楊玉軍,王 磊,劉 楊,于 騰
(1 東北大學(xué)材料科學(xué)與工程學(xué)院,沈陽(yáng)110819;2.撫順特殊鋼股份有限公司,撫順113001)
固溶溫度對(duì)GH4202合金組織及拉伸性能的影響
楊玉軍1, 2,王 磊1,劉 楊1,于 騰2
(1 東北大學(xué)材料科學(xué)與工程學(xué)院,沈陽(yáng)110819;2.撫順特殊鋼股份有限公司,撫順113001)
為充分挖掘沉淀強(qiáng)化型鎳基高溫合金GH4202管材性能,以滿足我國(guó)航天新型發(fā)動(dòng)機(jī)的要求,研究了固溶處理溫度對(duì)合金組織及拉伸性能的影響規(guī)律.結(jié)果表明,在1 050~1 075 ℃范圍固溶處理后合金晶粒度無明顯變化,當(dāng)固溶溫度升至1 100 ℃時(shí),合金局部出現(xiàn)異常晶粒長(zhǎng)大,當(dāng)固溶溫度達(dá)到1 150 ℃時(shí),合金晶粒均勻長(zhǎng)大.隨固溶溫度升高,合金晶界硼、碳化物數(shù)量明顯減少,由鏈狀向孤立的顆粒狀轉(zhuǎn)變.隨固溶溫度升高,GH4202合金室溫及高溫拉伸強(qiáng)度均呈降低趨勢(shì),尤其以屈服強(qiáng)度降低幅度最為顯著.合金的室溫面縮率隨固溶溫度升高而降低,且降低幅度較大,但室溫?cái)嗔蜒由炻首兓⒉伙@著;700 ℃下合金的斷面收縮率與斷裂延伸率隨固溶溫度的變化均表現(xiàn)為先升高后降低的趨勢(shì).GH4202合金最佳固溶處理工藝為1 110 ℃ 保溫30 min后水冷,此時(shí)合金晶粒度為5.0級(jí)、晶界碳化物呈細(xì)小鏈狀,晶內(nèi)沉淀強(qiáng)化γ′相彌散析出,可保證合金具有優(yōu)異的室溫及高溫力學(xué)性能.
GH4202合金;固溶溫度;晶粒度;晶界相;拉伸性能
隨著航天工業(yè)對(duì)推進(jìn)器推力和環(huán)保的要求不斷提高[1-5],我國(guó)引進(jìn)并開發(fā)了120 t大推力液氧煤油補(bǔ)燃火箭發(fā)動(dòng)機(jī)技術(shù)[6].為減重達(dá)到增大推比,同時(shí)確保安全,將發(fā)動(dòng)機(jī)所原用的10 mm厚焊接燃?xì)鈱?dǎo)管改換成能夠承受30 MPa壓強(qiáng),工作溫度覆蓋-187~400 ℃的無縫管材.同時(shí),為避免富氧條件下的金屬燃燒問題,大推力液氧煤油補(bǔ)燃火箭發(fā)動(dòng)機(jī)的燃?xì)鈱?dǎo)管,選材定為鎳基沉淀強(qiáng)化型GH4202合金無縫管[7].這是由于GH4202具有良好的鍛造、鑄造和焊接性能,其無縫燃?xì)鈱?dǎo)管可以保障發(fā)動(dòng)機(jī)推力的要求[8].
