崔書強(qiáng)劉曉莉喬德才鄭健
1北京師范大學(xué)體育與運(yùn)動(dòng)學(xué)院(北京100875)2北京市體育科學(xué)研究所(北京100075)3廣州中醫(yī)藥大學(xué)(廣州510006)
力竭運(yùn)動(dòng)對(duì)大鼠前額葉皮層小清蛋白陽性神經(jīng)元及NMDAR2B表達(dá)的影響
崔書強(qiáng)1,2劉曉莉1喬德才1鄭健3
1北京師范大學(xué)體育與運(yùn)動(dòng)學(xué)院(北京100875)2北京市體育科學(xué)研究所(北京100075)3廣州中醫(yī)藥大學(xué)(廣州510006)
目的:通過觀察力竭運(yùn)動(dòng)后大鼠前額葉皮層小清蛋白(parvalbumin,PV)陽性神經(jīng)元的表達(dá)變化,探討運(yùn)動(dòng)疲勞對(duì)前額葉皮層神經(jīng)微環(huán)路可塑性的影響,同時(shí)觀察前額葉皮層N-甲基-D-天門冬氨酸受體NR2B亞型(N-methyl-D-aspartatereceptor NR2B subunit,NMDAR2B)表達(dá)的變化,進(jìn)一步探討運(yùn)動(dòng)疲勞中樞調(diào)節(jié)的可能機(jī)制。方法:雄性Wistar大鼠36只隨機(jī)分為一次力竭運(yùn)動(dòng)組、重復(fù)力竭運(yùn)動(dòng)組和對(duì)照組。力竭運(yùn)動(dòng)方案采用本實(shí)驗(yàn)室改進(jìn)的Bedford漸增負(fù)荷動(dòng)物運(yùn)動(dòng)方案:I級(jí):8.2 m/min,15 min;II級(jí):15 m/min,15 min;III級(jí):20 m/min,至力竭,重復(fù)力竭運(yùn)動(dòng)組連續(xù)進(jìn)行7天力竭性跑臺(tái)運(yùn)動(dòng),在運(yùn)動(dòng)力竭后采用免疫熒光染色技術(shù)觀察大鼠前額葉皮層PV陽性神經(jīng)元的表達(dá)情況,并記錄陽性細(xì)胞個(gè)數(shù)。采用免疫熒光染色技術(shù)和免疫印跡法檢測(cè)前額葉皮層NMDAR2B的表達(dá)情況。結(jié)果:一次力竭運(yùn)動(dòng)組及重復(fù)力竭運(yùn)動(dòng)組大鼠前額葉皮層PV陽性神經(jīng)元個(gè)數(shù)較對(duì)照組顯著增加(P<0.01)。免疫熒光染色結(jié)果顯示,前額葉皮層NMDAR2B陽性神經(jīng)元在對(duì)照組和重復(fù)力竭運(yùn)動(dòng)組未見明顯表達(dá),一次力竭運(yùn)動(dòng)組可見陽性神經(jīng)元表達(dá);Western blot結(jié)果顯示,與對(duì)照組相比,一次力竭運(yùn)動(dòng)組NMDAR2B表達(dá)相對(duì)較高,而重復(fù)力竭運(yùn)動(dòng)組表達(dá)相對(duì)較低,但均無顯著性差異(P>0.05);NMDAR2B表達(dá)與運(yùn)動(dòng)距離呈顯著負(fù)相關(guān)(P<0.01,r=-0.936)。結(jié)論:力竭運(yùn)動(dòng)通過PV陽性神經(jīng)元的局部環(huán)路的調(diào)節(jié)影響大鼠前額葉皮層神經(jīng)網(wǎng)絡(luò)的可塑性,其參與了運(yùn)動(dòng)疲勞的中樞調(diào)節(jié),為運(yùn)動(dòng)疲勞中樞機(jī)制研究提供了形態(tài)學(xué)基礎(chǔ)。
運(yùn)動(dòng)疲勞;NMDAR2B;小清蛋白;前額葉皮層;中樞調(diào)節(jié)
