王金雙,熊永森,徐中偉,馬 廣,王志明,陳德俊
(1. 金華職業(yè)技術(shù)學(xué)院機(jī)電工程學(xué)院,金華 321017;2. 浙江四方集團(tuán)公司,永康 322000)
縱軸流聯(lián)合收獲機(jī)關(guān)鍵部件改進(jìn)設(shè)計與試驗
王金雙1,熊永森1,徐中偉2,馬 廣1,王志明1,陳德俊1
(1. 金華職業(yè)技術(shù)學(xué)院機(jī)電工程學(xué)院,金華 321017;2. 浙江四方集團(tuán)公司,永康 322000)
針對當(dāng)前履帶式縱軸流聯(lián)合收獲機(jī)中存在的工作狀態(tài)無法在收獲不同作物間快速轉(zhuǎn)換,割臺損失率較高、脫粒分離能力較差以及功耗高等不足,對割臺、脫粒、清選、行走等主要工作部件進(jìn)行了改進(jìn)設(shè)計與試驗研究。將割臺設(shè)計為無級調(diào)速可伸縮式結(jié)構(gòu),脫粒裝置改為縱軸同徑差速滾筒脫粒裝置,采用單HST(hydro static transmission)原地轉(zhuǎn)向行走裝置及防粘附清選裝置,并經(jīng)室內(nèi)試驗和田間試驗表明:可伸縮割臺能實現(xiàn)稻麥?zhǔn)崭顮顟B(tài)與油菜收割狀態(tài)的快速轉(zhuǎn)換,擴(kuò)大了割臺的使用功能,收獲油菜損失顯著減少,與常規(guī)相比較,油菜損失率降低 2.8個百分點;差速軸流滾筒提高了脫粒效果和分離能力,與等長度單轉(zhuǎn)速軸流滾筒相比,夾帶與脫不凈損失率分別減少了0.02個百分點與0.09個百分點,破碎率減少了 0.017個百分點;原地轉(zhuǎn)向行走機(jī)構(gòu)減少了地表土壤的破壞并降低了轉(zhuǎn)向功耗,以原地轉(zhuǎn)向替代單邊制動轉(zhuǎn)向時,節(jié)約功耗 37.0%;清選機(jī)構(gòu)抖動板和清選篩面經(jīng)不沾水處理,改善了潮濕谷物的清選性能,清選損失率降低0.9個百分點,含雜率降低0.4個百分點;這些聯(lián)合收獲機(jī)主要工作部件的改進(jìn)設(shè)計提高了整機(jī)工作性能,以期為聯(lián)合收獲機(jī)主要工作部件改進(jìn),提高聯(lián)合收獲機(jī)工作性能提供參考。
作物;收獲機(jī);設(shè)計;縱軸流;改進(jìn)結(jié)構(gòu);性能;試驗
王金雙,熊永森,徐中偉,馬 廣,王志明,陳德俊. 縱軸流聯(lián)合收獲機(jī)關(guān)鍵部件改進(jìn)設(shè)計與試驗[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(10):25-31. doi:10.11975/j.issn.1002-6819.2017.10.004 http://www.tcsae.org
Wang Jinshuang, Xiong Yongsen, Xu Zhongwei, Ma Guang, Wang Zhiming, Chen Dejun. Improved design and test of key components for longitudianl axial flow combine harvester[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2017, 33(10): 25-31. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.10.004 http://www.tcsae.org
國內(nèi)于20世紀(jì)90年代中研發(fā)成功具有橡膠履帶行走裝置和桿齒式軸流滾筒(橫置軸流)、適用于南方水稻收獲的全喂入聯(lián)合收獲機(jī)并獲得了大面積推廣應(yīng)用。但伴隨水稻產(chǎn)量提高和綜合利用的需要,要求聯(lián)合收獲機(jī)增大喂入量并能收獲多種作物(如油菜)。但全喂入聯(lián)合收獲機(jī)滾筒增長受限、輸送槽較窄,不能適應(yīng)收獲需求。在21世紀(jì)初,軸流滾筒縱置增長、輸送槽增寬、喂入量為2.5 kg/s的縱軸流全喂入聯(lián)合收獲機(jī)被引入國內(nèi)市場,與原有喂入量為1.8 kg/s的橫軸流聯(lián)合收獲機(jī)相比較,脫粒滾筒長度和輸送槽寬度分別增大了1.6~1.8倍,目前在國內(nèi)市場占有率較高。該機(jī)型由國外引進(jìn)、技術(shù)較先進(jìn),但與國內(nèi)超級水稻收獲和精準(zhǔn)農(nóng)業(yè)對土壤環(huán)境的要求間存在一些不適應(yīng)之處[1]。國內(nèi)超級水稻大面積單產(chǎn)已達(dá)到10 000 kg/hm2左右,縱軸流聯(lián)合收獲機(jī)存在脫粒不凈、總損失率極易超標(biāo)的現(xiàn)象[2-6];履帶行走機(jī)構(gòu)采用非原地轉(zhuǎn)向,容易破壞土壤表層;用于稻麥?zhǔn)斋@的收割臺不適應(yīng)油菜收獲,需臨時更換或加裝油菜收割臺,收獲機(jī)工作狀態(tài)轉(zhuǎn)換耗時長且增大成本。此外,收獲含水率較高的潮濕作物時,還存在粘附篩面,影響谷物清選等問題[7-15]。國外20世紀(jì)90年代,研發(fā)縱軸流聯(lián)合收獲機(jī),軸流滾筒為封閉式螺旋葉片結(jié)構(gòu),筒體表面焊有節(jié)距150 mm、高60 mm的螺旋葉片,螺旋葉片上安裝釘齒或筒體表面安裝弓齒[16]。后續(xù)研制的“奇跡桿”脫粒滾筒取代了前 2種結(jié)構(gòu)[17-18]。對于同軸差速脫粒裝置研究國內(nèi)外已有報導(dǎo)[19-21],但縱軸流同徑差速脫粒裝置研究未見報導(dǎo);聯(lián)合收獲機(jī)伸縮收割臺國內(nèi)也已開展相關(guān)研究[22],但縱軸流無級伸縮收割臺研究未見報導(dǎo);利用雙HST(hydro static transmission)實現(xiàn)原地轉(zhuǎn)向行走裝置已有相關(guān)產(chǎn)品和研究[23-24],但應(yīng)用于縱軸流聯(lián)合收獲機(jī)的結(jié)構(gòu)簡單成本又低的單HST原地轉(zhuǎn)向行走裝置的研究未見報。
