亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        基于WOFOST模型的中國(guó)主產(chǎn)區(qū)冬小麥生長(zhǎng)過(guò)程動(dòng)態(tài)模擬

        2017-07-07 00:43:38黃健熙賈世靈馬鴻元侯英雨
        關(guān)鍵詞:主產(chǎn)區(qū)單產(chǎn)冬小麥

        黃健熙,賈世靈,馬鴻元,侯英雨,何 亮

        (1. 中國(guó)農(nóng)業(yè)大學(xué)信息與電氣工程學(xué)院,北京 100083;2. 國(guó)家氣象中心,北京 100081)

        基于WOFOST模型的中國(guó)主產(chǎn)區(qū)冬小麥生長(zhǎng)過(guò)程動(dòng)態(tài)模擬

        黃健熙1,賈世靈1,馬鴻元1,侯英雨2,何 亮2

        (1. 中國(guó)農(nóng)業(yè)大學(xué)信息與電氣工程學(xué)院,北京 100083;2. 國(guó)家氣象中心,北京 100081)

        大區(qū)域尺度WOFOST(world food studies)模型的動(dòng)態(tài)模擬是作物模型區(qū)域應(yīng)用的重要基礎(chǔ)。該文以中國(guó)冬小麥主產(chǎn)區(qū)為研究對(duì)象,利用中國(guó)冬小麥主產(chǎn)區(qū)內(nèi) 174個(gè)農(nóng)業(yè)氣象站多年觀測(cè)數(shù)據(jù)以及氣象站點(diǎn)觀測(cè)數(shù)據(jù),重點(diǎn)優(yōu)化WOFOST模型中與品種相關(guān)的積溫參數(shù),即出苗至開花有效積溫與開花至成熟有效積溫。在冬小麥主產(chǎn)區(qū)分區(qū)的基礎(chǔ)上,以2012—2015年氣象數(shù)據(jù)驅(qū)動(dòng)WOFOST模型,在站點(diǎn)尺度進(jìn)行冬小麥的物候期、葉面積指數(shù)(leaf area index,LAI)和單產(chǎn)動(dòng)態(tài)模擬和精度分析。結(jié)果表明:WOFOST模型模擬出苗至開花天數(shù)的決定系數(shù)R2為0.89~0.94,均方根誤差RMSE為7.87~11.52 d,模型模擬開花至成熟天數(shù)的R2為0.63~0.77,RMSE為2.99~4.65 d; 模型模擬LAI的R2為0.70~0.83,RMSE為0.89~1.46 m2/m2;灌溉區(qū)WOFOST模擬的單產(chǎn)精度R2為0.45~0.59,RMSE為734~1 421 kg/hm2;雨養(yǎng)區(qū)WOFOST模擬的單產(chǎn)精度R2為0.48~0.61,RMSE為1 046~1 329 kg/hm2。結(jié)果表明,WOFOST模型在全國(guó)尺度取得了較高模擬精度,為區(qū)域尺度作物模型的農(nóng)業(yè)應(yīng)用提供了堅(jiān)實(shí)的過(guò)程模型基礎(chǔ)。

        模型;優(yōu)化;溫度;WOFOST;冬小麥;參數(shù)標(biāo)定;物候期;動(dòng)態(tài)模擬

        黃健熙,賈世靈,馬鴻元,侯英雨,何 亮. 基于 WOFOST模型的中國(guó)主產(chǎn)區(qū)冬小麥生長(zhǎng)過(guò)程動(dòng)態(tài)模擬[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(10):222-228. doi:10.11975/j.issn.1002-6819.2017.10.029 http://www.tcsae.org

        Huang Jianxi, Jia Shiling, Ma Hongyuan, Hou Yingyu, He Liang. Dynamic simulation of growth process of winter wheat in main production areas of China based on WOFOST model[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2017, 33(10): 222-228. (in Chinese with English abstract)

        doi:10.11975/j.issn.1002-6819.2017.10.029 http://www.tcsae.org

        0 引 言

        冬小麥?zhǔn)侵袊?guó)的 3大糧食作物之一,主要分布在長(zhǎng)城以南,長(zhǎng)江以北,其種植面積占全國(guó)耕地總面積約18%~27%,糧食作物總面積的18%~24%?;谧魑锷L(zhǎng)模型的方法是開展長(zhǎng)勢(shì)監(jiān)測(cè)與產(chǎn)量估測(cè)的重要技術(shù)手段之一。其區(qū)域尺度的應(yīng)用極大依賴于作物模型的標(biāo)定精度。

        本文選擇WOFOST(world food studies)模型作為作物生長(zhǎng)動(dòng)態(tài)過(guò)程模型。WOFOST作物模型由世界糧食研究中心和瓦赫寧根農(nóng)業(yè)大學(xué)共同研發(fā),能夠以天為步長(zhǎng)定量模擬氣象和其他環(huán)境因子影響下的作物生長(zhǎng)過(guò)程[1]。在過(guò)去的幾十年里,WOFOST模型已經(jīng)在諸多國(guó)家和地區(qū)的多個(gè)領(lǐng)域得到廣泛應(yīng)用。例如產(chǎn)量風(fēng)險(xiǎn)分析、年際間產(chǎn)量變化分析、土壤狀況對(duì)產(chǎn)量的影響、氣象條件對(duì)產(chǎn)量的影響、不同作物品種與耕作制度對(duì)產(chǎn)量的影響、氣象條件對(duì)產(chǎn)量的影響等。且模型對(duì)過(guò)程的描述是通用的,可以通過(guò)改變參數(shù)模擬不同的地理位置上的不同作物,因此對(duì)作物模型的參數(shù)進(jìn)行標(biāo)定校準(zhǔn),使其適應(yīng)于當(dāng)?shù)氐闹付ㄗ魑?,是進(jìn)行模型區(qū)域應(yīng)用的重要前提。WOFOST能夠模擬潛在生長(zhǎng)、水分脅迫和養(yǎng)分脅迫三種水平[1]。

