——外泌體的前世今生"/>
貝毅樺,喻溥蛟,肖俊杰
上海大學(xué)生命科學(xué)學(xué)院,上海 200444
自然論壇
小囊泡中的大學(xué)問*
——外泌體的前世今生
貝毅樺,喻溥蛟,肖俊杰?
上海大學(xué)生命科學(xué)學(xué)院,上海 200444
外泌體是一種直徑為30~100 nm,主要由細胞內(nèi)多泡體與細胞膜融合并釋放到細胞外基質(zhì)中的膜囊泡,可攜帶核酸、蛋白質(zhì)等分子,具有強大的生物學(xué)功能。本文系統(tǒng)闡述了外泌體的發(fā)現(xiàn)歷程、主要功能,及其在腫瘤生長、轉(zhuǎn)移、免疫逃逸、診斷、治療和在動脈粥樣硬化、心肌梗死、心室重構(gòu)、心臟再生等多種心血管生理和病理過程中的調(diào)控作用??偠灾?,外泌體這個小小囊泡中蘊藏著大學(xué)問。
外泌體;腫瘤;心血管疾病
“我們每個人都有好奇心,對于這個世界都有一些問題想問,都想利用腦中或者手中的工具來找到答案。從這個層面來說,每個人都是一定程度的科學(xué)家。只不過科學(xué)家問的問題更根本,而且是之前從未被解答過的?!?/p>
——蘭迪?謝克曼
北京時間2013年10月7日,在卡羅琳醫(yī)學(xué)院的諾貝爾大廳,諾貝爾獎的評選委員會秘書長戈蘭?漢松宣布,將當(dāng)年的諾貝爾生理學(xué)或醫(yī)學(xué)獎頒給三位杰出的科學(xué)家,即詹姆斯?E?羅斯曼(James E. Rothman)、托馬斯?蘇德霍夫(Thomas C. Südhof)以及蘭迪?謝克曼(Randy W. Schekman),以表彰三人共同解答的一個科學(xué)問題:細胞如何組織運轉(zhuǎn)其內(nèi)部的一個重要的傳輸系統(tǒng)——囊泡傳輸系統(tǒng)?也正是他們的研究成果以及諾貝爾獎的巨大影響力,使小小的囊泡被納入更多研究者的視線,隨著后續(xù)進行的深入研究,如今這個小小的囊泡已然裝滿了大大的學(xué)問,其研究方向涵蓋干細胞、免疫、靶向給藥、非編碼RNA(如微小RNA)、生物標(biāo)記物、腫瘤治療等熱門研究領(lǐng)域,而其研究前景仍在被不斷地開發(fā)。外泌體是目前這類囊泡傳輸系統(tǒng)中的研究熱點,本文將就此介紹外泌體的前世今生。
早在1986年,Eberhard G. Trams和R. M. Johnstone兩位科學(xué)家在體外培養(yǎng)的綿羊紅細胞的培養(yǎng)基上清液中發(fā)現(xiàn)了一種具有膜結(jié)構(gòu)的小囊泡,并將其命名為Exosome(外泌體)[1]。
在外泌體被發(fā)現(xiàn)的最初十幾年中,它的生物學(xué)作用一直沒有引起科學(xué)家的重視,甚至被認為是細胞產(chǎn)生的“垃圾”。直到1996年,有科學(xué)家發(fā)現(xiàn)B淋巴細胞能夠分泌抗原提呈外泌體,這種外泌體攜帶有MHC-II類分子、共刺激因子和黏附因子,能夠直接刺激效應(yīng)CD4陽性的細胞產(chǎn)生抗腫瘤效應(yīng)[2]。隨后,越來越多的研究發(fā)現(xiàn),外泌體中包含有DNA片段、mRNA、微小RNA、功能蛋白、轉(zhuǎn)錄因子等多種具有生物活性的物質(zhì),而其本身的膜結(jié)構(gòu)還能表達多種抗原、抗體分子,從而產(chǎn)生生物學(xué)效應(yīng)[3-4]。至此,一個在自然界默默傳輸關(guān)鍵生物信息的“快遞員”漸漸露出了真容。