綜上所述,現(xiàn)有縱軸流聯(lián)合收獲機(jī)(久保田、時風(fēng)、萊恩、星光等2.5Z型)存在不能實現(xiàn)長稈作物與短作物收獲工作狀態(tài)快速轉(zhuǎn)換、小半徑轉(zhuǎn)向易引起表層土壤破壞、非差速脫粒滾筒不適應(yīng)高產(chǎn)作物脫粒收獲以及未經(jīng)防沾水振動篩面不適應(yīng)含水率較高作物清選處理等不足。為此對現(xiàn)有縱軸流聯(lián)合收獲機(jī)的收割臺、非差速脫粒裝置、單邊制動轉(zhuǎn)向裝置及清選裝置,改進(jìn)設(shè)計為縱軸流同徑差速脫粒裝置、無級可伸縮收割臺、單HST原地轉(zhuǎn)向行走裝置和防粘附清選裝置等,并進(jìn)行相應(yīng)試驗研究。
目前國內(nèi)現(xiàn)有縱軸流脫粒分離裝置的履帶式全喂入稻麥聯(lián)合收獲機(jī),其軸流滾筒軸向采用單一轉(zhuǎn)速,設(shè)計時采用較高轉(zhuǎn)速,以減少脫不盡損失而造成籽粒破碎率提高,碎莖稈增多;而采用同徑軸向差速(即軸向有高低2種轉(zhuǎn)速)可解決以上問題。
1.1 高低速滾筒結(jié)構(gòu)設(shè)計
在原單一轉(zhuǎn)速脫粒滾筒基礎(chǔ)上,增設(shè)差速驅(qū)動裝置與同徑差速滾筒。同徑差速桿齒脫粒分離裝置由主、從動錐齒輪、差速桿齒脫粒滾筒、柵格凹板等組成,由三角帶驅(qū)動,其裝置示意如圖1所示。脫粒滾筒脫粒段(不含喂入段與排草段,見圖1所示)總長度為1 372 mm,滾筒前段為低速滾筒,占脫粒滾筒脫粒段總長度的4/5即1 050 mm,后段為高速滾筒,占1/5即280 mm[19]。若計入排草段,高速滾筒長度為430 mm。工作時,作物由前段低速滾筒低速脫下易脫籽粒;后段高速滾筒脫下難脫籽粒,以降低脫粒不凈造成損失。而且后段高速脫粒作業(yè),加速籽粒分離,減少夾帶損失。
圖1 同徑差速桿齒脫粒裝置示意圖Fig.1 Schematic diagram of threshing device with same diameter roller at low and high speed
1.2 高低速滾筒轉(zhuǎn)速計算
根據(jù)水稻籽粒連接力與脫粒線速度數(shù)學(xué)模型,桿齒軸流滾筒水稻脫粒線速度為18~26 m/s,縱軸流脫粒滾筒直徑為620 mm[25]。若不考慮三角帶滑轉(zhuǎn)脫粒滾筒轉(zhuǎn)速下降,確定低速段滾筒齒頂線速度v1為18 m/s,高速滾筒齒頂線速度v2為26 m/s。經(jīng)計算,差速脫粒滾筒轉(zhuǎn)速
式中n2為高速滾筒轉(zhuǎn)速,r/min;n1為低速滾筒轉(zhuǎn)速,r/min;K為圓柱形桿齒式軸流滾筒水稻脫粒最高和最低線速度之比,K=26/18=1.44;v1為水稻脫粒最低滾筒線速度,取v1=18 m/s;R為軸流滾筒半徑,取R=0.31 m。
將v1、R代入式(1),可求得n1為555 r/min,n2為799 r/min。
在原有收割臺基礎(chǔ)上,設(shè)計了一種可無級伸縮式收割臺[26],主要增設(shè)花鍵伸縮傳動桿 6與伸縮卷板3及二只液壓缸11等,如圖2所示。
圖2 無級伸縮式收割臺示意圖Fig.2 Scalable cutting-platform schematic diagram
圖2b為割臺及花鍵伸縮傳動桿呈收縮狀態(tài),用于收獲稻麥等短稈作物;圖2c為割臺及驅(qū)動切割器花鍵伸縮傳動桿呈伸開狀態(tài),用于收割油菜等長稈作物。
2.1 無級伸縮收割臺結(jié)構(gòu)和工作原理
無級調(diào)節(jié)伸縮收割臺包括:割臺機(jī)架7,導(dǎo)向定位套管1,割刀2,伸縮卷板3,割刀擺臂4,帶座外球面軸承5,花鍵伸縮傳動桿6,前、后銷軸8、10,保護(hù)座9,雙向液壓油缸11,擺環(huán)13等組成。伸縮機(jī)構(gòu)主要由安裝于割臺底板下面的二組雙向液壓油缸、二組左、右導(dǎo)向定位套管,雙向液壓缸一端與割臺機(jī)架鉸接,另一端與刀架鉸接。雙向液壓缸后縮時,帶動刀架向后移動,伸縮卷板卷縮,花鍵伸縮傳動桿縮短,割臺后縮狀態(tài)如圖 2b所示;雙向液壓缸前伸時,帶動切割器向前移動,卷簾板展開,花鍵伸縮連桿拉長,使水平切割器和垂直切割器位置向前,割臺前伸狀態(tài)如圖2c所示,從而實現(xiàn)稻麥?zhǔn)崭詈陀筒耸崭顚κ崭钆_的快速轉(zhuǎn)換。切割器前伸/后縮之間的位置可以通過雙向液壓缸控制實現(xiàn)無級調(diào)節(jié),以適應(yīng)稻麥、油菜等不同作物收獲。
2.2 收獲機(jī)收割臺三角區(qū)設(shè)計