由于我國(guó)高溫合金無縫管材的研發(fā)與生產(chǎn),主要以不含或含少量Al、Ti等強(qiáng)化元素的固溶強(qiáng)化型合金為主,因此在大型擠壓制備鎳基時(shí)效強(qiáng)化型合金管材領(lǐng)域,尚缺乏有關(guān)成形能力、熱處理工藝及組織控制的相關(guān)深入研究[9-11].迄今為止,GH4202合金無縫管材的制備,均采用管坯機(jī)械鉆孔而成,其成材率低、產(chǎn)品批量小、固溶熱處理優(yōu)化溫度區(qū)間波動(dòng)顯著等問題,成為困擾發(fā)動(dòng)機(jī)研制的瓶頸[7-8].GH4202合金系γ′相強(qiáng)化的鎳基變形高溫合金,其他析出相包括M3B2型硼化物和MC、M23C6碳化物等,用于液氧煤油火箭發(fā)動(dòng)機(jī)無縫管材,需要材料具有優(yōu)異的室溫及高溫力學(xué)性能[12-15].為此,需要通過調(diào)整材料的固溶處理工藝,合理控制合金的晶粒度及第二相,以優(yōu)化合金強(qiáng)韌性,滿足航天新型發(fā)動(dòng)機(jī)部件使用需求.本文以GH4202合金為研究對(duì)象,探討了固溶處理溫度對(duì)合金組織及室溫、高溫拉伸性能的影響規(guī)律和機(jī)制,為液氧煤油火箭發(fā)動(dòng)機(jī)用GH4202合金管材的成品組織控制提供依據(jù).
研究用GH4202合金采用真空感應(yīng)VIM+真空自耗VAR真空雙聯(lián)冶煉,經(jīng)均勻化處理、開坯、鍛造成Φ210 mm棒材,再經(jīng)熱軋后成直徑Φ20 mm 棒材.合金主要化學(xué)成分(質(zhì)量分?jǐn)?shù)/%)為C 0.08,Cr18.50,Mo 4.52,W 4.37,Ti 2.45,Al 1.36,Mn 0.34,Si 0.51,S 0.01,P 0.01,F(xiàn)e 3.82,B 0.01,Ce 0.01,Ni 余量.合金經(jīng)標(biāo)準(zhǔn)熱處理后初始晶粒度8.0級(jí)(平均晶粒尺寸為22 μm,圖1),組織為γ相基體上均勻分布的γ′相,晶界上的M23C6型碳化物呈鏈狀分布,晶內(nèi)γ′相呈球狀,析出總量約占23%[8].
圖1 標(biāo)準(zhǔn)熱處理后GH4202合金顯微組織Fig.1 Microstructures of GH4202 alloy after a standard heat treatment(a)—合金晶粒分布形貌; (b)—晶界析出相; (c)—γ′相
圖2 固溶溫度對(duì)晶粒組織的影響Fig.2 Effects of temperature on the grain microstructure of GH4202 alloy(a)—1 050 ℃; (b)—1 075 ℃; (c)—1 100 ℃; (d)—1 150 ℃
將合金分別在1 050、1 075、1 100和1 150 ℃進(jìn)行30 min的固溶處理,以確定最佳固溶溫度.每一固溶制度實(shí)施后,均采用水冷,并進(jìn)行850 ℃、5 h(空冷)的時(shí)效處理.參照GB/T 228-2015 《金屬材料拉伸試驗(yàn)》標(biāo)準(zhǔn),在MTS 810材料試驗(yàn)機(jī)上對(duì)合金進(jìn)行室溫及700 ℃高溫拉伸性能測(cè)試,初始應(yīng)變速率為10-3/s.
利用OLYMPUS GX71 型金相顯微鏡(OM)、JSM-6480LV 型與JEOL JSM-7800F 型掃描電鏡(SEM)和JXA-8530 型電子探針(EPMA)分別對(duì)不同狀態(tài)下的合金進(jìn)行顯微組織觀察與分析.
2.1 固溶溫度對(duì)GH4202合金組織的影響
固溶溫度對(duì)GH4202合金晶粒組織的影響如圖2所示.可見,1 050~1 075 ℃固溶處理后合金晶粒度無明顯變化,仍為8.0級(jí);當(dāng)固溶溫度升高至1 100 ℃時(shí),合金局部出現(xiàn)異常晶粒長(zhǎng)大,個(gè)別晶粒達(dá)到2.0級(jí);當(dāng)固溶溫度升高至1 150 ℃時(shí),合金晶粒均勻長(zhǎng)大,晶粒度為2.5級(jí).鑒于產(chǎn)品標(biāo)準(zhǔn)要求GH4202合金管材的晶粒度為3.0級(jí)以上,最終固溶溫度應(yīng)低于1 150 ℃.
