng)復(fù)合材料熔體受剪切作用通過(guò)毛細(xì)管口模時(shí),加入炭黑的復(fù)合材料平臺(tái)模量增加,流動(dòng)時(shí)儲(chǔ)存的能量減少,熔體熵彈性降低,對(duì)應(yīng)擠出脹大比減小,擠出畸變現(xiàn)象減輕。
聚合物熔體經(jīng)毛細(xì)管高速擠出時(shí)在口模壁面發(fā)生Adhesive滑移和Cohesive滑移,二者結(jié)合的Z-W模型可以較好解釋擠出畸變現(xiàn)象[31]。如圖8所示,毛細(xì)管口模中隨著CB含量提高,鏈間滑移減少;同時(shí) CB對(duì)高分子鏈的吸附作用逐漸高于口模壁面對(duì)高分子鏈的吸附作用,減輕壁面“黏連”,改善擠出畸變外觀。
2.3 黏彈逾滲與導(dǎo)電逾滲比較
對(duì)圖6(c)復(fù)數(shù)黏度曲線采用Cross模型[32-33]擬合
|*()|=0/(1+(c)) (7)
式中,c是松弛時(shí)間,表征材料剪切變稀特性。擬合參數(shù)值列于表3。
表3 Cross模型參數(shù)的擬合值
隨CB含量提高,體系的零切黏度增大,松弛時(shí)間變長(zhǎng)。在CB為3.5%時(shí)松弛時(shí)間發(fā)生突變,即為該復(fù)合材料的流變逾滲點(diǎn)。不同CB含量的損耗角正切值繪于圖6(d),顯示了與此接近的逾滲值。CB含量低于逾滲點(diǎn)(3.5%)的樣品在低頻范圍的tan值大于1。更高含量CB下形成逾滲網(wǎng)絡(luò)后,低頻范圍的tan值明顯降低到小于1,經(jīng)歷tan>1到tan<1變化說(shuō)明材料發(fā)生以黏性為主到彈性為主的類液-類固轉(zhuǎn)變行為[34]。
將不同CB含量材料的低頻末端區(qū)tan值與表面電阻同繪于圖9。CB在3.5%左右的導(dǎo)電率變化明顯,即為導(dǎo)電逾滲值,和黏彈逾滲值相當(dāng)。此時(shí)炭黑在樹(shù)脂中形成粒子復(fù)合網(wǎng)絡(luò)。
(1)PP中加入阻燃劑和抗靜電劑改善了其毛細(xì)管高速擠出穩(wěn)定性,表面畸變減小,擴(kuò)大了加工窗口。
(2)旋轉(zhuǎn)流變測(cè)試分析與毛細(xì)管擠出行為關(guān)聯(lián),說(shuō)明填充粒子網(wǎng)絡(luò)提高材料的平臺(tái)模量,降低Deborah數(shù),減小擠出儲(chǔ)存能量而減弱其擠出畸變。
(3)CB含量在3.5%為復(fù)合材料黏彈逾滲點(diǎn)和導(dǎo)電逾滲點(diǎn),此時(shí)填充粒子分散成“網(wǎng)絡(luò)”結(jié)構(gòu)。
G′——彈性模量,Pa G″——損耗模量,Pa tanδ——損耗角正切值 ω——角頻率,rad?s-1 η*——復(fù)數(shù)黏度,Pa?s ——剪切速率,s-1 ——臨界剪切速率,s-1 τ——剪切應(yīng)力,kPa
[1] LI Q, CHEN Y, SONG XSynthesis of phosphorus-containing flame‐retardant antistatic copolymers and their applications in polypropylene[J]. J. Appl. Polym. Sci., 2015, 132(12): 41677-41685.
[2] 劉罡. 阻燃抗靜電聚乙烯塑料的研究[J]. 塑料工業(yè), 2011, 39(S1): 116-119. LIU G. Study on flame retardant and antistatic properties of polyethylene plastic[J]. China Plastics Industry, 2011, 39(S1): 116-119.
[3] XU J, XIAO J, ZHANG ZModified polyaniline and its effects on the microstructure and antistatic properties of PP/PANI-APP/CPP composites[J]. J. Appl. Polym. Sci., 2014, 131(17): 8931-8938.
[4] BREBU M, JAKAB E, SAKATA Y. Effect of flame retardants and Sb2O3, synergist on the thermal decomposition of high-impact polystyrene and on its debromination by ammonia treatment[J]. J. Analytical & Appl. Pyrolysis, 2007, 79(1/2): 346-352.
[5] AND S Q W, DRDA P A. Superfluid-like stick-slip transition in capillary flow of linear polyethylene melts(Ⅰ): General features[J]. Macromolecules, 1996, 29(7): 2627-2632.