全喂入聯(lián)合收獲機(jī)割臺三角區(qū)是割臺 3個主要工作部件撥禾輪、切割器和割臺螺旋輸送器構(gòu)成的特殊空間。三角區(qū)是收割臺“死區(qū)”,如圖3所示,對收割臺工作質(zhì)量影響很大。圖中l(wèi)是螺旋輸送器中心到護(hù)刃梁的距離。l值大適應(yīng)長莖稈作物收獲。而收獲短莖稈作物時,作物容易堆積在螺旋扒齒輸送器和切割器之間,待堆積到一定數(shù)量時能被螺旋葉片抓取,造成喂入量的不均,嚴(yán)重時會造成堵塞。l值較小時,適應(yīng)莖稈短的作物收獲,而收獲長莖稈作物時,容易從收割臺滑下來造成損失,根據(jù)文獻(xiàn)可知[27]
式中La為收獲作物高度,m。
根據(jù)經(jīng)驗數(shù)據(jù),收獲稻麥時,取La為800~1 150 mm,得l為350~500 mm。收獲油菜時,考慮到油菜作物自然高度與作物高度幾乎不變(沒有下垂),同時成熟油菜單株體積很大, 取La為1 450~1 500 mm,得l為700~850 mm,因此取l=700~850 mm。同時要保證撥禾齒與螺旋輸送器扒齒之間的最小距離δ3= 40~50 mm(δ1=10~20 mm,δ2=20~30 mm)[27]。
圖3 全喂入聯(lián)合收獲機(jī)收割臺三角區(qū)示意圖Fig.3 Triangular area diagram of full feed combine harvester
因現(xiàn)有履帶小轉(zhuǎn)向半徑對土壤破壞嚴(yán)重及功耗較大,為此對其行走裝置的變速器進(jìn)行改進(jìn)設(shè)計,以使驅(qū)動輪一正一反旋轉(zhuǎn),來實現(xiàn)機(jī)器原地轉(zhuǎn)向。本設(shè)計液壓馬達(dá)動力輸入變速箱后將其分為A、B兩路正反轉(zhuǎn)動力流(如圖4所示),A路正轉(zhuǎn)動力流由驅(qū)動齒輪經(jīng)中央傳動齒輪39及兩側(cè)牙嵌離合器齒輪38與40、向兩側(cè)(或一側(cè))傳送正轉(zhuǎn)動力;B路反轉(zhuǎn)動力流由與驅(qū)動齒輪位于同一軸上的右或左反轉(zhuǎn)驅(qū)動齒輪(31或35)驅(qū)動,經(jīng)右或左換向齒輪(42或36)和右或左離合器齒輪(41或37),向右或左側(cè)傳送反轉(zhuǎn)動力。當(dāng)向右(左)原地轉(zhuǎn)向時,只需操縱撥叉向右(左)扳動到位即可[28-30]。
圖4 原地轉(zhuǎn)向變速箱結(jié)構(gòu)示意圖Fig.4 In-situ steering gear box structure schematic
3.1 速度和回轉(zhuǎn)角速度
原地轉(zhuǎn)向時速度和受力如圖 5所示,假設(shè)兩側(cè)土壤條件相同,履帶運動時無滑轉(zhuǎn)和滑移,則有
因轉(zhuǎn)向時,減油機(jī)器降速,履帶速度V1取值一般為0.5~1.0 m/s,B=1 m,故ω取1.0~2.0 rad/s。
圖5 履帶原地轉(zhuǎn)向時速度和受力Fig.5 Speed and force analysis when in-situ steering
3.2 驅(qū)動力和阻力矩
原地轉(zhuǎn)向主要受到3種力的作用[28-29],正、反轉(zhuǎn)履帶的驅(qū)動力P1(N)和P2(N);正、反轉(zhuǎn)履帶所受的滾動阻力F1(N)和F2(N)和轉(zhuǎn)向阻力矩Mμ(N·m);ms(kg)為聯(lián)合收獲機(jī)整機(jī)質(zhì)量,由樣機(jī)測定。測得重心偏移C=10.71 mm,e=51.75 mm,ms=2 800 kg,如圖5所示。
設(shè)定履帶在割茬地空載原地轉(zhuǎn)向條件下,計算得F1=1 541 N;F2= 1 479 N;P1= 7 988 N;P2= -7 962 N;Mμ=6 483 N·m。
3.3 轉(zhuǎn)向功率消耗
原地轉(zhuǎn)向時,功率消耗Nω主要克服轉(zhuǎn)向總阻力矩MZ,故有
式中Mμ為轉(zhuǎn)向阻力矩,N·m;MZ為轉(zhuǎn)向總阻力矩,N·m;ω為原地轉(zhuǎn)向角速度,rad/s,ω=2V1/B;
轉(zhuǎn)向時,設(shè)V1=V2=0.5m/s,ω=1 rad/s。
據(jù)式(10)求得Nω=8.00 kW
而單邊制動轉(zhuǎn)向V1=0,V2=1 m/s,全部驅(qū)動力作用在轉(zhuǎn)向側(cè)履帶,以克服阻力矩Mμ,若行走與傳動效率不變、無滑轉(zhuǎn)和滑移,其功率消耗[1]
式中P為機(jī)器總驅(qū)動力,N。
v為轉(zhuǎn)向參數(shù)。
據(jù)式(11)、(12),得單邊制動轉(zhuǎn)向功耗Nz=12.7 kW,由上可知,以原地轉(zhuǎn)向替代單邊制動轉(zhuǎn)向時,與單邊制動比可降低功耗37.0 %。
防粘篩篩箱結(jié)構(gòu)如圖6所示。
圖6 防粘篩結(jié)構(gòu)圖Fig.6 Anti-sticking screen structure
傳統(tǒng)的分離機(jī)構(gòu)收獲高含水率稻麥或小籽粒作物(如油菜)時,存在抖動板和振動篩孔堵塞致使籽粒含雜率和清選損失增大問題。為此對篩面進(jìn)行改進(jìn),采用不沾水涂層處理,對抖動板1、上層篩2、逐稿器3,梳齒篩4、沖孔篩5、尾篩等表層按特定工藝進(jìn)行了涂裝聚四氟乙烯的不沾水處理[31]。
5.1 縱軸流同徑差速脫粒裝置試驗
試驗條件:選用晚稻甬優(yōu) 9號(較難脫),其千粒質(zhì)量均值 28.0 g,自然高度1.42 m,穗幅差均值12 cm,單產(chǎn)8 941 kg/hm2,籽粒含水率均值17.2%,莖稈含水率均值53.2%,草谷比均值1.79。
2015年10月15日在浙江永康進(jìn)行了樣機(jī)的田間試驗,測定面積為7.5 m2,額定喂入量2.5 kg/s,試驗重復(fù)3次,測定3次夾帶和脫不凈損失均值。