GH4202合金的主要強(qiáng)化相γ′相的全溶溫度約為960 ℃至1 014 ℃(隨Al+Ti含量增加而略升高)[7].在本研究的固溶溫度范圍內(nèi),GH4202合金的γ′相均可完全回溶.由于合金固溶后采取水冷,冷卻過程中幾乎無γ′相析出.圖1(c)所示為GH4202合金時(shí)效處理后的典型γ′相形貌,平均尺寸為39.6 nm.通過對(duì)不同固溶處理溫度下γ′相的形貌、尺寸和含量定量分析,發(fā)現(xiàn)此溫度范圍內(nèi)合金γ′相的形貌、含量及尺寸均無明細(xì)變化.
圖3所示為不同固溶溫度下GH4202合金晶界析出特征.可見,固溶處理后晶界上分布有鏈狀的析出相,其平均尺寸約為0.35 μm.經(jīng)EPMA分析(圖4)可知,合金背散射照片中襯度較亮的為富重金屬元素Mo、W的M3B2型硼化物[7],而在晶界呈鏈狀分布的為富Cr的M23C6型碳化物[8],且兩者析出位置基本相同,呈共生特性.
隨固溶溫度升高,合金晶界處硼、碳化物數(shù)量明顯減少,由鏈狀向孤立的顆粒狀轉(zhuǎn)變(圖3b).固溶溫度升高至1 100 ℃時(shí),該趨勢(shì)更加明顯(圖3c),而且此時(shí)晶界上的鏈狀碳化物與硼化物均出現(xiàn)部分回溶,未回溶的顆粒狀硼化物逐漸粗化,顆粒平均尺寸約為1.25 μm.由于局部晶界第二相的大量回溶,釘扎晶界的作用減弱,固溶處理后合金晶粒發(fā)生不均勻的長(zhǎng)大.
當(dāng)固溶溫度升高至1 150 ℃后,GH4202合金原始細(xì)晶晶界上的硼、碳化物基本回溶(溫度超過了M3B2與M23C6的完全回溶溫度),同時(shí)高溫下晶界遷移速度增加,晶粒發(fā)生快速長(zhǎng)大.
2.2 固溶溫度對(duì)GH4202合金拉伸性能的影響
固溶溫度對(duì)GH4202合金室溫及高溫拉伸性能的影響如圖5所示.可見,隨固溶溫度升高,合金室溫拉伸強(qiáng)度與高溫拉伸強(qiáng)度均呈降低趨勢(shì),尤其以屈服強(qiáng)度降低明顯(最大降低幅度近20%).合金的室溫面縮率隨固溶溫度升高而降低,且最大降低幅度近30%,但室溫?cái)嗔蜒由炻首兓⒉幻黠@;700 ℃拉伸塑性在1 075 ℃出現(xiàn)峰值,面縮率與延伸率隨固溶溫度的變化趨勢(shì)相近,當(dāng)固溶溫度為1 150 ℃時(shí)延伸率低至20%以下.