[6] KOOPMANS R, DOELDER J D, MOLENAAR J. Polymer Melt Fracture[M].Florida: CRC Press Taylor & Francis Group, 2011: 78-91.
[7] PALZA H, REZNIK B, KAPPES MCharacterization of melt flow instabilities in polyethylene/carbon nanotube composites[J]. Polymer, 2010, 51(16): 3753-3761.
[8] WOOINN Y, SUKHADIA A M, WHITTE W M. A study of “worms” melt fracture in polyethylene extrusion blow molding process using capillary rheometry[J]. Polym. Eng. Sci., 2016, 56(6): 650-656.
[9] 吳其曄, 巫靜安. 高分子材料流變學(xué)[M]. 北京:高等教育出版社, 2014: 173-180. WU Q Y, WU J A. Rheology of Polymer Materials[M]. Beijing: China Higher Education Press, 2014: 173-180.
[10] UEMATSU H, HORISAWA N, HORIKIDA TEffect of carbon fiber on the capillary extrusion behaviors of high-density polyethylene[J]. Polymer Journal, 2012, 45(4): 449-456.
[11] TAO Z, HUANG J C. Observation of melt fracture of polypropylene resins in capillary flow[J]. Polymer, 2003, 44(3): 719-727.
[12] FUJIYAMA M, INATA H. Melt fracture behavior of polypropylene-type resins with narrow molecular weight distribution(Ⅱ): Suppression of sharkskin by addition of adhesive resins [J]. J. Appl. Polym. Sci., 2010, 84(12): 2120-2127.
[13] 廖華勇, 譚中欣, 陶國(guó)良. 聚合物熔體的壁面滑移行為[J]. 高分子材料科學(xué)與工程, 2009, 12: 103-106. LIAO H Y, TAN Z X, TAO G L. Wall slip behavior of polymer melts[J]. Polym. Mater. Sci. Eng., 2009, 12: 103-106.
[14] 陳曉媛, 王港, 范五一, 等. 熔體破裂的第二光滑區(qū)現(xiàn)象研究[J]. 中國(guó)塑料, 2003, (6): 64-67. CHEN X Y, WANG G, FAN W YStudy on second smooth section phenomena in melt fracture[J]. China Plastics, 2003, (6): 64-67.
[15] BURGHELEA T I, GRIESS H J, MUNSTEDT H. Comparative investigations of surface instabilities (“sharkskin”) of a linear and a long-chain branched polyethylene[J]. J. Non-Newt. Fluid Mech., 2010, 165(19): 1093-1104.
[16] ANSARI M, YONG W I, SUKHADIA A MMelt fracture of HDPEs: metalloceneZiegler-Natta and broad MWD effects[J]. Polymer, 2012, 53(19): 4195-4201.
[17] YOO T, DONG H K, SON Y. Effects of long chain branching on melt fractures in capillary extrusion of metallocene-catalyzed linear low-density polyethylene melts[J]. J. Appl. Polym. Sci., 2012, 126(S2): E322-E329.
[18] 吳其曄, 李鵬, 王寧, 等. 聚合物熔體擠出畸變的指紋辨識(shí)及量化描述[J]. 現(xiàn)代塑料加工應(yīng)用, 2013, 25(2): 59-63. WU Q Y, LI P, WANG NThe fingerprinting and quantitative descriptions of extrudate distortions of polymer melts[J]. Modern Plastics Processing and Applications, 2013, 25(2): 59-63.
[19] YANNICK G, JACQUES G. In?uence of ?lters in the die entrance region on gross melt fracture: extrudate and ?ow visualization[J]. J. Non-Newt. Fluid Mech., 2002, 102: 19-36.
[20] 王鵬. 高填充木塑復(fù)合材料流變行為與結(jié)晶性質(zhì)研究[D]. 上海:上海交通大學(xué), 2011. WANG P. Study on rheological behaviors and crystallization properties of highly filled wood plastic composites [D]. Shanghai: Shanghai Jiao Tong University, 2011.
[21] RUNGRUANGSUPARAT S, PATCHARAPHUM S, SOMBATSOMPOP N. Materials modification and die design for minimizing internal melt distortions of glass fiber/PP co-extrudates[J]. Polymer Testing, 2017, 57: 184-191.
[22] SONG Y, ZHENG Q. Concepts and conflicts in nanoparticles reinforcement to polymers beyond hydrodynamics[J]. Progress in Materials Science, 2016, 84: 1-58.
[23] GAVRILOV A A, CHERTOVICH A V, KHALATUR P GStudy of the mechanisms of filler reinforcement in elastomer nanocomposites[J]. Macromolecules, 2014, 47(15): 5400-5408.