經(jīng)同徑差速脫粒與非差速脫粒裝置試驗比較,如表1所示。差速脫粒裝置從脫不凈率與夾帶損失率 2項性能指標(biāo)遠(yuǎn)高于非差速脫粒裝置,夾帶損失率低于非差速脫粒裝置0.02個百分點,脫不凈損失率低于非差速脫粒裝置0.09個百分點,破碎率下降了0.017個百分點。
表1 改進(jìn)前后試驗夾帶和脫不凈損失測定Table 1 Determination of entrainment and not loss before and after improvement
5.2 無級可伸縮式收割臺對比試驗
采用無級可伸縮式割臺收獲油菜與水稻(或小麥)不需要更換割臺。一方面不用多增設(shè)附加割臺,可節(jié)約成本約2 000元/臺(2015年市場價格);另一方面收獲油菜與水稻間無需換割臺,可節(jié)約作業(yè)時間(約40 min/臺)。經(jīng)多次改進(jìn)設(shè)計后,結(jié)構(gòu)簡單也更可靠,制造成本低,改進(jìn)后實際樣機(jī)產(chǎn)品如圖 7所示,通過伸出割臺,便可實現(xiàn)收獲油菜。
圖7 改進(jìn)后樣機(jī)及改進(jìn)前樣機(jī)Fig.7 Improved prototype and prototupe before improvement
試驗條件:油菜產(chǎn)量為2 805 kg/hm2,植株自然高度為1.58 m;2015年5月13日在浙江省永康花街進(jìn)行田間試驗,采用常規(guī)收獲水稻割臺與無級可伸縮割臺的收獲機(jī)進(jìn)行田間收獲油菜,油菜損失對比試驗。在同一田塊,同時進(jìn)行田間收獲試驗,試驗進(jìn)行5次,每次收割長度為5 m,前進(jìn)速度為0.7 m/s,割幅為2 m,測定油菜損失量計算損失率。
從表2知,用收獲水稻割臺(常規(guī)割臺)直接進(jìn)行收獲油菜割臺損失較大,可能因為割臺短而油菜作物高1.5 m左右,出現(xiàn)割臺損失顯著增加現(xiàn)象;而采用可伸縮割臺,可根據(jù)作物高度來調(diào)節(jié)割臺深度,油菜損失顯著減少,油菜損失率降低2.8個百分點,可能是因為割臺深度增大,三角區(qū)變長,減少了油菜條向前拋出與爆殼現(xiàn)象。
表2 常規(guī)與可伸縮式割臺油菜損失對比試驗Table 2 Comparison of rape losses under on ventional and retractable cutling platforms
5.3 防粘篩分離機(jī)構(gòu)與普通篩對比試驗
2015年10月17日在浙江永康進(jìn)行了樣機(jī)的室內(nèi)試驗,試驗采用晚稻甬優(yōu)9號,千粒重為30.6 g,草谷比均值為 2:1,水稻籽粒含水率為 31.2%,莖稈含水率為73.1%,每次試樣總重為12 kg,喂入量為2.5 kg/s,重復(fù)試驗5次,試驗結(jié)果如表3所示。
從表 3可以看出,清選較高含水率的莖稈或籽粒,經(jīng)處理的抖動板脫出物沾附減輕,清選損失率降低0.9個百分點,籽粒中含雜質(zhì)下降了0.4個百分點,效果明顯??赡芤驗楦吆实暮潭捙c籽粒,籽粒易粘附小雜質(zhì);含水高的莖稈也易粘附籽粒;加之經(jīng)尾篩進(jìn)入復(fù)脫攪龍,經(jīng)復(fù)脫,莖稈變得碎小增加沾附篩孔等因素加劇了清選損失及含雜提高。
表3 高含水率水稻清選損失與含雜試驗Table 3 Loss and impurity content of rice with high moisture lontent
5.4 單HST原地轉(zhuǎn)向行走裝置轉(zhuǎn)向特性
為獲得原地轉(zhuǎn)向行走裝置轉(zhuǎn)向特性,2015年 11月02日在浙江省永康市花街晚稻甬優(yōu)9號割后稻茬地進(jìn)行了簡易試驗。
1)減少了轉(zhuǎn)向時對土壤的破壞
常規(guī)轉(zhuǎn)向在濕田進(jìn)行單邊制動轉(zhuǎn)向時,制動履帶在田面上拖動、積泥,不但增大了轉(zhuǎn)向阻力,且破壞了地表土壤;而采用單液壓馬達(dá)原地轉(zhuǎn)向變速器,轉(zhuǎn)向時則不會出現(xiàn)此類情況。如圖 8所示,A位為原地轉(zhuǎn)向履帶痕跡,B位為常規(guī)(單邊制動)轉(zhuǎn)向履帶痕跡。
2)降低了單邊制動轉(zhuǎn)向功率消耗
常規(guī)轉(zhuǎn)向機(jī)構(gòu)以一側(cè)履帶制動實現(xiàn)轉(zhuǎn)向,消耗了制動功耗,而原地轉(zhuǎn)向無制動,兩側(cè)履帶正反轉(zhuǎn),從而實現(xiàn)轉(zhuǎn)向。經(jīng)上文計算,單邊制動轉(zhuǎn)向的功耗Nz=12.7 kW,與原地轉(zhuǎn)向功耗Nω=8.0 kW相比,單邊制動轉(zhuǎn)向功耗增大約37.0%;并在割后稻茬地上,轉(zhuǎn)向?qū)Ρ仍囼?,相關(guān)數(shù)據(jù)如表4,其常規(guī)轉(zhuǎn)向功耗增加37.5%,與計算基本相符。
圖8 單液壓馬達(dá)原地轉(zhuǎn)向變速器履帶轉(zhuǎn)向痕跡Fig.8 Track tracking mark of single hydraulic motor in situ steering transmission
表4 常規(guī)與原地轉(zhuǎn)向功耗對比試驗Table 4 Comparison of power consumption under on conventional steering and in-situ steering