運(yùn)動(dòng)疲勞可引起肌肉到中樞多個(gè)水平的改變,越來越多的研究認(rèn)為,運(yùn)動(dòng)疲勞的產(chǎn)生是來自皮層高級(jí)中樞的控制[1]。最近有學(xué)者指出前額葉皮層對(duì)運(yùn)動(dòng)耐力以及運(yùn)動(dòng)的終止起很重要的作用[2],人體研究也發(fā)現(xiàn)運(yùn)動(dòng)疲勞時(shí)前額葉皮層會(huì)受到明顯激活[3,4]。前額葉皮層是哺乳動(dòng)物的最高級(jí)中樞,在腦內(nèi)以自上而下的方式控制行為的選擇與執(zhí)行[6],對(duì)機(jī)體的決策、工作記憶以及運(yùn)動(dòng)行為的調(diào)控起重要作用[5,7]。在腦內(nèi)興奮與抑制共同調(diào)節(jié)機(jī)體的行為,越來越多的證據(jù)發(fā)現(xiàn)皮層γ-氨基丁酸(γ-aminobutyric acid,GABA)能中間神經(jīng)元可以抑制錐體神經(jīng)元并調(diào)節(jié)其興奮的輸出,在皮層的小清蛋白(parvalbumin,PV)陽性神經(jīng)元占GABA能中間神經(jīng)元的絕大多數(shù),參與了皮層環(huán)路的反饋和前饋抑制,對(duì)于網(wǎng)絡(luò)振蕩的產(chǎn)生起到很重要的作用;而網(wǎng)絡(luò)振蕩對(duì)感覺感知、認(rèn)知、行為有重要意義[8,9]。PV陽性神經(jīng)元的興奮性輸入受離子型谷氨酸能N-甲基-D-天門冬氨酸(N-methyl-D-aspartic acid,NMDA)受體的調(diào)節(jié),研究已發(fā)現(xiàn)NMDAR2B型受體在GABA能中間神經(jīng)元上有表達(dá),并可以影響GABA能中間神經(jīng)元的活動(dòng)[10]。運(yùn)動(dòng)疲勞會(huì)引起皮層下基底神經(jīng)節(jié)多個(gè)核團(tuán)的放電變化[11,12],這必將受到上游皮層的影響,然而運(yùn)動(dòng)疲勞對(duì)前額葉皮層的影響研究相對(duì)較少。本研究采用PV陽性神經(jīng)元作為標(biāo)記物,觀察力竭性運(yùn)動(dòng)對(duì)前額葉皮層神經(jīng)調(diào)控的影響并分析NMDAR2B可能參與的調(diào)節(jié)機(jī)制。
1.1 實(shí)驗(yàn)對(duì)象與分組
健康雄性8周齡Wistar大鼠36只,體重250~280 g,由北京維通利華實(shí)驗(yàn)動(dòng)物技術(shù)有限公司提供[許可證號(hào):SCXK(京)2012-0001],大鼠購進(jìn)后分籠飼養(yǎng),每籠4只,在北京師范大學(xué)運(yùn)動(dòng)生理學(xué)實(shí)驗(yàn)室動(dòng)物房飼養(yǎng),溫度24±2℃,相對(duì)濕度50%±5%,自由飲食,自然光照。適應(yīng)性飼養(yǎng)3天后隨機(jī)分為一次力竭運(yùn)動(dòng)組、重復(fù)力竭運(yùn)動(dòng)組和對(duì)照組,每組12只,其中6只用來做前額葉皮層PV陽性神經(jīng)元及NMDAR2B的免疫熒光染色,另外6只用來做前額葉皮層NMDAR2B蛋白表達(dá)的免疫印跡檢測(cè)。所有操作程序經(jīng)北京師范大學(xué)動(dòng)物倫理委員會(huì)批準(zhǔn)。
1.2 運(yùn)動(dòng)方案
一次力竭運(yùn)動(dòng)組采用本實(shí)驗(yàn)室改進(jìn)的Bedford漸增負(fù)荷動(dòng)物運(yùn)動(dòng)方案:動(dòng)物跑臺(tái)采用杭州段氏(DSPT-202)大鼠跑臺(tái),坡度為0,I級(jí):8.2 m/min,15 min;II級(jí):15 m/min,15 min;III級(jí):20 m/min,至力竭[13]。重復(fù)力竭運(yùn)動(dòng)組采用同樣的運(yùn)動(dòng)方案,連續(xù)進(jìn)行7天力竭性跑臺(tái)運(yùn)動(dòng)。記錄大鼠的運(yùn)動(dòng)持續(xù)時(shí)間、運(yùn)動(dòng)距離等指標(biāo)。對(duì)照組不進(jìn)行跑臺(tái)運(yùn)動(dòng)。
1.3 測(cè)試方法
1.3.1 免疫熒光染色
1.3.1.1 灌注取腦