        國(guó)內(nèi)外學(xué)者在作物模型區(qū)域標(biāo)定和模型應(yīng)用做了許多研究與探索。Wit等[2]利用集合卡爾曼濾波方法將遙感的土壤水分估測(cè)值同化到WOFOST模型中,糾正該模型土壤水平衡誤差,對(duì)西班牙、法國(guó)、意大利和德國(guó)1992?2000年間的冬小麥和玉米進(jìn)行產(chǎn)量估測(cè),結(jié)果表明,數(shù)據(jù)同化明顯改善了 66%地區(qū)的冬小麥產(chǎn)量模擬和56%地區(qū)的玉米產(chǎn)量模擬。Ma等[3]在華北平原冬小麥標(biāo)定與區(qū)域化WOFOST模型,通過(guò)葉面積指(leaf area index,LAI)耦合SAIL-PROSPECT模型來(lái)模擬土壤調(diào)節(jié)植被指數(shù)(soil adjust vegetation index, SAVI),最小化模擬與合成的SAVI之間的差異,重新初始化出苗日期,結(jié)果表明,該方法在將模擬應(yīng)用到區(qū)域尺度方面具有應(yīng)用潛力。Boogaard等[4]采用WOFOST模型評(píng)估歐盟25個(gè)國(guó)家的秋播小麥產(chǎn)量差距的優(yōu)勢(shì)與限制,結(jié)果表明,WOFOST水分脅迫模式下估算秋播小麥的產(chǎn)量精度較高。張建平等[5-10]利用WOFOST模型分析了氣候變化與低溫冷害對(duì)東北地區(qū)春玉米產(chǎn)量的影響。張素青等[11]在河南省夏玉米主產(chǎn)區(qū)對(duì)WOFOST模型進(jìn)行了校準(zhǔn)與驗(yàn)證。孫琳麗等

        [12]在內(nèi)蒙古河套灌區(qū)玉米種植區(qū)對(duì)WOFOST模型進(jìn)行了適應(yīng)性分析。陳思寧等[13]分析了PyWOFOST模型在東北玉米種植區(qū)的適應(yīng)性。張建平等[14]選擇華北平原冬小麥為研究對(duì)象,在WOFOST模型區(qū)域適應(yīng)性分析與檢驗(yàn)的基礎(chǔ)上,利用區(qū)域化的WOFOST模型模擬結(jié)果實(shí)現(xiàn)干旱災(zāi)害對(duì)作物影響的定量分析與動(dòng)態(tài)評(píng)估。綜上所述,目前作物模型標(biāo)定與驗(yàn)證方面的工作主要集中于單個(gè)站點(diǎn)和若干站點(diǎn)的尺度上。尚未見中國(guó)主產(chǎn)區(qū)尺度WOFOST作物模型標(biāo)定和適應(yīng)性研究報(bào)道,其主要挑戰(zhàn)在于中國(guó)冬小麥主產(chǎn)區(qū)的WOFOST模型輸入?yún)?shù)和初始狀態(tài)的空間變異性。

        本文基于中國(guó)冬小麥主產(chǎn)區(qū)內(nèi)的 174個(gè)農(nóng)業(yè)氣象站點(diǎn)觀測(cè)數(shù)據(jù),在站點(diǎn)尺度,評(píng)估WOFOST模型生育期、葉面積指數(shù)和單產(chǎn)動(dòng)態(tài)模擬與精度。評(píng)價(jià)WOFOST模型在全國(guó)冬小麥主產(chǎn)區(qū)的動(dòng)態(tài)模擬的適應(yīng)性。

        1 材料與方法

        1.1 研究區(qū)與數(shù)據(jù)

        冬小麥主要分布在長(zhǎng)城以南,長(zhǎng)江以北,本文的研究區(qū)選擇中國(guó)主要冬小麥種植區(qū),主要包括河北、山西、江蘇、安徽、山東、河南、湖北、重慶、四川、貴州、云南、陜西、甘肅、寧夏等省區(qū)。

        研究區(qū)內(nèi)共包括174個(gè)農(nóng)業(yè)氣象站點(diǎn),其中包括15個(gè)農(nóng)業(yè)氣象試驗(yàn)站點(diǎn),簡(jiǎn)稱試驗(yàn)站,位置分布如圖 1所示。本研究收集了2011至2015年各站點(diǎn)的冬小麥生育期及單產(chǎn)的觀測(cè)數(shù)據(jù)。其中關(guān)鍵生育期用于積溫參數(shù)的計(jì)算,并對(duì)模擬生育期的驗(yàn)證,單產(chǎn)數(shù)據(jù)用于對(duì)模擬結(jié)果精度的檢驗(yàn)。此外,試驗(yàn)站還提供不同生育期冬小麥根、莖、葉、貯存器官的干物質(zhì)質(zhì)量和實(shí)測(cè)LAI等生長(zhǎng)率參數(shù)。

        圖1 研究區(qū)冬小麥分區(qū)及農(nóng)業(yè)氣象站點(diǎn)分布Fig.1 Winter wheat zone and spatial distribution of agro-meteorological stations in study area