1)同徑差速軸流脫粒分離裝置能合理利用脫粒滾筒不同線速度,提高了脫粒效果和分離能力,與等長度非差速軸流滾筒相比,夾帶和脫不凈損失率分別減少 0.02個百分點、0.09個百分點,破碎率下降0.017個百分點。
2)伸縮割臺可實現(xiàn)割臺三角區(qū)L值(割臺深度)的無級調(diào)節(jié),適應(yīng)不同高度作物收獲,擴(kuò)大了割臺功能,實現(xiàn)稻麥?zhǔn)斋@狀態(tài)和油菜收獲狀態(tài)的快速轉(zhuǎn)換,節(jié)約了工時和成本,油菜損失率顯著減少,較使用常規(guī)水稻收獲機(jī)割臺收獲時降低2.8個百分點。
3)行走裝置實現(xiàn)原地轉(zhuǎn)向,減少了對地表土壤破壞及轉(zhuǎn)向功耗;以原地轉(zhuǎn)向替代單邊制動轉(zhuǎn)向時,比單邊制動功耗可降低37.0%。
4)清選裝置采用防粘篩表面處理,可適應(yīng)潮濕作物收獲,清選下降0.9個百分點,含雜率下降0.4個百分點,并更有利于油菜等小顆粒作物收獲。經(jīng)改進(jìn)設(shè)計的工作裝置的應(yīng)用,提高了縱軸流聯(lián)合收獲機(jī)整機(jī)技術(shù)水平及工作性能。
[1]介戰(zhàn),劉紅俊,侯鳳云,等. 中國精準(zhǔn)農(nóng)業(yè)聯(lián)合收割機(jī)研究現(xiàn)狀與前景展望[J]. 農(nóng)業(yè)工程學(xué)報,2005,21(2):179-182.Jie Zhan, Liu Hongjun, Hou Fengyun, et al. Research advances and prospects of combine on precision agriculture in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2005,21(2): 179-182. (in Chinese with English abstract)
[2]李耀明,李有為,徐立章,等. 聯(lián)合收獲機(jī)割臺機(jī)架結(jié)構(gòu)參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報,2014,30(3):30-37.Li Yaoming, Li Youwei, Xu Lizhang, et al. Structural parameter optimization of combine harvester cutting bench[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(3): 30-37. (in Chinese with English abstract)
[3]李海同,廖慶喜,李平,等. 油菜聯(lián)合收獲機(jī)分體組合式割臺的設(shè)計[J]. 華中農(nóng)業(yè)大學(xué)學(xué)報,2014,33(5):111-116.Li Haitong, Liao Qingxi, Li Ping et al. Design on separating-combined header of rape combine harvester[J].Journal of Huazhong Agricultural University, 2014, 33(5):111-116. (in Chinese with English abstract)
[4]楊方飛,閻楚良. 谷物在縱向軸流脫??臻g中的運動狀態(tài)分析[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2008,39(11):48-50,25.Yang Fangfei, Yan Chuliang. Movement analysis of cereal in axial flow threshing roller space[J]. Transactions of the Chinese Society for Agricultural Machinery, 2008, 39(11): 48-50, 25. (in Chinese with English abstract)
[5]梁振偉,李耀明,趙湛,等. 縱軸流聯(lián)合收獲機(jī)籽粒夾帶損失監(jiān)測方法及傳感器研制[J]. 農(nóng)業(yè)工程學(xué)報,2014,30(3):18-26.Liang Zhenwei,Li Yaoming,Zhao Zhan,et al. Monitoring method and sensor for grain seoaration loss on axial flow combine harvester[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014,30(3): 18-26. (in Chinese with English abstract)
[6]徐立章,李耀明,王成紅,等. 切縱流雙滾筒聯(lián)合收獲機(jī)脫粒分離裝置[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2014,45(2):105-108,135.Xu Lizhang, Li Yaoming, Wang Chenghong, et al. A combinational threshing and separating unit of combine harvester with a transverse tangential and an axial rotor[J].Transactions of the Chinese Society for Agricultural Machinery,2014, 45(2): 105-108, 135. (in Chinese with English abstract)