對(duì)照組、一次力竭運(yùn)動(dòng)組和重復(fù)力竭運(yùn)動(dòng)組各6只大鼠用于前額葉皮層PV陽性神經(jīng)元及NMDAR2B的免疫熒光染色。對(duì)照組在安靜狀態(tài)下、一次力竭運(yùn)動(dòng)組在進(jìn)行一次力竭運(yùn)動(dòng)后即刻、重復(fù)力竭運(yùn)動(dòng)組在進(jìn)行7天力竭運(yùn)動(dòng)后即刻進(jìn)行腹腔注射10%水合氯醛麻醉,經(jīng)心臟首先快速灌注冷的生理鹽水,然后先快后慢灌注4%多聚甲醛(PFA)。以大鼠四肢僵直為灌注成功,剝離全腦,入4%PFA的30%的蔗糖溶液固定,4℃保存。
1.3.1.2 冰凍切片與染色
待大鼠腦組織沉底后對(duì)其腦進(jìn)行連續(xù)冠狀冰凍切片,選取前額葉皮層、紋狀體部位,切片厚度40微米,每6片選取一片進(jìn)行組織免疫熒光染色。切片收集于0.1 M的PB中,置于4℃冰箱待用。免疫熒光染色:切片置于0.1 M的PB中洗一次,3%羊血清室溫封閉30 min;加一抗PV(來源小鼠的單克隆抗體,Abcam,貨號(hào):ab64555)稀釋濃度為1︰1000,一抗NMDAR2B(來源于兔的多克隆抗體,Abcam,貨號(hào):ab65783)稀釋濃度為1︰500,一抗4℃孵育24 h,0.1 M的PB洗3次,每次5 min;二抗采用Alexa Fluor?594標(biāo)記的羊抗小鼠IgG(Invitrogen,貨號(hào)A-11005)和Alexa Fluor?488標(biāo)記的羊抗兔IgG(Invitrogen貨號(hào):A-11034),二抗稀釋濃度為1:500,室溫孵育2 h(避光),0.1 M的PB洗3次,將切片在0.02 M的PB中貼于載玻片上,用中性甘油封片,然后在熒光顯微鏡、激光共聚焦顯微鏡下觀察并拍片。
1.3.1.3 圖像分析與數(shù)據(jù)處理
使用Olympus熒光顯微鏡(型號(hào):DP-73)及激光共聚集顯微鏡對(duì)大鼠前額葉皮層進(jìn)行圖像的拍攝,每組大鼠的相同層面中選取6張腦片進(jìn)行統(tǒng)計(jì),記錄20倍鏡下每張片子的PV陽性細(xì)胞的個(gè)數(shù)。
1.3.2 免疫印跡(Western n B B l l o o t t)法檢測(cè)N N M M D D A A R R22B B蛋白表達(dá)
對(duì)照組、一次力竭運(yùn)動(dòng)組和重復(fù)力竭運(yùn)動(dòng)組各6只大鼠用于前額葉皮層NMDAR2B蛋白表達(dá)的檢測(cè)。對(duì)照組在安靜狀態(tài)下、一次力竭運(yùn)動(dòng)組在進(jìn)行一次力竭運(yùn)動(dòng)后即刻、重復(fù)力竭運(yùn)動(dòng)組在進(jìn)行7天力竭運(yùn)動(dòng)后即刻進(jìn)行斷頭取腦,快速剝離腦組織后,在冰盤上分離前額葉皮層,驟冷后凍存。進(jìn)一步測(cè)定前進(jìn)行腦組織裂解,離心并取上清,凍存?zhèn)溆?。采用二辛可寧酸法(Bicinchoninic Acid,BCA)法進(jìn)行蛋白濃度檢測(cè)(試劑盒由碧云天生物公司提供),取50微升樣品與5倍的上樣緩沖液(包含4%SDS,10%2-巰基乙醇,20%甘油,0.004%溴酚藍(lán)和0.125 M Tris·HCl,pH 6.8)煮沸5 min,置于10%種聚丙烯酰胺凝膠上進(jìn)行電泳,聚偏二氟乙烯(polyvinylidene fluoride,PVDF)轉(zhuǎn)膜(恒流300 mA,90 min),用5%脫脂奶粉封閉,室溫1 h,加一抗NMDAR2B(abcam,ab65783,1︰2000)孵育,4℃過夜,TBS-T洗3次,每次5 min;加辣根過氧化物酶(HRP)標(biāo)記的山羊抗兔二抗(1︰10000)孵育1小時(shí)。使用ECL化學(xué)發(fā)光顯色液(pierce),將顯色后的底片掃描,并用IPP6軟件對(duì)圖像進(jìn)行灰度分析。
1.4 統(tǒng)計(jì)方法