圖3 固溶溫度對(duì)GH4202合金晶界析出相的影響Fig.3 Effects of temperature on the grain precipitations of GH4202 alloy (a)—1 050 ℃; (b)—1 075 ℃; (c)—1 100 ℃; (d)—1 150 ℃
圖4 1 050 ℃固溶處理后GH4202合金EPMA面掃元素分布Fig.4 Element distribution from EPMA mapping for the GH4202 alloy treated at 1 050 ℃
圖5 固溶溫度對(duì)GH4202合金室溫及高溫拉伸性能的影響Fig.5 Effects of temperature on the tensile properties of GH4202 alloy at RT and 700 ℃(a)—室溫拉伸強(qiáng)度; (b)—室溫拉伸塑性; (c)—700 ℃拉伸強(qiáng)度; (d)—700 ℃拉伸塑性
圖6 固溶溫度對(duì)GH4202合金室溫拉伸斷口形貌的影響Fig.6 Effects of temperature on the RT tensile fractographs for the GH4202 alloy(a, b, c)—1 050 ℃; (d, e, f)—1 150 ℃
圖7 固溶溫度對(duì)GH4202合金700 ℃拉伸斷口形貌的影響Fig.7 Effects of temperature on the 700 ℃ tensile fractographs of the GH4202 alloy(a, b)—1075 ℃; (c, d)—1 150 ℃
2.3 固溶溫度對(duì)GH4202合金拉伸斷裂行為的影響
圖6所示為GH4202合金經(jīng)1050 ℃和1 150 ℃ 固溶處理后的室溫拉伸斷口形貌.可見室溫拉伸斷口呈明顯的杯錐狀.1 050 ℃固溶合金表現(xiàn)出良好的韌性斷裂特征,斷裂方式為韌窩與二次裂紋混合斷裂,斷口纖維區(qū)可見微孔聚集型的韌窩狀形貌.而當(dāng)固溶溫度為1 150 ℃時(shí),合金斷裂以沿晶斷裂為主,由低倍形貌可見斷口呈現(xiàn)冰糖狀形貌(圖6 d、e).
隨固溶溫度的升高GH4202合金的共生析出相M3B2與M23C6逐步回溶、晶粒尺寸逐漸增大(由8.0級(jí)粗化至2.5級(jí)),晶界析出相形貌由鏈狀逐漸向不連續(xù)的顆粒狀轉(zhuǎn)變,在1 100 ℃至1 150 ℃ 間全部回溶,1 150 ℃固溶冷卻過程中會(huì)在晶界處再次析出.合金組織的轉(zhuǎn)變必然對(duì)其性能產(chǎn)生影響,提高固溶溫度致使合金拉伸強(qiáng)度和塑性降低,其主要原因在于晶粒粗化和晶界存在二次析出的鏈狀M23C6相.
圖7為固溶溫度對(duì)GH4202合金700 ℃拉伸斷口形貌的影響.可見,GH4202合金的高溫拉伸斷口主要為穿晶斷裂,與室溫拉伸斷口相比高溫拉伸斷口起伏較低.
沉淀強(qiáng)化型變形高溫合金固溶處理的目的在于:(1)溶解或基本溶解主要強(qiáng)化相,如γ′相、MC碳化物等,同時(shí)溶解晶界上合理分布的M23C6、M3B2相等,為后續(xù)時(shí)效析出均勻細(xì)小且彌散分布的強(qiáng)化相做組織準(zhǔn)備;(2)通過固溶處理獲得均勻而適宜的晶粒度,滿足不同用途和服役工況條件下使用要求.GH4202合金的初始晶粒晶界上析出鏈狀的硼、碳化物,為富Cr、Mo的M23C6、M3B2共生相(碳化物為主,這是由于GH4202合金的Cr含量較高,易形成M23C6),而主要強(qiáng)化相γ′相的全溶溫度明顯低于固溶溫度,因此固溶處理工藝的關(guān)鍵在于如何控制M23C6相的回溶與析出.
1 050 ℃固溶處理后,合金仍保持細(xì)晶組織,晶界上的鏈狀硼、碳化物具有抑制晶粒長(zhǎng)大的作用;1 100 ℃固溶處理30 min后合金局部出現(xiàn)M23C6相回溶,導(dǎo)致晶粒出現(xiàn)不均勻長(zhǎng)大.一方面,晶界過量的富Cr的M23C6相析出,勢(shì)必造成晶界附近貧Cr,不利于增強(qiáng)合金的抗晶間腐蝕性能;另一方面,不均勻的M23C6相回溶會(huì)造成晶粒的不均勻長(zhǎng)大.因此,固溶處理工藝的關(guān)鍵在于合理地控制M23C6相.