[7]衣淑娟,陶桂香,毛欣. 兩種軸流脫粒分離裝置脫出物分布規(guī)律對比試驗研究[J]. 農(nóng)業(yè)工程學(xué)報,2008,24(6):154-156.Yi Shujuan, Tao Guixiang, Mao Xin. Comparative experiment on the distribution regularities of threshed mixtures for two types of axial-flow threshing and separating installation[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(6): 154-156. (in Chinese with English abstract)
[8]唐忠,李耀明,趙湛,等. 切縱流聯(lián)合收獲機(jī)小麥夾帶損失檢測試驗與分析[J]. 農(nóng)業(yè)工程學(xué)報,2012,28(1):11-16.Tang Zhong, Li Yaoming, Zhao Zhan, et al. Test and analysis of wheat entrainment loss for tangential-longitudinal-axial combine harvester[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012,28(1): 11-16. (in Chinese with English abstract)
[9]唐忠,李耀明,徐立章,等. 切縱流聯(lián)合收獲機(jī)小麥脫粒分離性能評價與試驗[J]. 農(nóng)業(yè)工程學(xué)報,2012,28(3):14-19.Tang Zhong, Li Yaoming, Xu Lizhang, et al. Experiment and evaluating indicators of wheat threshing and separating on test-bed of longitudinal axial-threshing unit[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2012, 28(3): 14-19. (in Chinese with English abstract)
[10]鐘挺,胡志超,顧峰瑋,等. 4LZ-1.0Q型稻麥聯(lián)合收獲機(jī)脫粒清選部件試驗與優(yōu)化[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2012,43(10):76-81.Zhong Ting, Hu Zhichao, Gu Fengwei, et al. Optimization and experiment for threshing and cleaning parts of 4LZ-1.0Q cereal combine harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(10): 76-81. (in Chinese with English abstract)
[11]廖慶喜,萬星宇,李海同,等. 油菜聯(lián)合收獲機(jī)旋風(fēng)分離清選系統(tǒng)設(shè)計與試驗[J]. 農(nóng)業(yè)工程學(xué)報,2015,31(14):24-31.Liao Qingxi, Wan Xingyu, Li Haitong, et al. Design and experiment on cyclone separating cleaning system for rape combine harvester[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015,31(14): 24-31. (in Chinese with English abstract)
[12]周學(xué)建,袁華杰,閆衛(wèi)紅,等. 聯(lián)合收獲機(jī)吸雜口偏置型旋風(fēng)分離清選裝置試驗[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2014,45(8):80-85,159.Zhou Xuejian, Yuan Huajie, Yan Weihong, et al. Performance experiment on cyclone separating device based on off-centered inlet scoop[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(8): 80-85,159. (in Chinese with English abstract)
[13]李耀明,馬征,徐立章,等. 油菜聯(lián)合收獲機(jī)篩面粘附物摩擦特性[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2010,41(12):54-57,47.Li Yaoming, Ma Zheng, Xu Lizhang, et al. Tribological characteristics of adhesive materialson cleaning sieve of rape combine harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(12): 54-57, 47. (in Chinese with English abstract)