2.1 P P V V陽性神經(jīng)元在前額葉皮層的表達(dá)
免疫熒光染色結(jié)果顯示,前額葉皮層PV陽性神經(jīng)元的陽性表達(dá)在對(duì)照組較弱,一次力竭運(yùn)動(dòng)組有較明顯的陽性神經(jīng)元表達(dá),而重復(fù)力竭運(yùn)動(dòng)組陽性神經(jīng)元表達(dá)最強(qiáng)(圖1a)。
圖1b顯示,一次力竭運(yùn)動(dòng)組及重復(fù)力竭運(yùn)動(dòng)組大鼠前額葉皮層PV陽性神經(jīng)元個(gè)數(shù)較對(duì)照組顯著增加(P<0.01)。
2.2 N N M M D D A A R R22B B陽性神經(jīng)元在前額葉皮層的表達(dá)
免疫熒光染色結(jié)果顯示,前額葉皮層NMDAR2B陽性神經(jīng)元在對(duì)照組和重復(fù)力竭運(yùn)動(dòng)組無明顯表達(dá),一次力竭運(yùn)動(dòng)組可見陽性神經(jīng)元表達(dá)(如圖2b所示)。
圖2a顯示,與對(duì)照組相比,一次力竭運(yùn)動(dòng)組大鼠前額葉皮層NMDAR2B蛋白表達(dá)較高,而重復(fù)力竭運(yùn)動(dòng)組表達(dá)相對(duì)較低,但差異均無統(tǒng)計(jì)學(xué)意義(P>0.05)。
圖1 前額葉皮層PV陽性神經(jīng)元的表達(dá)
圖2 大鼠前額葉皮層NMDAR2B的表達(dá)
2.3 運(yùn)動(dòng)距離和運(yùn)動(dòng)時(shí)間
如圖3所示,一次力竭運(yùn)動(dòng)組大鼠平均運(yùn)動(dòng)距離較重復(fù)力竭運(yùn)動(dòng)組短,但差異無統(tǒng)計(jì)學(xué)意義(P>0.05);一次力竭運(yùn)動(dòng)組運(yùn)動(dòng)持續(xù)時(shí)間稍低于重復(fù)力竭運(yùn)動(dòng)組,但差異無統(tǒng)計(jì)學(xué)意義(P>0.05)。
圖3 大鼠運(yùn)動(dòng)距離和運(yùn)動(dòng)時(shí)間
2.4 N N M M D D A A R R22B B及P P V V陽性神經(jīng)元表達(dá)與運(yùn)動(dòng)距離的關(guān)系
如圖4所示,大鼠的運(yùn)動(dòng)距離與其前額葉皮層NMDAR2B的表達(dá)量呈顯著負(fù)相關(guān)(P<0.01,r=?0.936),而與大鼠前額葉皮層PV陽性神經(jīng)元表達(dá)個(gè)數(shù)無顯著相關(guān)(P=0.609,r=0.312)。
圖4 NMDAR2B及PV陽性神經(jīng)元表達(dá)與運(yùn)動(dòng)距離相關(guān)性
3.1 力竭性運(yùn)動(dòng)對(duì)大鼠前額葉皮層P P V V陽性神經(jīng)元的影響
本研究發(fā)現(xiàn),一次力竭運(yùn)動(dòng)及多次力竭運(yùn)動(dòng)后大鼠前額葉皮層PV陽性神經(jīng)元表達(dá)均顯著增多,這提示力竭運(yùn)動(dòng)使前額葉皮層神經(jīng)調(diào)節(jié)微環(huán)路產(chǎn)生了可塑性改變,PV陽性神經(jīng)元在前額葉皮層的分布具有活動(dòng)依賴性,并且這種改變可能有利于在不同環(huán)境下的適應(yīng)[14]。結(jié)果還說明,來自皮層錐體神經(jīng)元對(duì)PV陽性神經(jīng)元的興奮性驅(qū)動(dòng)增加,PV陽性神經(jīng)元通過抑制周圍的興奮性神經(jīng)元而控制興奮性神經(jīng)元的放電,進(jìn)而通過反饋和前饋抑制等方式來調(diào)節(jié)機(jī)體的行為狀態(tài)[16]。力竭運(yùn)動(dòng)是一個(gè)典型的應(yīng)激,當(dāng)機(jī)體暴露于應(yīng)激狀態(tài)時(shí),一般會(huì)引起前額葉皮層功能的紊亂,從而使認(rèn)知能力降低,這可能與PV陽性神經(jīng)元的過度表達(dá)有關(guān)[15]。