此外,GH4202成品管材需要考慮壓扁測(cè)試實(shí)驗(yàn)和晶界腐蝕試驗(yàn)的要求,晶粒度4.0級(jí)狀態(tài)下材料的上述工藝性能更佳[16-17].為此,綜合考慮合金的強(qiáng)韌性與工藝性能,確定1 110 ℃為GH4202合金適宜的固溶處理溫度.此溫度固溶處理后合金晶粒度均勻適中,可控制為4.0至5.0級(jí),晶界上析出鏈狀細(xì)小的M23C6相,晶內(nèi)彌散析出沉淀強(qiáng)化相γ′相,能夠保證合金具有優(yōu)異的力學(xué)性能.
(1)1 050~1 075 ℃固溶處理后,GH4202合金晶粒度變化不明顯,當(dāng)溫度達(dá)到1 150 ℃時(shí),晶粒均勻長(zhǎng)大.固溶溫度對(duì)合金中γ′相的形貌、含量及尺寸均無明顯影響.合金晶界硼、碳化物數(shù)量隨固溶溫度升高明顯減少,由鏈狀向孤立的顆粒狀轉(zhuǎn)變.溫度升至1 100 ℃時(shí),晶界上的鏈狀碳、硼化物均出現(xiàn)部分回溶,未回溶的顆粒狀硼化物逐漸粗化; 1 150 ℃時(shí)原始細(xì)晶晶界上的硼、碳化物基本回溶,晶界遷移速度增加、晶??焖匍L(zhǎng)大.
(2)隨固溶溫度升高,GH4202合金室溫及高溫拉伸強(qiáng)度均呈降低趨勢(shì),尤其屈服強(qiáng)度最大降低幅度近20%.合金的室溫面縮率隨固溶溫度升高而降低,最大降低幅度近30%,但室溫?cái)嗔蜒由炻首兓⒉伙@著;700 ℃下合金的斷面收縮率與斷裂延伸率均隨固溶溫度的升高而先升高后降低.
(3)GH4202合金適宜的固溶處理工藝為1 110 ℃ 保溫30 min后水冷,該工藝下合金的晶粒度控制為4.0至5.0級(jí),M23C6呈細(xì)小鏈狀位于晶界,晶內(nèi)彌散析出γ′相,可以保證合金具有優(yōu)異的室溫及高溫力學(xué)性能.
[1]Turgut E T, Cavcar M, Yay O D,etal. A gaseous emissions analysis of commercial aircraft engines during test-cell run[J].Aumospheric Environment, 2015, 116: 102-111.
[2]Song S K, Shon Z H, Kang Y H. Comparison of impacts of aircraft emissions within the boundary layer on the regional ozone in South Korea[J]. Aumospheric Environment, 2015, 117: 169-179.
[3]Gonzalez R, Hosoda E B. Environmental impact of aircraft emissions and aviation fuel tax in Japan[J]. Journal of Transport Management, 2016, 57: 234-240.
[4]Yu Z H, Liscinsky D S, Fortner E C,etal. Evaluation of PM emissions from two in-service gas turbine general aviation aircraft engines[J]. Aumospheric Environment, 2017, 160: 9-18.
[5]Abegglen M, Durdina L, Brem B T,etal. Effective density and mass-mobility exponents of particulate matter in aircraft turbine exhaust: Dependence on engine thrust and particle size[J].Journal of Aerosol Science, 2015, 88: 135-147.
[6]陳建華, 李龍飛, 周立新, 等. 液氧/煤油補(bǔ)燃火箭發(fā)動(dòng)機(jī)整流柵應(yīng)用研究[J]. 火箭推進(jìn), 2007, 33(2): 1-6. (Chen Jianhua, Li Longfei, Zhou Lixin,etal. Application of the perforated distribution plate in the LOX/kerosene staged combustion rocket engine[J].Journal of Rocked Propulsion, 2007, 33(2): 1-6.)
[7]胥國(guó)華, 裴明哲, 楊玉軍, 等. GH202鎳基合金無縫管材的熱擠壓工藝[J]. 熱加工工藝, 2011, 40(1): 90-91. (Xu Guohua,Pei Mingzhe ,Yang Yujun,etal. Hot-extrusion process for GH202 nickl-based alloy seamless tube[J]. Casting Forging Welding, 2011, 40(1): 90-91.