        WOFOST模型的氣象要素采用中科院青藏高原研究所生產(chǎn)的中國(guó)區(qū)域地面氣象數(shù)據(jù)集[15-16],主要包括 7個(gè)要素,近地面氣溫,地表氣壓,近地面空氣比濕,近地面全風(fēng)速,向下短波輻射,向下長(zhǎng)波輻射和降水率。空間分辨率為 0.1°,數(shù)據(jù)獲取網(wǎng)址為:“http://www. Tpedatabase.cn/portal/MetaDataInfo.jsp?MetaDataId=249369”。選擇2011—2015年的氣象數(shù)據(jù),進(jìn)行要素計(jì)算與格式轉(zhuǎn)換,獲得WOFOST模型所需6個(gè)氣象要素,包括逐日的輻射量、平均水汽壓、日最高溫、日最低溫、風(fēng)速及降水。

        1.2 WOFOST模型參數(shù)的校準(zhǔn)方法

        由于主產(chǎn)區(qū)內(nèi)的冬小麥品種和種植模式存在差異,因此有必要將整個(gè)冬小麥主產(chǎn)區(qū)劃分為相對(duì)均質(zhì)的子區(qū)域進(jìn)行作物模型標(biāo)定。選取了單產(chǎn)水平、土壤類型、氣象條件和種植結(jié)構(gòu)為指標(biāo),采用空間聚類的方法,獲得冬小麥分區(qū)。

        WOFOST模型中輸入?yún)?shù)包括氣象、作物、土壤和田間管理,參數(shù)較多,難以實(shí)現(xiàn)對(duì)每個(gè)參數(shù)的標(biāo)定與校準(zhǔn)。因此,需要根據(jù)WOFOST輸入?yún)?shù)的敏感性和物理含義進(jìn)行分類標(biāo)定與校準(zhǔn),對(duì)于不敏感的參數(shù)或低敏感性的參數(shù),采用WOFOST模型默認(rèn)值或通過(guò)文獻(xiàn)查閱確定;對(duì)于與品種有關(guān),敏感性較高且空間變異性較大的參數(shù),先通過(guò)觀測(cè)數(shù)據(jù)計(jì)算其取值范圍,再通過(guò)優(yōu)化算法確定。

        對(duì)于每個(gè)分區(qū),通常還包含若干農(nóng)業(yè)氣象站點(diǎn)。在站點(diǎn)尺度上,通過(guò)每個(gè)農(nóng)氣站點(diǎn)記錄的生育期和鄰近氣象站點(diǎn)觀測(cè)的日平均溫度,計(jì)算出與品種相關(guān)的積溫參數(shù),即出苗至開花有效積溫TSUM1與開花至成熟有效積溫TSUM2。同時(shí),假設(shè)鄰近的2 a冬小麥種植的品種不發(fā)生變化,因此,把 2011—2014冬小麥生育期標(biāo)定的TSUM1和TSUM2參數(shù)值,分別賦予到WOFOST模擬的2012—2015生育期。此外,WOFOST的出苗日期和重要土壤參數(shù)(田間持水量、凋萎系數(shù)和初始可利用水含量)是通過(guò)每個(gè)農(nóng)業(yè)氣象站點(diǎn)觀測(cè)給定。對(duì)于每個(gè)試驗(yàn)站點(diǎn),比葉面積(specific leaf area,SLA)根據(jù)試驗(yàn)站不同生育期的干物質(zhì)質(zhì)量和LAI計(jì)算。不同生育期的根、莖、葉、貯存器官的干物質(zhì)量分配系數(shù),也是通過(guò)觀測(cè)數(shù)據(jù)計(jì)算獲得。對(duì)于分區(qū)中缺失試驗(yàn)站的情況,則采用最近鄰站點(diǎn)賦值的方法確定。其他參數(shù)值通過(guò)文獻(xiàn)查閱[17-27]確定或采用WOFOST默認(rèn)值。表1為WOFOST模型中主要作物參數(shù)校準(zhǔn)值。

        1.3 模型參數(shù)的檢驗(yàn)方法

        模型模擬檢驗(yàn)包括了 2個(gè)部分:散點(diǎn)圖比較以及選擇統(tǒng)計(jì)評(píng)價(jià)指標(biāo)對(duì)模擬值和實(shí)測(cè)值進(jìn)行定量評(píng)價(jià)。散點(diǎn)圖為出苗至開花天數(shù)、開花至成熟天數(shù)、單產(chǎn)及LAI模擬值與實(shí)測(cè)值的回歸分析圖。統(tǒng)計(jì)評(píng)價(jià)指標(biāo)選擇了決定系數(shù)(R2)、一致性系數(shù)(D)、變異系數(shù)(coefficient of variation,CV)、均方根誤差(root mean square error,RMSE)、歸一化均方根誤差(normalized root mean square error,NRMSE)。其中R2和D反映了實(shí)測(cè)值與模擬值之間的一致性,越接近1表示模擬效果越好。CV反映了數(shù)值離散程度,值越大越能體現(xiàn)數(shù)據(jù)的空間變異性[28],可將其進(jìn)行粗略分級(jí):CV<10%,為弱變異性;10%≤CV≤100%;為中等變異性,CV>100%,為強(qiáng)變異性[29]。RMSE和 NRMSE反映了模擬值與實(shí)測(cè)值之間的相對(duì)誤差和絕對(duì)誤差[30],值越小表示模擬效果越好,其中,NRMSE≤10%,為極高精度;10%30%,為低精度[11]。D、CV、RMSE和NRMSE的計(jì)算公式如式(1)~(4)。