目前,科學(xué)界將細胞外囊泡(extracellular vesicle)大致分為三大類:微泡(microvesicle)、凋亡小體(apoptotic body)和外泌體(exosome)(表1)。微泡是指由細胞分泌的一種直徑為100~1000 nm的膜囊泡[5];凋亡小體是指細胞程序性死亡過程中所釋放的一種直徑為500~4 000 nm的膜囊泡[6-7];外泌體則是一種直徑為30~100 nm、主要由細胞內(nèi)多泡體與細胞膜融合并釋放到細胞外基質(zhì)中的膜囊泡,后者在電鏡下表現(xiàn)為脂質(zhì)雙層包裹的扁平球體,呈特征性的杯狀外形。同源性的外泌體形態(tài)均一、大小相近,而不同來源的外泌體直徑可略有不同[8-11]。
表1 各種細胞外囊泡的區(qū)別
外泌體的形成是一個復(fù)雜而有序的動態(tài)過程。當(dāng)活細胞經(jīng)胞吞作用攝入外源性物質(zhì)后,會在細胞內(nèi)形成早期核內(nèi)體(early endosome,EE),EE通過囊膜內(nèi)陷、突入形成多個小囊泡,在選擇性地接收細胞胞漿內(nèi)的核酸、蛋白及脂質(zhì)等物質(zhì)后形成多泡內(nèi)核體(multivesicular endosome,MVE)。后者主要有三個去向:①與溶酶體融合,最終被消化;②在接受病理性刺激后,MVE中的小囊泡與細胞膜融合,并將內(nèi)容物表達在所在細胞的表面;③MVE與細胞膜融合后將小囊泡釋放到細胞外基質(zhì)中形成外泌體[12](圖1)。
由外泌體的形成過程可以看出,外泌體的內(nèi)含物在MVE的形成時期就已經(jīng)初步確定。蛋白是外泌體內(nèi)含物中的一大類物質(zhì),其含量與種類相當(dāng)豐富。外泌體包含的蛋白可分為兩類:一類是在外泌體普遍表達并可作為標(biāo)記物用來識別外泌體的蛋白,包括熱休克蛋白、TSG101、Alix、Foltillin、Rab蛋白等膜轉(zhuǎn)運和膜融合蛋白以及四跨膜超家族(tetraspanin)的成員CD9、CD63、CD81蛋白分子[13-14];另一類是不同來源、不同環(huán)境外泌體各自擁有的特異性蛋白,如T細胞來源的外泌體可攜帶CD3分子[15],神經(jīng)元來源的外泌體可表達谷氨酸受體等[16]。除蛋白以外,外泌體包含的另一大類重要物質(zhì)就是核酸,包括DNA、mRNA、微小RNA、lncRNA等。外泌體所攜帶的核酸、蛋白等分子賦予外泌體豐富的生物學(xué)信息,通過外泌體傳輸?shù)狡渌毎l(fā) 揮特定的生物學(xué) 效應(yīng)[3](圖2)。
圖1 外泌體的形成
圖2 外泌體的結(jié)構(gòu)與內(nèi)容物