運(yùn)動(dòng)疲勞是多系統(tǒng)共同作用的結(jié)果,最終引起運(yùn)動(dòng)不能持續(xù),來自外周的感覺通過反饋傳遞到軀體感覺皮層,軀體感覺皮層將信息傳遞到前額葉皮層,前額葉皮層整合來自軀體感覺皮層、運(yùn)動(dòng)皮層的信息,通過與背內(nèi)側(cè)紋狀體形成皮層紋狀體環(huán)路,該環(huán)路主要參與了決策、行為靈活性轉(zhuǎn)變、工作記憶等活動(dòng)。本研究發(fā)現(xiàn)力竭運(yùn)動(dòng)引起前額葉皮層PV陽性神經(jīng)元表達(dá)增多,提示力竭運(yùn)動(dòng)會(huì)影響機(jī)體在行為靈活性轉(zhuǎn)變、決策等方面的表現(xiàn)。運(yùn)動(dòng)行為改變的靈活性與前額葉皮層突觸和樹突棘的重組有關(guān),皮層抑制性中間神經(jīng)元與皮層興奮性錐體神經(jīng)元通過NMDA受體產(chǎn)生廣泛聯(lián)系。采用在體雙光子成像技術(shù)發(fā)現(xiàn),在運(yùn)動(dòng)性技能學(xué)習(xí)中,皮層表達(dá)PV的神經(jīng)元的樹突棘會(huì)隨著運(yùn)動(dòng)技能的獲得而增加[17],表達(dá)PV的中間神經(jīng)元通過抑制胞體及胞體周圍興奮性神經(jīng)元,從而調(diào)節(jié)興奮性神經(jīng)元的放電,而力竭運(yùn)動(dòng)引起PV陽性神經(jīng)元的增加可能與運(yùn)動(dòng)技能學(xué)習(xí)引起PV陽性神經(jīng)元表達(dá)增加的調(diào)節(jié)機(jī)制不同。
3.2 力竭性運(yùn)動(dòng)對(duì)前額葉皮層N N M M D D A A R R22B B表達(dá)的影響
本研究發(fā)現(xiàn),在一次性力竭運(yùn)動(dòng)中,大鼠前額葉皮層出現(xiàn)了NMDAR2B的表達(dá),并且免疫印跡檢測(cè)也證實(shí)了一次性力竭運(yùn)動(dòng)組NMDAR2B表達(dá)較高,這提示在一次性力竭運(yùn)動(dòng)中大鼠前額葉皮層選擇性學(xué)習(xí)及靈活性行為轉(zhuǎn)變加強(qiáng)。本研究對(duì)NMDAR2B的表達(dá)與大鼠的運(yùn)動(dòng)距離進(jìn)行相關(guān)分析,結(jié)果進(jìn)一步證實(shí)NM?DAR2B受體的高表達(dá)與行為選擇密切相關(guān),這同時(shí)也提示NMDAR2B受體可能是運(yùn)動(dòng)疲勞中樞調(diào)節(jié)機(jī)制的一個(gè)重要靶點(diǎn)。前額葉皮層錐體神經(jīng)元之間的興奮性傳遞是通過谷氨酸能突觸,其中NMDA受體是非常重要的一種,它參與了經(jīng)典的突觸可塑性,NMDA受體對(duì)前額葉皮層的正常功能起非常重要的作用[18]。研究發(fā)現(xiàn)在前額葉皮層敲除NMDAR2B受體或使用NM?DAR2B受體的拮抗劑均可導(dǎo)致行為轉(zhuǎn)換受損[19]。前額葉皮層NMDAR2B的高表達(dá)是前額葉皮層選擇性學(xué)習(xí)和靈活性行為轉(zhuǎn)換功能所必需的,然而過高的NM?DAR2B對(duì)神經(jīng)元是有害的,這會(huì)增加谷氨酸毒性作用[20]。前額葉皮層NMDAR2B受體的高表達(dá)說明前額葉皮層來自其他皮層如軀體感覺皮層的興奮性傳入更加敏感,它可能通過激活與其相聯(lián)系的皮層抑制性中間神經(jīng)元通過局部微環(huán)路產(chǎn)生抑制。當(dāng)機(jī)體處于應(yīng)激狀態(tài)或給予糖皮質(zhì)激素時(shí),腦內(nèi)胞外谷氨酸的釋放明顯增加,例如在強(qiáng)迫游泳訓(xùn)練中采用在體微透析的方法對(duì)前額葉皮層胞外谷氨酸含量進(jìn)行檢測(cè)發(fā)現(xiàn)前額葉皮層谷氨酸的含量明顯升高。