        式中i表示第i個(gè)樣本;Yi和Xi分別為第i個(gè)樣本模擬值和實(shí)測(cè)值;為全部樣本實(shí)測(cè)數(shù)據(jù)平均值;n為樣本數(shù);SD為模擬結(jié)果的標(biāo)準(zhǔn)差,為全部樣本模擬結(jié)果的平均值。

        表1 WOFOST模型中主要作物參數(shù)校準(zhǔn)值范圍Table 1 Range of calibrated values of main crop parameters of WOFOST model

        2 結(jié)果與分析

        2.1 模型參數(shù)的校準(zhǔn)結(jié)果

        根據(jù)上述模型參數(shù)校準(zhǔn)方法,進(jìn)行模型的校準(zhǔn)。表1為所有冬小麥分區(qū)的部分關(guān)鍵參數(shù)校準(zhǔn)值范圍。

        2.2 WOFOST模型檢驗(yàn)

        為驗(yàn)證WOFOST模型在中國(guó)冬小麥主產(chǎn)區(qū)的動(dòng)態(tài)模擬精度,在站點(diǎn)尺度,以2012—2015年當(dāng)年的站點(diǎn)觀測(cè)出苗日期為模擬初始日期,以氣象、土壤、作物等參數(shù)驅(qū)動(dòng)WOFOST模型進(jìn)行冬小麥生長(zhǎng)模擬,并對(duì)模型模擬的出苗至開花天數(shù)、開花至成熟的天數(shù)、LAI和單產(chǎn)進(jìn)行模擬結(jié)果精度分析與驗(yàn)證。

        2.2.1 生育期驗(yàn)證

        開花期和成熟期分別是冬小麥營(yíng)養(yǎng)生長(zhǎng)和生殖生長(zhǎng)階段的結(jié)束日期,是評(píng)價(jià)WOFOST模型模擬的重要生育期。該文分別選擇出苗期至開花期的天數(shù)和開花期至成熟期的天數(shù)來(lái)進(jìn)行關(guān)鍵生育期的驗(yàn)證。

        2012—2015年,模型對(duì)生育期天數(shù)的模擬,具有較為相似的模擬精度。由表2可知,出苗至開花的R2在0.89以上,D在0.96以上,說(shuō)明模擬值與實(shí)測(cè)值具有較好的一致性,NRMSE在7%以下,模擬誤差在7.87~11.52 d之間,表明WOFOST模型能準(zhǔn)確模擬冬小麥開花期。開花至成熟天數(shù)的R2位于0.63與0.77之間,D在0.87~0.93之間,NRMSE在8%~12%之間,模擬誤差在2.99到4.65 d之間。不同熱量條件的地區(qū),開花到成熟期的天數(shù)差異較大。模擬誤差主要依賴于開花期的誤差和開花到成熟期的積溫精度。以2012年為例(圖2),模型模擬出苗至開花天數(shù)、開花至成熟天數(shù)分別與實(shí)測(cè)值之間具有較好的相關(guān)性,各點(diǎn)均勻的分布在回歸線兩側(cè)。同時(shí),出苗至開花天數(shù)與開花至成熟天數(shù)的 CV均在 10%以上,具有顯著的空間變異性,能充分解釋模擬冬小麥生育期的區(qū)域空間變異。

        表2 不同年份WOFOST模擬生育期的驗(yàn)證結(jié)果精度對(duì)比(2012—2015)Table 2 Comparison of simulated growth stages accuracies in different years (2012—2015)

        圖2 WOFOST模型模擬出苗到開花期天數(shù)和開花到成熟期天數(shù)對(duì)比(2012)Fig.2 Comparison of simulated and measured days from emergence to anthesis and anthesis to maturity (2012)

        2.2.2 LAI的驗(yàn)證

        由圖3可知,2012—2015年模擬LAI與實(shí)測(cè)值之間的R2在0.70~0.83之間,D在0.88~0.96之間,WOFOST模擬LAI值與實(shí)測(cè)值之間的一致性較好,RMSE在0.89~1.46 m2/m2之間,NRMSE在50%~63%之間。由敏感性分析結(jié)果可知,對(duì)LAI最大值敏感的參數(shù)主要有葉片最大CO2同化速率、SLATB、初始生物量和葉片衰老系數(shù)[19]。本研究中,TDWI和SPAN都采用了默認(rèn)值,AMAXTB雖然根據(jù)參考文獻(xiàn)確定,但有一些冬小麥種植區(qū)缺少觀測(cè)數(shù)據(jù),采取模型默認(rèn)值,導(dǎo)致某些站點(diǎn)的WOFOST模擬誤差較大。

        圖3 WOFOST模型模擬LAI值與實(shí)測(cè)值對(duì)比(2012—2015)Fig.3 Comparison of WOFOST simulated and field-measured LAI (2012—2015)

        2.2.3 單產(chǎn)的驗(yàn)證

        考慮到冬小麥光熱和降雨條件的差異,將主產(chǎn)區(qū)劃分為灌溉區(qū)和雨養(yǎng)區(qū)分別進(jìn)行WOFOST模擬,其中黃淮海設(shè)定灌溉區(qū),采用WOFOST潛在模式,西北和西南地區(qū)設(shè)定為雨養(yǎng)區(qū),采用WOFOST的水分脅迫模式。