目前認為外泌體產(chǎn)生生物學(xué)效應(yīng)的方式主要有兩種:其一,外泌體可以通過其表面的蛋白分子或脂質(zhì)配體直接激活目標(biāo)細胞表面的受體;其二,外泌體可以與受體細胞的質(zhì)膜融合并進入細胞,將自身包含的核酸、蛋白、脂質(zhì)等分子釋放入受體細胞,進而調(diào)控細胞的功能及生物學(xué)行為。外泌體在體內(nèi)各個系統(tǒng)的生理學(xué)和病理生理學(xué)過程中發(fā)揮著重要的調(diào)控作用,是研究疾病發(fā)病機制和疾病治療的重要靶點。這一類研究旨在尋找疾病發(fā)生發(fā)展的機制,干預(yù)疾病發(fā)展的過程。隨著某些疾病的發(fā)生發(fā)展,外泌體包含的某些分子的表達量也會有不同程度的改變,這使得外泌體(包括循環(huán)血外泌體)有望成為診斷疾病、評估治療反應(yīng)性和患者預(yù)后的潛在生物標(biāo)記物。
惡性腫瘤是目前嚴(yán)重影響人類健康的重大疾病。在腫瘤發(fā)生發(fā)展的過程中,腫瘤的生長、轉(zhuǎn)移、免疫逃逸等關(guān)鍵步驟均與外泌體有著莫大的聯(lián)系。為了更加早期、精準(zhǔn)地診斷腫瘤,更加有效、徹底地治療腫瘤,了解外泌體在腫瘤發(fā)生發(fā)展中的作用機制和外泌體作為生物標(biāo)記物的潛在可能性,對進一步完善腫瘤的診斷和治療具有重要的意義。
4.1 外泌體與腫瘤生長
在前列腺癌、惡性膠質(zhì)瘤、乳腺癌等腫瘤中,均有證據(jù)證明外泌體參與調(diào)控腫瘤的生長過程[17-19]。研究人員曾將乳腺癌患者血清提取的外泌體連同正常的內(nèi)皮細胞注射到小鼠體內(nèi),使其長出腫瘤,而正常對照來源的外泌體則沒有這種致癌作用[20]。前列腺癌細胞分泌的外泌體能夠憑借其包含的蛋白、mRNA和微小RNA使得正常的脂肪干細胞轉(zhuǎn)化為腫瘤細胞,這些外泌體還能促進附近的腫瘤細胞增殖,抑制細胞的衰老過程[21]。多發(fā)性骨髓瘤患者骨髓來源的間充質(zhì)干細胞所分泌的外泌體富含多種可促癌發(fā)生的細胞因子和黏附分子[22]。因此,在腫瘤的微環(huán)境中,腫瘤細胞來源的外泌體本身就是一種可以介導(dǎo)正常細胞癌變的媒介,它不僅參與調(diào)控腫瘤細胞的生長與增殖,而且可以影響正常細胞的惡性轉(zhuǎn)化。
腫瘤細胞猶如“特洛伊木馬”一般,通過外泌體將能夠改變細胞生存和凋亡能力的“間諜”物質(zhì)釋放到正常細胞的內(nèi)部,進而調(diào)控增殖、凋亡相關(guān)基因,將正常細胞轉(zhuǎn)變?yōu)槟[瘤細胞。此外,腫瘤細胞自身的增殖和生長與細胞生存能力增加、凋亡能力減弱密切相關(guān)。Yang等[23]在膀胱癌的研究中發(fā)現(xiàn),腫瘤細胞來源的外泌體能夠抑制腫瘤細胞凋亡、促進腫瘤生長;相反,抑制外泌體的形成和分泌則使得細胞Caspase 3(一種介導(dǎo)細胞凋亡的蛋白)的表達水平顯著上調(diào),從而抑制腫瘤的生長。另有研究發(fā)現(xiàn)[24],肝癌來源的外泌體富含一種名為TUC339的lncRNA,后者可以促進肝癌細胞的增殖,而使用干擾RNA抑制TUC339 lncRNA的表達則能夠抑制肝癌細胞的增殖。
由此可見,外泌體可以傳輸腫瘤細胞特有的生長信息,一方面影響周圍或者遠方的正常細胞,誘導(dǎo)其發(fā)生惡性轉(zhuǎn)化,另一方面通過調(diào)控細胞生存和凋亡相關(guān)基因的表達、轉(zhuǎn)錄和翻譯,影響腫瘤細胞自身的生長與增殖。
4.2 外泌體與腫瘤轉(zhuǎn)移