前額葉皮層谷氨酸釋放的增加依賴于糖皮質(zhì)激素受體的激活[21]。也有研究指出,長(zhǎng)期應(yīng)激可引起NR2B亞型在前額葉皮層的降低,NR2B的拮抗劑Ro25-6981對(duì)強(qiáng)迫游泳以及學(xué)習(xí)無助感模型具有抗抑郁作用[22]。有證據(jù)顯示,應(yīng)激可以打破前額葉皮層突觸可塑性的過程,甚至可以損害前額葉皮層的認(rèn)知控制過程[23]。Li等[24]研究大鼠在應(yīng)激刺激之后,表現(xiàn)出對(duì)糖水的偏好降低,而在給予ketamine之后這種行為可以得到較好的糾正。其進(jìn)一步對(duì)應(yīng)激刺激的大鼠給予了NMDAR2B的拮抗劑Ro-25-6981干預(yù),結(jié)果發(fā)現(xiàn)其對(duì)糖水偏好降低的這種行為得到了糾正。他們也指出Ro25-6981對(duì)行為和突觸的作用依賴于mTOR的信號(hào)轉(zhuǎn)導(dǎo)。
本研究發(fā)現(xiàn)一次力竭運(yùn)動(dòng)后前額葉皮層PV表達(dá)增強(qiáng),PV陽性神經(jīng)元作為重要的輸出神經(jīng)元,對(duì)于前額葉皮層最終運(yùn)動(dòng)行為的決策起重要作用。然而重復(fù)力竭組大鼠前額葉皮層PV陽性神經(jīng)元出現(xiàn)了明顯表達(dá),而NMDAR2B表達(dá)相對(duì)不高,這可能是前額葉皮層對(duì)跑臺(tái)運(yùn)動(dòng)適應(yīng)的一種表現(xiàn)。這也提示,在重復(fù)力竭后大鼠前額葉皮層可引起運(yùn)動(dòng)疲勞中樞調(diào)控環(huán)路的改變。在前額葉皮層與背內(nèi)側(cè)紋狀體之間形成聯(lián)絡(luò)環(huán)路,對(duì)于決策及運(yùn)動(dòng)學(xué)習(xí)的初級(jí)階段起重要調(diào)節(jié)作用,隨著運(yùn)動(dòng)學(xué)習(xí)及運(yùn)動(dòng)技能的形成,軀體運(yùn)動(dòng)皮層-背外側(cè)紋狀體形成的運(yùn)動(dòng)環(huán)路在運(yùn)動(dòng)的調(diào)控中起重要作用[8]。從本研究中可以看出,重復(fù)力竭運(yùn)動(dòng)組前額葉皮層NMDAR2B的表達(dá)沒有相對(duì)較低,由此推測(cè)重復(fù)力竭運(yùn)動(dòng)疲勞產(chǎn)生的中樞調(diào)控中軀體運(yùn)動(dòng)皮層-背外側(cè)紋狀體通路起重要作用。然而通過分析發(fā)現(xiàn),NMDAR2B的表達(dá)量與運(yùn)動(dòng)距離呈非常顯著性負(fù)相關(guān),這也進(jìn)一步證實(shí)了大鼠在運(yùn)動(dòng)力竭過程中,NMDAR2B更多地參與了行為的決策和轉(zhuǎn)換。在前額葉皮層抑制NMDA受體可以單純降低GABA能中間神經(jīng)元的活動(dòng),增加主要錐體神經(jīng)元的放電頻率,因此NMDA受體優(yōu)先作用于皮層的抑制性中間神經(jīng)元,而NMDA受體的抑制通過對(duì)錐體神經(jīng)元的去抑制而引起皮層的興奮增強(qiáng)[25]。
力竭運(yùn)動(dòng)通過對(duì)PV陽性神經(jīng)元局部環(huán)路的調(diào)節(jié)影響了大鼠前額葉皮層神經(jīng)網(wǎng)絡(luò)的可塑性,這種前額葉皮層的神經(jīng)網(wǎng)絡(luò)可塑性參與了運(yùn)動(dòng)疲勞的中樞調(diào)節(jié),NMDAR2B受體參與了運(yùn)動(dòng)疲勞中樞調(diào)節(jié)機(jī)制。
[1]Noakes TD.Fatigue is a Brain-Derived Emotion that Regulates the Exercise Behavior to Ensure the Protection of Whole Body Homeostasis[J].Front Physiol,2012,3:82.