[14]唐忠,李耀明,李洪昌,等. 聯(lián)合收獲機(jī)風(fēng)篩式清選裝置清選室內(nèi)渦流試驗[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2010,41(12):62-66.Tang Zhong, Li Yaoming, Li Hongchang, et al. Analysis on the eddy current of the air-and-screen cleaning device[J].Transactions of the Chinese Society for Agricultural Machinery,2010, 41(12): 62-66. (in Chinese with English abstract)
[15]李耀明,陳洋,徐立章,等. 斜置切縱流聯(lián)合收獲機(jī)脫粒分離裝置結(jié)構(gòu)參數(shù)優(yōu)化[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2016,47(9):1-8.Li Yaoming, Chen Yang, Xu Lizhang, et al. Optimization of structural parameters for threshing and separating device in oblique tangential-longitudinal combine[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(9):1-8. (in Chinese with English abstract)
[16]高橋弘行,市川友彥,杉山隆夫,等. 關(guān)于螺旋形脫粒機(jī)構(gòu)的脫粒作用(第1報)[J](日)農(nóng)嶪機(jī)械學(xué)會誌,1999,65(5):117-124.
[17]陳德俊,陳霓,姜喆雄,等. 國外水稻聯(lián)合收割機(jī)新技術(shù)及相關(guān)理論研究[M]. 鎮(zhèn)江:江蘇大學(xué)出版社,2015.
[18]Ryuichi Minami. クボタにぉけゐ收獲機(jī)の開發(fā)動向につぃて說明[R]. 收獲機(jī)械技術(shù)與裝備國際高層論壇, 中國鎮(zhèn)江市,2011.12.
[19]陳霓,熊永森,陳德俊,等. 聯(lián)合收獲機(jī)同軸差速軸流脫粒滾筒設(shè)計和試驗[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2010,41(10):67-71.Chen Ni, Xiong Yongsen, Chen Dejun, et al. Design and test on the coaxial differential-speed axial-flow threshing rotor of combine harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(10): 67-71. (in Chinese with English abstract)
[20]陳霓,余紅娟,陳德俊,等. 半喂入同軸差速脫粒滾筒設(shè)計與試驗[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2011,42(增):39-42.Chen Ni, Yu Hongjuan, Chen Dejun, et al. Design and test on the coaxial differential threshing rotor of head-feed combine harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(z): 39-42. (in Chinese with English abstract)
[21]佐村木仁.水稻收獲作業(yè)の新技術(shù),V コンバィン[J].農(nóng)業(yè)機(jī)械學(xué)會誌,2010,72(5):24-28.
[22]張奮飛,李金泉. 聯(lián)合收割機(jī)的可伸縮收割臺:ZL200520102387.8 [P]. 2006-07-26.
[23]馮江,蔣亦元. 水稻聯(lián)合收獲機(jī)單邊驅(qū)動原地轉(zhuǎn)向機(jī)構(gòu)的機(jī)理與性能試驗[J]. 農(nóng)業(yè)工程學(xué)報,2013,29(4):30-35.Feng Jiang, Jiang Yiyuan. Mechanism and performance test of pivot turning system with single driving for rice combine harvester[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013,29(4): 30-35. (in Chinese with English abstract)
[24]加藤補(bǔ)治,幸宣夫,平岡實,等. 收割機(jī):ZL03148095.0 [P].2006-11-08.