對于腫瘤患者而言,腫瘤轉(zhuǎn)移如同噩耗一般,嚴(yán)重影響患者的預(yù)后。上皮間質(zhì)轉(zhuǎn)化(epithelial-mesenchymal transition,EMT)是腫瘤轉(zhuǎn)移的一個重要過程,這種轉(zhuǎn)化能夠賦予細胞遷移和入侵的能力。Josson等[25]研究發(fā)現(xiàn),基質(zhì)成纖維細胞來源的外泌體能夠通過微小RNA-409促進上皮間質(zhì)轉(zhuǎn)化和前列腺癌的發(fā)生,外泌體同時富含轉(zhuǎn)化生長因子(TGF-β)、腫瘤壞死因子(TNF-α)、白介素-6、AKt、基質(zhì)金屬蛋白酶等,也參與促進上皮間質(zhì)轉(zhuǎn)化的過程。
此外,外泌體自身攜帶的一些內(nèi)容物本身就具有引導(dǎo)和協(xié)助腫瘤轉(zhuǎn)移的能力。原發(fā)腫瘤在轉(zhuǎn)移前會先派出外泌體到達即將轉(zhuǎn)移的部位,進行適應(yīng)腫瘤生長的微環(huán)境調(diào)整[26]。大鼠胰腺癌來源的外泌體攜帶有CD44v6,后者可到達淋巴結(jié)和肺部組織,形成有利于腫瘤轉(zhuǎn)移的微環(huán)境,促進腫瘤的遠處轉(zhuǎn)移[27-29]。腫瘤來源的外泌體甚至可以穿過血腦屏障,促進腫瘤的顱內(nèi)轉(zhuǎn)移[30]。
另有研究發(fā)現(xiàn),外泌體可以通過整合素調(diào)控腫瘤的轉(zhuǎn)移方向。Hoshino等[31]發(fā)現(xiàn)不同亞型的整合素能在一定程度上決定惡性腫瘤朝著特定的組織器官轉(zhuǎn)移。例如:整合素α6β4和α6β1參與腫瘤的肺轉(zhuǎn)移,αvβ5參與腫瘤的肝轉(zhuǎn)移。外泌體攜帶表達的這些整合素被受體細胞接受后,可以增強后者的黏附能力,促進Src磷酸化和促炎基因S100表達上調(diào),最終介導(dǎo)腫瘤的轉(zhuǎn)移。
4.3 外泌體與免疫逃逸
人體的細胞每一秒都經(jīng)歷著無數(shù)的生理變化,合成新的蛋白,產(chǎn)生新的細胞。這正如一個巨大的裝配工廠,難免會有失敗的裝配產(chǎn)品,此時人體的監(jiān)管部門——免疫系統(tǒng)則行使著它們的職責(zé),鏟平消除“不合格”的細胞和蛋白。其中,腫瘤細胞就是一種“失敗”的裝配產(chǎn)品。在大部分情況下,免疫系統(tǒng)能夠識別這些異常的腫瘤細胞,并通過免疫細胞的殺傷作用在早期將其消滅。然而,偶爾會有部分狡猾的腫瘤細胞躲過層層安檢最終發(fā)展壯大,這種現(xiàn)象就被稱為“免疫逃逸”。
越來越多的研究發(fā)現(xiàn)[32],外泌體能夠通過多種方式協(xié)助腫瘤細胞完成免疫逃逸。在卵巢癌患者腹水中的外泌體含有高水平的FasL,后者不僅可以通過抑制CD3和JAK3誘導(dǎo)T細胞凋亡,而且可以激活凋亡通路,介導(dǎo)免疫逃逸[33-34]。乳腺癌細胞來源的外泌體包含有微小RNA-146a、微小RNA-29a和微小RNA-21,能夠抑制淋巴細胞的發(fā)育和激活[35]。TW03鼻咽癌細胞來源的外泌體能夠抑制Th1和Th17細胞的增殖和分化,抑制免疫反應(yīng)[36]。此外,TS/A腫瘤細胞來源的外泌體可以下調(diào)NKG2D的表達,使穿孔蛋白的分泌增加,抑制自然殺傷細胞的功能[37-38]。
4.4 外泌體與腫瘤診斷