[2]Robertson CV,Marino FE.A role for the prefrontal cor?tex in exercise tolerance and termination[J].J Appl Physi?ol,2016,120(4):464-466.
[3]Krebs RM,Boehler CN,Roberts KC,et al.The involve?ment of the dopaminergic midbrain and cortico-striatalthalamic circuits in the integration of reward prospect and attentional task demands[J].Cereb Cortex,2012,22(3):607-615.
[4]郭峰.指屈肌次最大隨意等長(zhǎng)收縮誘發(fā)疲勞過程中中樞神經(jīng)電生理學(xué)機(jī)制研究[D].吉林大學(xué)博士學(xué)位論文,2014.
[5]Tanji J,Hoshi E.Role of the lateral prefrontal cortex in executive behavioral control[J].Physiol Rev,2008,88(1):37-57.
[6]Dembrow N,Johnston D.Subcircuit-specific neuromodula?tion in the prefrontal cortex[J].Front Neural Circuits,2014,8:1-9.
[7]Yarrow K,Brown P,Krakauer JW.Inside the brain of an elite athlete:the neural processes that support high achievement in sports[J].Nat Rev Neurosci,2009,10(8):585-596.
[8]Yin HH,Knowlton BJ.The role of the basal ganglia in habit formation[J].Nat Rev Neurosci,2006,7(6):464-476.
[9]Harris KD,Shepherd GM.The neocortical circuit:themes and variations[J].Nat Neurosci,2015,18(2):170-181.
[10]Lewis DA,Hashimoto T,Volk DW.Cortical inhibitory neurons and schizophrenia[J].Nat Rev Neurosci,2005,6(4):312-324.
[11]喬德才,李許貞,劉曉莉,等.力竭運(yùn)動(dòng)過程中大鼠紋狀體神經(jīng)元局部場(chǎng)電活動(dòng)的動(dòng)態(tài)研究[J].中國(guó)運(yùn)動(dòng)醫(yī)學(xué)雜志,2012,31(10):855-860.
[12]喬德才,侯莉娟,何德富,等.運(yùn)動(dòng)疲勞對(duì)大鼠新紋狀體神經(jīng)元電活動(dòng)的影響[J].中國(guó)運(yùn)動(dòng)醫(yī)學(xué)雜志,2005,24(6):676-680.
[13]楊東升,喬德才,劉曉莉.力竭運(yùn)動(dòng)過程中大鼠紋狀體葡萄糖/乳酸代謝的實(shí)時(shí)觀察[J].中國(guó)運(yùn)動(dòng)醫(yī)學(xué)雜志,2009,28(4):384-387.
[14]Dehorter N,Ciceri G,Bartolini G,et al.Tuning of fastspiking interneuron properties by an activity-dependent transcriptional switch[J].Science,2015,349(6253):1216-1220.
[15]Arnsten AF.Stress weakens prefrontal networks:molecu?lar insults to higher cognition[J].Nat Neurosci,2015,18(10):1376-1385.
[16]Hu H,Gan J,Jonas P.Interneurons.Fast-spiking,parval?bumin+GABAergic interneurons:from cellular design to microcircuit function[J].Science,2014,345(6196):1255263.
[17]Chen SX,Kim AN,Peters AJ,et al.Subtype-specific plas?ticity of inhibitory circuits in motor cortex during motor learning[J].Nat Neurosci,2015,18(8):1109.
[18]Wang H,Stradtman GG,Wang XJ,et al.A specialized NMDA receptor function in layer 5 recurrent microcircuit?ry of the adult rat prefrontal cortex[J].Proc Natl Acad Sci U S A,2008,105(43):16791-16796.