[25]中國農(nóng)業(yè)機(jī)械化科學(xué)研究院. 農(nóng)業(yè)機(jī)械設(shè)計手冊下冊[M].北京:中國農(nóng)業(yè)科學(xué)技術(shù)出版社,2007:894-941.
[26]王金雙,熊永森,徐中偉,等.一種收獲機(jī)的收割臺:ZL201310113300.6 [P]. 2015-10-07.
[27]北京農(nóng)業(yè)機(jī)械化學(xué)院. 農(nóng)業(yè)機(jī)械的原理設(shè)計與計算[M].北京:出版社不詳,1959,152-163.
[28]熊永森,胡華東,周勇,等. 陳德俊聯(lián)合收割機(jī)用零半徑轉(zhuǎn)向行走變速箱:ZL201010574927.8[P]. 2012-12-19.
[29]機(jī)械電子工業(yè)部洛陽拖拉機(jī)研究所. 拖拉機(jī)設(shè)計手冊(上冊)[M]. 北京:機(jī)械工業(yè)出版社,1994:283-284.
[30]遲媛, 蔣恩臣. 履帶車輛差速式轉(zhuǎn)向機(jī)構(gòu)性能試驗[J]. 農(nóng)業(yè)機(jī)械學(xué)報, 2008, 39(7): 15-17.Chi Yuan, Jiang Enchen. Performance tests on differential steering mechanism of tracked vehicle[J]. Transactions of the Chinese Society for Agricultural Machinery. 2008, 39(7): 15-17. (in Chinese with English abstract)
[31]傅美貞,陳德俊. 聯(lián)合收獲機(jī)不粘水振動清洗篩:ZL201220220578.4[P]. 2013-05-22.
Improved design and test of key components for longitudianl axial flow combine harvester
Wang Jinshuang1, Xiong Yongsen1, Xu Zhongwei2, Ma Guang1, Wang Zhiming1, Chen Dejun1
(1.College of Mechanical and Electrical Engineering, Jinhua Polytechnic, Jinhua321017,China;2.Zhejiang Sifang Co., Ltd., Yongkang,322000,China)
In view of the current state that the crawler-type vertical axial flow combine harvester can not be quickly converted between different crops, small radius steering is easy to cause surface soil damage, non-differential threshing drum is not suitable for high yield crop threshing, and without anti vibration water treatment the screen surface can not adapt to the cleaning processing of the crop with high water content, the loss rate of the cutting table is high, the threshing separation ability is poor, and the power consumption is high, we have improved the design and experiment of the main working parts such as cutting, threshing, cleaning and walking parts. The cutting table was designed to be a stepless speed adjustable telescopic structure, the threshing device was designed to be a longitudinal-axis roller with the same diameter and different speed, and a single HST (hydro static transmission) in situ steering walking device and an anti adhesion cleaning device were adopted. The results of laboratory tests and field tests showed that: The retractable cutting table could realize the fast conversion between the rice/wheat harvest state and the rape harvest state, and enlarge the use function of the cutting table; the loss of rapeseed was significantly reduced, and compared with the conventional method, the loss rate of rape was reduced by 2.8 percentage point. The threshing and separating device with the same diameter and differential speed could make use of the different speed of the threshing cylinder, and the threshing effect and separation ability were improved at the same time.Compared with the equal length single speed axial flow roller, the net loss rate of entrainment and removal decreased by 0.02 percentage point and 0.09 percentage point respectively, and the crushing rate was reduced by 0.017 percentage point. When the steering wheel was turned to a single side in wet field, the brake track was dragged on the surface of the ground, and the mud was accumulated. However, when a single hydraulic motor was used to steer the transmission, the steering would not occur. The conventional steering mechanism realized the steering with one side of the track brake, and consumed the braking power considerably; the in-situ steering had no braking, and both sides of the track were reversed. In-situ steering mechanism reduced surface soil damage and steering power consumption, and the power consumption was reduced by 37% when the steering was replaced by the single side. Cleaning mechanism and cleaning sieve after water repellent treatment shook board surface, which improved wet grain cleaning performance, and the loss rate was reduced by 0.9 percentage point and the impurity rate was reduced by 0.4 percentage point. The improved design of the main working equipment of the combine harvester improves the working performance of the whole machine.
crops; harvesters; design; longitudianl axis flow; structure improved; performance;experiments
10.11975/j.issn.1002-6819.2017.10.004
S225
A
1002-6819(2017)-10-0025-07
2016-08-25
2017-04-21
國家自然基金資助項目(51305182);浙江省重大科技專項項目(2011C12035)
王金雙,副教授,主要從事收獲機(jī)械設(shè)計與相關(guān)科研及教學(xué)。金華 金華職業(yè)技術(shù)學(xué)院機(jī)電工程學(xué)院,321017。
Email:791228154@qq.com