        灌溉區(qū)WOFOST模擬的單產(chǎn)精度R2為0.45~0.59,RMSE為734~1 421 kg/hm2;雨養(yǎng)區(qū)WOFOST模擬的單產(chǎn)精度R2為0.48~0.61,RMSE為1 046~1 329 kg/hm2。相比較而言,WOFOST模型模擬的灌溉區(qū)單產(chǎn)精度總體要高于雨養(yǎng)區(qū),具有更低的RMSE值(表3)。

        表3 灌溉區(qū)不同年份WOFOST模型模擬單產(chǎn)的驗(yàn)證結(jié)果精度對(duì)比(2012—2015)Table 3 Comparison of simulated yield accuracies in multiple years in irrigation area (2012—2015)

        對(duì)于某些年份單產(chǎn)偏低的可能原因是設(shè)定的品種相關(guān)的參數(shù) TSUM1和 TSUM2等具有較大誤差,導(dǎo)致WOFOST模擬的生育期和產(chǎn)量誤差較大。由表3可知,灌溉區(qū)與雨養(yǎng)區(qū)的D位于0.73~0.99之間,說(shuō)明模擬值與實(shí)測(cè)值具有很好的一致性??傮w而言,而單產(chǎn)模擬的誤差主要在于,對(duì)單產(chǎn)敏感的參數(shù)難以獲得準(zhǔn)確的空間分布值。

        圖4 2012和2015年WOFOST模型模擬單產(chǎn)和實(shí)測(cè)單產(chǎn)相對(duì)誤差的空間分布圖Fig.4 Spatial distribution of relative error of WOFOST simulated and field-measured yield per unit in 2012 and 2015

        從單產(chǎn)的空間分布差異來(lái)看(圖 4),模擬單產(chǎn)精度較高的站點(diǎn)主要分布于黃淮海灌溉區(qū)。而模擬單產(chǎn)相對(duì)誤差較大的點(diǎn),主要集中在雨養(yǎng)區(qū)??赡茉蚴寝r(nóng)業(yè)氣象站點(diǎn)分布稀疏和關(guān)鍵土壤參數(shù)難以準(zhǔn)確標(biāo)定。灌溉區(qū)模擬單產(chǎn)的 CV在 14%~22%之間,雨養(yǎng)區(qū)模擬單產(chǎn)的CV在25%~40%之間,能解釋模擬冬小麥單產(chǎn)的空間變異性,能解釋模擬冬小麥單產(chǎn)的空間變異性。

        3 討 論

        由于中國(guó)冬小麥主產(chǎn)區(qū)光熱條件和種植品種的差異,WOFOST模型模擬的生育期空間差異性較大,國(guó)家農(nóng)氣站點(diǎn)記錄的觀測(cè)數(shù)據(jù)表明,主產(chǎn)區(qū)內(nèi)冬小麥出苗到開花期歷時(shí)天數(shù)在89~200 d之間,開花到成熟期時(shí)天數(shù)在20~70 d之間,參數(shù)校準(zhǔn)后的WOFOST模型能準(zhǔn)確撲捉這一差異;WOFOST模型模擬LAI的誤差主要來(lái)源于對(duì)LAI敏感的WOFOST模型輸入?yún)?shù)(例如:TDWI和SPAN)未考慮參數(shù)的空間變異性;WOFOST單產(chǎn)模擬方面,我們考慮了雨養(yǎng)區(qū)和灌溉區(qū)的差異,其他影響因素未予考慮,例如:營(yíng)養(yǎng)和病蟲害脅迫等。研究表明,合理的標(biāo)定WOFOST模型的順序?yàn)樯?,LAI和單產(chǎn)。今后的研究將通過(guò)衛(wèi)星遙感數(shù)據(jù)和作物模型數(shù)據(jù)同化獲得WOFOST的關(guān)鍵輸入?yún)?shù)的空間分布的優(yōu)化值,從而進(jìn)一步提高大區(qū)域作物模型的模擬能力。標(biāo)定后的WOFOST模型將為區(qū)域尺度的溫度脅迫或水分脅迫對(duì)產(chǎn)量的影響提供動(dòng)態(tài)過(guò)程模型。

        4 結(jié) 論

        本文以WOFOST為動(dòng)態(tài)生長(zhǎng)模型,中國(guó)冬小麥主產(chǎn)區(qū)為研究對(duì)象,在分區(qū)的基礎(chǔ)上,基于農(nóng)業(yè)氣象站點(diǎn)觀測(cè)數(shù)據(jù)標(biāo)定WOFOST模型的敏感參數(shù),在站點(diǎn)尺度,動(dòng)態(tài)模擬生育期、LAI和單產(chǎn)。驗(yàn)證結(jié)果表明,模型模擬出苗-開花天數(shù)的NRMSE在4%~7%之間,模型模擬開花-成熟天數(shù)的NRMSE在8%~12%之間,具有較高的模擬精度,CV在14%~20%之間,具有空間變異性。模型模擬的LAI的NRMSE在50%~63%之間。模型模擬單產(chǎn)的NRMSE在11%~28%之間,CV在14%~40%之間,能較好地體現(xiàn)單產(chǎn)的空間差異性??傮w來(lái)說(shuō),WOFOST模型取得了較為理想的模擬精度,具有較好的適應(yīng)性。

        [1]Diepen C A, Wolf J, Keulen H, et al. WOFOST: A simulation model of crop production[J]. Soil Use &Management, 1989, 5(1): 16-24.

        [2]Wit A J W De, Diepen C A Van. Crop model data assimilation with the Ensemble Kalman filter for improving regional crop yield forecasts[J]. Agricultural & Forest Meteorology, 2007, 146(1-2): 38-56.