[19]Brigman JL,Daut RA,W right T,et al.GluN2B in cortico?striatal circuits governs choice learning and choice shift?ing[J].Nat Neurosci,2013,16(8):1101-1110.
[20]Hardingham GE,Bading H.The Yin and Yang of NMDA receptor signaling[J].Trends Neurosci,2003,26(2):81-89.
[21]Popoli M,Yan Z,McEwen BS,et al.The stressed syn?apse:the impact of stress and glucocorticoids on gluta?mate transmission[J].Nat Rev Neurosci,2011,13(1):22-37.
[22]Lima-Ojeda JM,Vogt MA,Pfeiffer N,et al.Pharmacologi?cal blockade of GluN2B-containing NMDA receptors in?duces antidepressant-like effects lacking psychotomimetic action and neurotoxicity in the perinatal and adult ro?dent brain[J].Prog Neuropsychopharmacol Biol Psychia?try,2013,45:28-33.
[23]Dias-Ferreira E,Sousa JC,Melo I,et al.Chronic stress causes frontostriatal reorganization and affects decisionmaking[J].Science,2009,325(5940):621-625.
[24]Li N,Liu RJ,Dwyer JM,et al.Glutamate N-methyl-D-as?partate receptor antagonists rapidly reverse behavioral and synaptic deficits caused by chronic stress exposure [J].Biol Psychiatry,2011,69(8):754-761.
[25]Carlén M,Meletis K,Siegle JH,et al.A critical role for NMDA receptors in parvalbumin interneurons for gamma rhythm induction and behavior[J].Molecular Psychiatry,2012,17(5):537-548.
Effectsof Exhausted Treadm illRunning on the Expression of Parvalbum in Positive Neuronsand GluN2B-containing NMDA Receptors in the PrefrontalCortex of Rats
CuiShuqiang1,2,Liu Xiaoli1,Qiao Decai1,Zheng Jian3
1College ofPhysical Education,Beijing NormalUniversity,Beijing 100875,China 2Beijing Research Institute ofSportsScience,Beijing 100075,China 3Guangzhou University ofChineseMedicine,Guangzhou 510006,China Corresponding Author:Qiao Decai,Email:decaiq@bnu.edu.cn
ObjectiveTo explore the effects of excise-induced fatigue on the microloop plasticity of prefrontal cortex through observing the expression of parvalbumin positive neurons in prefrontal cortexes of rats induced by exhaustive exercise,so as to find out the possible mechanism of the central regula?tion of exercise-induced fatigue by measuring the expression of NMDAR2B receptors.Methods Thirtysix Wistar rats were randomly divided into an exhausted group(E),a repeated exhaustion group(RE)and a control group(CG),each of 12.For group E,the adjusted Bedford incremental load of treadmill exercise program was employed:the initial treadmill speed was 8.2 m/min,lasting for 15 minutes,thenincreased to 15 m/min for another 15 minutes,and finally increased to 20 m/min till exhaustion.For RE group,they were given continuous treadmill exercises to exhaustion for consecutive 7 days.The im?munofluorescence technique was used to observe the expression of PV+interneurons after exhausted treadmill running.The Western blotting technique was used to determine the expression of NMDAR2B in the tissue of the prefrontal cortex.ResultsAfter the exhausted treadmill running,the expression of PV+interneurons in the prefrontal cortexes of both E and RE groups increased significantly compared with the control group(P<0.01).The immunofluorescence results indicated that NMDAR2B positive neu?rons were seen in group E,but not obviously in group CG and RE.The Western blotting showed that compared with CG group the protein expression of NMDAR2B in prefrontal cortexes of group E was rel?atively high,and that of group RE was relatively low,but without significant difference(P>0.05).The running distance and prefrontal cortex NMDAR2B expression were found negatively correlated(P<0.01).Conclusions Exhaustive exercises have an impact on the plasticity in rats’prefrontal cortex neural network through regulating the local loop of PV positive neurons.This plasticity of the prefron?tal cortex is involved in the regulation of central fatigue.The present study might provide morphologi?cal basis for the research of central mechanism of the exercise-induced fatigue.
exercise-induced fatigue,NMDAR2B parvalbumin,prefrontal cortex,central regulation
2016.11.15
國(guó)家自然科學(xué)基金資助項(xiàng)目(31571221);北京市自然科學(xué)基金資助項(xiàng)目(5142012)
喬德才,Email:decaiq@bnu.edu.cn
中國(guó)運(yùn)動(dòng)醫(yī)學(xué)雜志2017年3期