章左,聶昌雄
(湖北大學(xué)數(shù)學(xué)與統(tǒng)計(jì)學(xué)學(xué)院,湖北 武漢 430062)
?
共形空間中的Blaschke全臍子流形
章左,聶昌雄
(湖北大學(xué)數(shù)學(xué)與統(tǒng)計(jì)學(xué)學(xué)院,湖北 武漢 430062)
在共形群下的完全不變量體系下討論4種共形不變量之間的關(guān)系,并在共形等價(jià)意義下分類一些特殊子流形.
共形空間;共形不變量;常數(shù)量曲率;Blaschke全臍子流形;Blaschke擬全臍子流形
由結(jié)構(gòu)方程
(1)
(2)
對(duì)
存在整體提升
故
由
知
(3)
令
p=(1,0,1),yi=(0,ui,0)+(ui,u)p,ζα=(0,eα,0)+〈eα,u〉p.
由
1=〈N,Y〉, 0=〈-N,Yi〉, 0=〈-eτN,ξ〉, 0=〈-eτN,-eτN〉,
可以得到
易算出
(4)
(5)
(6)
命題2.1的證明 因?yàn)?/p>
由帶常數(shù)量曲率的極小正則子流形的性質(zhì)知ρI=常數(shù),Hα=0.
由(4)和(6)式知τ=常數(shù),有
不妨令
有
A=λg,Φ=0.
命題2.2 若x=σ°u是Blaschke全臍子流形,則λ=常數(shù).
因?yàn)閧Y1,…,Yn}線性無(wú)關(guān),所以
定理2.1 若x=σ°u是Blaschke全臍子流形,則x共形等價(jià)于帶常數(shù)量曲率的極小正則子流形.
定理2.1的證明 對(duì)A=λg兩邊取跡,由tr(A)=nλ,易知
從而ρ=常數(shù).
下面分3種情況考慮:
I=(du,du)=(dY,dY)=g,
推出
由
知
得
由
知
得
由
知
A=λg+〈B,ξ〉,Φ=0
(7)
所以e2τ=常數(shù).由(4)式和(6)式知τ=常數(shù),有
命題3.2 假設(shè)x=σ°u是一個(gè)Blaschke擬全臍子流形,則λ一定是常數(shù).
因?yàn)閧Y1,…,Yn}線性無(wú)關(guān),所以
λ=常數(shù).
定理3.1 若x=σ°u是Blaschke擬全臍子流形,則x共形等價(jià)于帶常數(shù)量曲率和平行平均曲率向量場(chǎng)的正則子流形.
定理3.1的證明 對(duì)(7)的第一個(gè)式子取跡知
下面分3種情況考慮:
I=(du,du)=(dY,dY)=g,
推出
得
得
[1] Chen S S, do Carmo M, Kobayashi S. Minimal submanifolds of a sphere with second fundamental from of constant lenghth [J]. Berlin:Springer 1970:56-79.
[2] Yau S T, Submanifolds with constant mcan curvature[J].Amer J Math, 1974, 96:342-370.
[3] Li H Z, Liu H L, Wang C P, et al. Moebius isoparametric hypersurfaces in with two distinct principal curvatures [J] Acta Math Sinica (Engl Ser) 2002,18:437-446.
[4] Wang C P. Surfaces in M?bius geometry[J]. Nagoya Math J, 1992 125:53-72.
[5] Wang C P. M?bius geometry of submanifolds inSn[J]. Manuscripta Math,1998 96:517-534.
[6] Li H Z, Wang C P. Surfaces with vanishing Moebius form inSn[J]. Acta Math,Sinica (Engl Ser), 2003,19:671-678.
[7] Brasila A, Chavesb R M B, Mariano M,et al. Complete spacelike submanifolds with parallel mean curvature vector in a semi-Riemannian space form[J].J Geom Phys, 2006, 56:2177-2188.
[9] Nie C X, Wu C X. Classification of type I time-like hyperspaces with parallel conformal second fundamental forms in the conformal space[J].Acta Math Sinica 2011 54(1):685-692.
[10] 聶昌雄,吳傳喜.共形空間中的正則子流形[J]. 數(shù)學(xué)年刊 2008,29A(3):315-324.
[11] 郭震.關(guān)于常曲率空間中具平行平均曲率向量的子流形[J]. 云南師范大學(xué)學(xué)報(bào)(自然科學(xué)版) 1992(4):1-9.
[12] 張廷枋.Sn中Moebius形式平行的曲面[J]. 數(shù)學(xué)研究, 2003, 36(3):235-242.
[13] 張廷枋,鐘定興.Sn中Moebius形式為零的曲面[J]. 數(shù)學(xué)學(xué)報(bào), 2004, 47:241-250.
[14] 伍鴻熙,沈純理,虞言林.黎曼幾何初步[M]. 北京:北京大學(xué)出版社 1988.
[15] 陳維桓,李興校.黎曼幾何引論(上冊(cè))[M]. 北京:北京大學(xué)出版社 2002.
(責(zé)任編輯 趙燕)
Blaschke umbilical submanifolds in the conformal space
ZHANG Zuo,NIE Changxiong
(Faculty of Mathematics and Statistics, Hubei University,Wuhan 430062,China)
Since professor changping wang has established the conformal differential geometry theory of submanifolds based on the nature of the conformal differential geometry and submanifolds are obtained under the conformal group fully invariant system.Conformal differential geometry research made greater progress.In this case,we discussed the relationship between the four kinds of conformal invariant,we classified some kinds of special submanifolds under the conformal equivalence.
conformal space;conformal invariant;constant scalar curvature;Blaschke umbilical submanifolds;Blaschke quasi-umbilical submanifolds
2016-12-14
國(guó)家自然科學(xué)基金(11571037)資助
章左(1990-) 女 碩士生; 聶昌雄,通信作者,副教授.E-mail:nie.hubu@yahoo.com.cn
1000-2375(2017)04-0417-06
O186.1
A
10.3969/j.issn.1000-2375.2017.04.015