        [3]Ma Yuping, Wang Shili, Zhang Li, et al. Monitoring winter wheat growth in North China by combining a crop model and remote sensing data[J]. International Journal of Applied Earth Observation & Geoinformation, 2008, 10(4): 426-437.

        [4]Boogaard Hendrik, Wolf Joost, Supit Iwan, et al. A regional implementation of WOFOST for calculating yield gaps of autumn-sown wheat across the European Union[J]. Field Crops Research, 2013, 143(143): 130-142.

        [5]張建平,王春乙,楊曉光,等. 溫度導(dǎo)致的我國(guó)東北三省玉米產(chǎn)量波動(dòng)模擬[J]. 生態(tài)學(xué)報(bào),2009,29(10):5516-5522.Zhang Jianping, Wang Chunyi, Yang Xiaoguang, et al.Simulation of yield fluctustion caused by the temperature in Northeast China[J]. Acta Ecologica Sinica, 2009, 29 (10):5516-5522. (in Chinese with English abstract)

        [6]張建平,王春乙,趙艷霞,等. 基于作物模型的低溫冷害對(duì)我國(guó)東北三省玉米產(chǎn)量影響評(píng)估[J]. 生態(tài)學(xué)報(bào),2012,32 (13):4132-4138.Zhang Jianping, Wang Chunyi, Zhao Yanxia, et al. Impact evaluation of low temperature to yields of maize in Northeast China based on crop growth model[J]. Acta Ecologica Sinica,2012, 32(13): 4132-4138. (in Chinese with English abstract)

        [7]陳振林,張建平,王春乙,等. 應(yīng)用 WOFOST模型模擬低溫與干旱對(duì)玉米產(chǎn)量的綜合影響[J]. 中國(guó)農(nóng)業(yè)氣象,2007,28(4):440-442.Chen Zhenlin, Zhang Jianping, Wang Chunyi, et al.Application of WOFOST model in simulation of integrated impacts of low temperature and drought on maize yield[J].Chinese Journal of Agrometeorology, 2007, 28(4): 440-442.(in Chinese with English abstract)

        [8]張建平,趙艷霞,王春乙,等. 氣候變化情景下東北地區(qū)玉米產(chǎn)量變化模擬[J]. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào),2008,16(6):1448-1452.Zhang Jianping, Zhao Yanxia, Wang Chunyi, et al.Simulation of maize production under climate change scenario in Northeast China[J]. Chinese Journal of Eco-Agriculture, 2008, 16(6): 1448-1452. (in Chinese with English abstract)

        [9]張建平,趙艷霞,王春乙,等. 不同時(shí)段低溫冷害對(duì)玉米灌漿和產(chǎn)量的影響模擬[J]. 西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版),2012, 40(9):115-121.Zhang Jianping, Zhao Yanxia, Wang Chunyi, et al. Modeling the impact of low temperature disaster during different development stages on grain filling processes and yields of maize[J]. Journal of Northwest A&F University (Nat.Sci.Ed.),2012, 40(9): 115-121. (in Chinese with English abstract)

        [10]張建平,趙艷霞,王春乙,等. 不同發(fā)育期低溫冷害對(duì)玉米灌漿和產(chǎn)量影響模擬[J]. 中國(guó)農(nóng)學(xué)通報(bào),2012, 28(36):176-182.Zhang Jianping, Zhao Yanxia, Wang Chunyi, et al. The simulation of the effects of low temperature disasters on maize growth and yield during different development stages[J]. Chinese Agricultural Science Bulletin, 2012,28(36): 176-182. (in Chinese with English abstract)

        [11]張素青,張建濤,李繼蕊,等. WOFOST模型在河南省夏玉米主產(chǎn)區(qū)的校準(zhǔn)與驗(yàn)證[J]. 河南農(nóng)業(yè)科學(xué),2014, 43(8):152-156.Zhang Suqing, Zhang Jiantao, Li Jirui, et al. Calibration andvalidation of WOFOST in main maize-producing regions in Henan[J]. Journal of Henan Agricultural Sciences, 2014,43(8): 152-156. (in Chinese with English abstract)

        [12]孫琳麗,侯瓊,馬玉平,等. WOFOST模型在內(nèi)蒙古河套灌區(qū)模擬玉米生長(zhǎng)全程的適應(yīng)性[J]. 生態(tài)學(xué)雜志,2016,35(3):1-10.Sun Linli, Hou Qiong, Ma Yuping, et al. Adaptability of WOFOST model to simulate the whole growth period of maize in Hetao irrigation region of Inner Mongolia[J].Chinese Journal of Ecology, 2016, 35(3): 1-10. (in Chinese with English abstract)

        [13]陳思寧,趙艷霞,申雙和,等. 基于 PyWOFOST作物模型的東北玉米估產(chǎn)及精度評(píng)估[J]. 中國(guó)農(nóng)業(yè)科學(xué),2013,46(14):2880-2893.Chen Sining, Zhao Yanxia, Shen Shuanghe, et al. Study on maize yield estimation and accuracy assessment based on PyWOFOST crop model in Northeast China[J]. Scientia Agricultura Sinica, 2013, 46(14): 2880-2893. (in Chinese with English abstract)

        [14]張建平,趙艷霞,王春乙,等. 基于 WOFOST作物生長(zhǎng)模型的冬小麥干旱影響評(píng)估技術(shù)[J]. 生態(tài)學(xué)報(bào),2013,33(6):1762-1769.Zhang Jianping, Zhao Yanxia, Wang Chunyi, et al.Evaluation technology on drought disaster to yields of winter wheat based on WOFOST crop growth model[J]. Acta Ecologica Sinica, 2013, 33(6): 1762-1769. (in Chinese with English abstract)

        [15]Chen Yingying, Yang Kun, He Jie, et al. Improving land surface temperature modeling for dry land of China[J].Journal of Geophysical Research Atmospheres, 2011,116(116): 999-1010.