[8]趙光普. 耐富氧燃?xì)饨橘|(zhì)侵蝕GH202可鑄、鍛、焊高溫合金的研制[J]. 材料導(dǎo)報(bào), 2001, 15(2): 19-20. (Zhao Guangpu. Development of the high temperature alloy for the oxidation of the oxygen and oxygen gas medium[J]. Materials Review, 2001, 15(2): 19-20.)
[9]Preuss M, Pang J W, Withers P J,etal. Inertia welding nickel-based superalloy: part II. Residual stress characterization[J]. Metallurgical and Materials Transactions A, 2002, 33: 3227-3234.
[10]Sun C Y, Zhang Q D. Numerical simulation of superalloy IN718 during tube hot extrusion[J]. Advanced Materials Research, 2010, 83-86: 157-164.
[11]Zhang S H, Wang Z T, Qiao B,etal. Processing and microstructural evolution of superalloy inconel 718 during hot tube extrusion[J]. Journal of Materials Science and Technology, 2005, 21(2): 175-178.
[12]Mc Queen H J, Ryan N D. Constitutive analysis in hot working[J]. Materials Science and Engineering A, 2002, 322(1): 43-63.
[13]Penkalla H J, Wosik J, Czyrska-Filemonowicz A. Quantitative microstructural characterisation of Ni-base superalloys[J]. Materials Chemistry and Physics, 2003, 81(2): 417-423.
[14]Zhang J M, Gao Z Y, Zhuang J Y. Mathematical modeling of the hot-deformation behavior of superalloy IN718[J]. Metallurgical and Materials Transactions A, 1999, 30(10): 2701-2712.
[15]Long F, Yoo Y S, Jo C Y. Phase transformation ofηandσphases in an experimental nickel-based superalloy[J]. Journal of Alloys and Compounds, 2009, 478(1): 181-187.
[16]Zhang J M, Gao Z Y, Zhuang J Y,etal. Mathematical modeling of the hot-deformation behavior of superalloy IN718[J]. Metallurgical and Materials Transactions A, 1999, 30: 2701-2712.
[17]Penkalla H J, Wosik J, Czyrska-Filemonowicz A. Quantitative microstructural characterization of Ni-base superalloys[J]. Materials Chemistry and Physics, 2003, 81: 417-423.
Effect of solution temperature on microstructure and tensile properties of GH4202 superalloy
Yang Yujun1, 2, Wang Lei1, Liu Yang1, Yu Teng2
(1.School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China; 2.Fushun Special Steel Shares Co., LTD., Fushun 113001, China)
In order to meet the requirement of GH4202 tubes used for the new type engine, effects of the solution temperature on microstructure and tensile properties of the GH4202 superalloy were investigated. The results showed that the grain size of the alloy after solution treatment shows no obvious change in the temperature range of 1 050 to 1 075 ℃. When the temperature reaches 1 150 ℃, the grains grow homogeneously, amount of borides and carbides on the grain boundaries decreases obviously with the increase temperature. There is a decreasing trend in the tensile strength of the alloy at both room temperature (RT) and high temperature with increase of temperature, especially for the yield strength. When the temperature increases, the reduction of area of the alloy decreases greatly, while the fracture elongation does not change significantly. Both the fracture elongation and the reduction of area of the alloy after tensile test below 700 ℃ increase first and then decrease with the temperature increase. The optimism treatment condition for the GH4202 alloy is heated at 1 110 ℃ for 30 min, and then cooled by water. The grain size was controlled around 4-5 grade, the carbides at the grain boundary exhibites small chain. The precipitation process inside the grains hardenssγ′dispersed phases, so that the GH4202 alloy can obtain an excellent mechanical properties at a room and a high temperature.
GH4202 superalloy;solution temperature;grain size;grain boundary phase;tensile property
10.14186/j.cnki.1671-6620.2017.02.012
TG.135;TG 166.7
A
1671-6620(2017)02-0147-07