[24] GALINDO-ROSALES F J, MOLDENAERS P, VERMANT J. Assessment of the dispersion quality in polymer nanocomposites by rheological methods[J]. Macromolecular Materials & Engineering, 2011, 296(3/4): 331-340.
[25] BROCHARD F, GENNES P G D. Shear-dependent slippage at a polymer/solid interface[J]. Langmuir, 1992, 8(12): 3033-3037.
[26] LIU C, HE J, RUYMBEKE E VEvaluation of different methods for the determination of the plateau modulus and the entanglement molecular weight[J]. Polymer, 2006, 47(13): 4461- 4479.
[27] FERRY, JOHN D. Viscoelastic Properties of Polymers[M]. 3rd ed. New York: Wiley, 1980.
[28] SHEN L, LI X J , LI J CDetermination of molecular weight and distribution of tetrafluoroethylene- hexafluoropropylene copolymers by a dynamic rheology method[J]. J. Macr. Sci. Part B, 2012, 51(2): 383-392.
[29] YAMAGUCHI M, MIYATA H, TAN VRelation between molecular structure and flow instability for ethylene/-olefin copolymers[J]. Polymer, 2002, 43(19): 5249-5255.
[30] LARSON R G. The Structure and Rheology of Complex Fluids[M]. Oxford: Oxford University Press, 1998.
[31] 王克儉, 周持興. 考慮壁面滑移的Z-W流變模型及其應(yīng)用[J]. 高分子通報(bào), 2003, (1): 8-17. WANG K J, ZHOU C X. Z-W rheological model for polymer melt considering wall slip and its applications[J]. Polymer Bulletin, 2003, (1): 8-17.
[32] XIE J, JIN Y C. Parameter determination for the Cross rheology equation and its application to modeling non-Newtonian flows using the WC-MPS method[J]. Engineering Applications of Computational Fluid Mechanics, 2015, 10(1): 111-129.
[33] BOISLY M, BRUMMUND J, ULBRICHT V. Analysing the large amplitude oscillatory shear of the Cross and Cross-Maxwell models with the aid of Fourier Transform Rheology using the example of a solvent-borne alkyd primer[J]. J. Non-Newt. Fluid Mech., 2015, 225(5): 10-27.
[34] 宋義虎, 鄭強(qiáng). 粒子填充高分子熔體的動(dòng)態(tài)流變行為[J]. 高分子通報(bào), 2013, (9): 22-34. SONG Y H, ZHENG Q. Dynamic rheologies of particle filled polymer melts[J]. Polymer Bulletin, 2013, (9): 22-34.
Rheological properties of flame retardent and antistatic polypropylene material
WANG Shuai1,2, WANG Kejian1, MA Yi2, ZHANG Yinling2, LIANG Wenbin2,WANG Xu1,SHI Jiao1,JIANG Zhuoyu1
(1College of Mechanical and Electrical Engineering, Beijing University of Chemical and Technology, Beijing 100029, China;2National Institute of Clean and Low Carbon Energy, Beijing 102211, China)
The effects of brominated flame retardant and carbon black-filling on the extrusion distortion of PP melt and dynamic rheological properties were investigated by capillary rheometer and rotational rheometer. It was shown that the more filled resin exhibited higher critical shear rate for extrusion distortion corresponding to wider processing window in low filler content range. In dynamic rheometry, the higher filled resins behavior in shear thinning with higher complex viscosity,storage modulus and loss modulus instead of lower loss factor. Quantitative analyses were conducted using entanglement model and Cross model. Filler can absorb polymer chains to reduce wall adsorption dropping distortion and result in higher critical shear rate. Particle filled network increases in the plateau modulus and entanglement density shortening relaxation time for quicker recovering according to smaller extrusion swell ratio. Carbon black more than 3.5%(mass) in composite forms percolation network being characterized by higher zero shear viscosity and longer relaxation time where liquid-solid-like transition occurs. Simultaneously, the surface resistivity decreased obviously. The viscoelastic percolation value consistent with the electrical percolation value approximately.
rheology; polymer; particle; composites; extrusion distortion; percolation network.
10.11949/j.issn.0438-1157.20170214
TQ 050.4+25
A
0438—1157(2017)08—3023—07
王克儉,馬伊。第一作者:王帥(1991—),男,碩士研究生。
航空科學(xué)基金項(xiàng)目(201535S9001)。
2017-03-03收到初稿,2017-04-14收到修改稿。
2017-03-03.
WANG Kejian, wangkj@mail.buct.edu.cn; MA Yi, mayi@nicenergy.com
supported by the National Aerospace Science Foundation of China (201535S9001).