        [16]Yang Kun, He Jie, Tang Wenjun, et al. On downward shortwave and longwave radiations over high altitude regions:Observation and modeling in the Tibetan Plateau[J].Agricultural and Forest Meteorology, 2010, 150(1): 38-46.

        [17]Huang Jianxi, Sedano Fernando, Huang Yanbo, et al.Assimilating a synthetic Kalman filter leaf area index series into the WOFOST model to improve regional winter wheat yield estimation[J]. Agricultural and Forest Meteorology,2016(216): 188-202.

        [18]Huang Jianxi, Tian Liyan, Liang Shunlin, et al. Improving winter wheat yield estimation by assimilation of the leaf area index from Landsat TM and MODIS data into the WOFOST model[J]. Agricultural and Forest Meteorology, 2015(204):106-121.

        [19]Ma Guannan, Huang Jianxi, Wu Wenbin, et al. Assimilation of MODIS-LAI into the WOFOST model for forecasting regional winter wheat yield[J]. Mathematical & Computer Modelling, 2013, 58(3–4): 634-643.

        [20]Ma Hongyuan, Huang Jianxi, Zhu Dehai, et al. Estimating regional winter wheat yield by assimilation of time series of HJ-1 CCD NDVI into WOFOST-ACRM model with Ensemble Kalman filter[J]. Mathematical & Computer Modelling, 2013, 58(3–4): 759-770.

        [21]Huang Jianxi, Ma Hongyuan, Su Wei, et al. Jointly assimilating MODIS LAI and ET products into the SWAP model to estimate winter wheat yield[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 20158(8): 4060-4071.

        [22]Tian Liyan, Li Zhongxia, Huang Jianxi, et al. Comparison of two optimization algorithms for estimating regional winter wheat yield by integrating MODIS leaf area index and world food studies model[J]. Sensor Letters. 2013, 11(6–7): 1261-1268.

        [23]何亮,侯英雨,趙剛,等. 基于全局敏感性分析和貝葉斯方法的 WOFOST作物模型參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(2):169-179.He Liang, Hou Yingyu, Zhao Gang, et al. Parameters optimization of WOFOST model by integration of global sensitivity analysis and Bayesian calibration method[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2016, 32(2): 169-179. (in Chinese with English abstract)

        [24]黃健熙,馬鴻元,田麗燕,等. 基于時(shí)間序列 LAI和 ET同化的冬小麥遙感估產(chǎn)方法比較[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(4):197-203.Huang Jianxi, Ma Hongyuan, Tian Liyan, et al. Comparison of remote sensing yield estimation methods for winter wheat based on assimilating time-sequence LAI and ET[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(4): 197-203.(in Chinese with English abstract)

        [25]黃健熙,武思杰,劉興權(quán),等. 基于遙感信息與作物模型集合卡爾曼濾波同化的區(qū)域冬小麥產(chǎn)量預(yù)測(cè)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012(04):142-148.Huang Jianxi, Wu Sijie, Liu Xingquan, et al. Regional winter wheat yield forecasting based on assimilation of remote sensing data and crop growth model with Ensemble Kalman method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2012(04): 142-148. (in Chinese with English abstract)

        [26]邱美娟,宋迎波,王建林,等. 山東省冬小麥產(chǎn)量動(dòng)態(tài)集成預(yù)報(bào)方法[J]. 應(yīng)用氣象學(xué)報(bào),2016, 27(2):191-200.Qiu Meijuan, Song Yingbo, Wang Jianlin, et al. Integrated technology of yield dynamic prediction of winter wheat in Shandong province[J]. Journal of applied meteorological science, 2016, 27(2): 191-200.(in Chinese with English abstract)

        [27]Wu Dingrong, Yu Qiang, Lu Changhe, et al. Quantifying production potentials of winter wheat in the North China Plain[J]. European Journal of Agronomy, 2006, 24(3): 226-235.

        [28]Cheng Zhiqiang, Meng Jihua, Wang Yiming. Improving spring maize yield estimation at field scale by assimilating time-series HJ-1 CCD data into the WOFOST model using a New Method with Fast Algorithms[J]. Remote Sensing, 2016,8(4): 303.

        [29]Mallants D, Mohanty P B, Jacques D, et al. Spatial Variability Of Hydraulic Properties In A Multi-Layered Soil Profile[J]. Soil Science, 1996, 161(3): 167-181.

        [30]戴彤,王靖,赫迪,等. APSIM模型在西南地區(qū)的適應(yīng)性評(píng)價(jià):以重慶冬小麥為例[J]. 應(yīng)用生態(tài)學(xué)報(bào),2015, 26(4):1237-1243.Dai Tong, Wang Jing, He Di, et al. Adaptability of APSIM model in Southwestern China: A case study of winter wheat in Chongqing City. Chinese Journal of Applied Ecology,2015, 26(4): 1237-1243. (in Chinese with English abstract)

        Dynamic simulation of growth process of winter wheat in main production areas of China based on WOFOST model

        Huang Jianxi1, Jia Shiling1, Ma Hongyuan1, Hou Yingyu2, He Liang2
        (1.College of Information and Electrical Engineering, China Agricultural University, Beijing100083,China;2.National Meteorological Center, Beijing100081, China)

        Crop model calibration and parameterization are essential for model evaluation and agricultural application. It is important for model application to accurately estimate the values of crop model parameters and further improve the performance of model prediction. WOFOST (world food studies) is a well-known, widely applied simulation model to analyze quantitatively the growth and production of field crops, which was originally developed for crops in European countries. It is the base model for Monitoring Agricultural Resources (MARS) Crop Growth Monitoring System (CGMS) in operational use for yield estimation in European Union. Dynamic simulation of WOFOST model in large regional scale is an important basis for regional crop modeling. In this study, we selected the main winter wheat production areas of China as the study area, and the data from 174 agricultural meteorological stations from 2011 to 2014 were used to calibrate several key WOFOST input parameters, especially 2 parameters related with variety, namely the effective accumulated temperature from emergence to flowering (TSUM1) and the effective accumulated temperature from flowering to maturity (TSUM2). On the basis of the zoning of the main winter wheat production areas, we used the meteorological data from 2012 to 2015 to drive the WOFOST model at a single-point scale, to simulate the winter wheat growth and dynamic development. The simulated phenology, LAI(leaf area index) and yield at the station level were evaluated with the field measured data. Results showed that the NRMSE(normalized root mean square error) of LAI ranged from 50% to 63%. The NRMSE of simulated days was 4%-7% from emergence to anthesis period and 8%-12% from anthesis to maturity period, and then CV (coefficient of variation) of the phenology was between 14% and 20%, which meant significant spatial variability. We simulated the yield respectively in irrigated area and rainfed area. And the NRMSE of simulated yield in irrigated area ranged from 11% to 23%, while the NRMSE of simulated yield in rain-fed area ranged from 22% and 28%, and the CV ranged from 14% to 22% for irrigated areas and from 25% to 40% for rain-fed areas, which exhibited significant spatial variability. The NRMSE of simulated LAI was between 50% and 63%, which could be explained that the LAI during different growth stages was all included into the accuracy analysis. Several important input parameters (such as TDWI (initial biomass) and SPAN (leaf senescence coefficient))could be optimized through assimilating remote sensing data into crop model, which could greatly improve the performance of crop model at the regional scale. Our results showed that the WOFOST model is of great potential for simulating the dynamic growth process of winter wheat in China. The calibrated WOFOST provides the dynamic model basis for regional applications,such as assimilating remote sensing data into crop model for crop yield estimation and climate change prediction with crop model.

        models; optimization; temperature; WOFOST; winter wheat; parameter calibration; phendogy; dynamic simulation

        10.11975/j.issn.1002-6819.2017.10.029

        S127

        A

        1002-6819(2017)-10-0222-07

        2016-10-07

        2017-05-05

        國(guó)家自然科學(xué)基金(41671418,41471342,41371326)

        黃健熙,博士,博士生導(dǎo)師,主要從事農(nóng)業(yè)定量遙感研究。北京中國(guó)農(nóng)業(yè)大學(xué),100083。Email:jxhuang@cau.edu.cn

        猜你喜歡
        主產(chǎn)區(qū)單產(chǎn)冬小麥
        主產(chǎn)區(qū)小麥?zhǔn)召?gòu)進(jìn)度過(guò)七成
        農(nóng)大農(nóng)企聯(lián)手創(chuàng)山西小麥最高單產(chǎn)新紀(jì)錄
        油菜“不務(wù)正業(yè)”,單產(chǎn)3.4噸
        單產(chǎn)948.48千克!“金種子”迸發(fā)大能量
        我國(guó)玉米單產(chǎn)紀(jì)錄第七次被刷新
        全國(guó)麥?zhǔn)者M(jìn)度過(guò)半 主產(chǎn)區(qū)機(jī)收率超98%
        關(guān)于支持主產(chǎn)區(qū)發(fā)展專用糧食生產(chǎn)的建議
        甘肅冬小麥田
        冬小麥和春小麥
        中學(xué)生(2015年4期)2015-08-31 02:53:50
        冬小麥——新冬18號(hào)
        日韩精品人妻视频一区二区三区| 免费人妻无码不卡中文字幕系| 亚洲女初尝黑人巨高清 | 国产福利片无码区在线观看 | 国产剧情国产精品一区| 免费a级毛片无码a∨免费| 精品国产亚洲av高清日韩专区| 色又黄又爽18禁免费网站现观看| 国产精品精品自在线拍| 国产精品污www一区二区三区| 精品久久亚洲一级α| 久久久精品人妻一区二| 免费国产不卡在线观看| 国产一区二区三区亚洲avv| 东北少妇不带套对白| 91麻豆国产香蕉久久精品| 蜜桃av观看亚洲一区二区 | 男女高潮免费观看无遮挡 | 麻豆影视视频高清在线观看| 91免费永久国产在线观看| 亚洲AV无码久久精品国产老人| 无码三级国产三级在线电影| 中文字幕在线乱码亚洲| 一本色道无码不卡在线观看| 男女啪啪永久免费观看网站| 亚洲国产精品悠悠久久琪琪| 国语对白自拍视频在线播放| 国产精品免费看久久久无码| 男女爱爱好爽视频免费看| 国产V日韩V亚洲欧美久久| 日韩国产自拍精品在线| 免费观看人妻av网站| 中文字幕无线码| 国产乱人伦AV在线麻豆A| 国产精品国产三级国a| 国产精品天天看天天狠| 国产一区二区三区在线观看免费 | 无码人妻少妇久久中文字幕| 国产av大片久久中文字幕| 国产亚洲欧美精品永久| 人妻夜夜爽天天爽三区|