癌癥的早期診斷一直以來是臨床上比較棘手的問題,密切關(guān)系到癌癥患者的治療和預(yù)后。遺憾的是,多數(shù)臨床患者出現(xiàn)癥狀已處于癌癥晚期,因此尋求腫瘤早期診斷的標(biāo)記物具有重要的意義。作為腫瘤細胞的“親密戰(zhàn)友”,腫瘤細胞分泌的外泌體在促進腫瘤發(fā)生發(fā)展的同時,也暴露了腫瘤細胞。近年來,越來越多的科學(xué)家在轉(zhuǎn)錄組學(xué)、蛋白組學(xué)和代謝組學(xué)等層面對外泌體作為腫瘤早期診斷的標(biāo)記物進行了深入的探索。
Machida等[39]發(fā)現(xiàn)胰膽管癌患者唾液樣本外泌體來源的兩種微小RNA(微小RNA-4644和微小RNA-1264)的含量遠高于正常對照,其受試者工作特征曲線(ROC)下面積可達0.833,提示這兩個來自于外泌體的微小RNA是診斷胰膽管癌的潛在的生物標(biāo)記物。另有研究從膀胱癌患者尿液提取的外泌體入手,鑒定出了8種不同于正常人群的蛋白[23]。此外,在胃癌患者多種體液提取的外泌體中,HER2/neu以及MAGE-1的mRNA水平顯著升高[40](表2)。
表2 外泌體作為腫瘤診斷的生物標(biāo)記物
4.5 外泌體與腫瘤治療
由于外泌體在腫瘤的發(fā)生發(fā)展中起著重要作用,基于外泌體的治療也有望成為一種潛在的治療腫瘤的方法??傊饷隗w作為腫瘤治療的方法具有以下優(yōu)點:①相比傳統(tǒng)的研究對象,外泌體包含核酸、蛋白等大量重要的生物學(xué)信息;②外泌體廣泛存在于人體的各個組織、器官及幾乎所有的體液中,并且具有很高的穩(wěn)定性;③在體內(nèi)和體外水平,外泌體均能夠穩(wěn)定地攜帶藥物;④使用外泌體攜帶藥物能在循環(huán)中具有較長的半衰期;⑤外泌體能夠直接透過細胞膜向目標(biāo)細胞傳遞生物活性物質(zhì);⑥外泌體可以具備獨特的定向性遷移,并且能夠通過血腦屏障,這使其準(zhǔn)確、無障礙地到達治療部位。
外泌體獨特的功能是其能夠攜帶外源性的RNA(如干擾RNA、微小RNA),通過細胞膜融合將其內(nèi)含物傳送入目標(biāo)細胞的內(nèi)部,在轉(zhuǎn)錄水平及轉(zhuǎn)錄后水平調(diào)控腫瘤細胞的生物學(xué)行為,這使得外泌體有望在未來成為重要的載體實現(xiàn)精確的基因治療。同樣重要的是,外泌體不易被免疫系統(tǒng)識別,這種特性有助于其躲避機體的排異反應(yīng)[56-58]。在一項以外泌體為載體介導(dǎo)患者細胞產(chǎn)生抗腫瘤效應(yīng)的I期臨床試驗中,60%的受試者產(chǎn)生了具有抗腫瘤效應(yīng)的T細胞,并且表現(xiàn)出良好的治療耐受性[59]。通過電穿孔法將阿霉素添加到未成熟樹突狀細胞來源的外泌體中,這種外泌體能夠通過整合素相關(guān)的途徑直達乳腺癌細胞、黑色素瘤細胞及肝癌細胞,將阿霉素釋放到腫瘤細胞內(nèi)達到治療效果[60]。姜黃素對于腫瘤細胞有一定的殺傷作用,但是其穩(wěn)定性及生物活性極差,通過外泌體包裝能夠極大地增加其穩(wěn)定性以便于臨床應(yīng)用[61]。
心血管疾病是全球范圍內(nèi)致死致殘率極高的一大類疾病,由缺血性心肌病造成的死亡人數(shù)位居世界首位,所有心血管疾病的最終歸宿——慢性心力衰竭的5年生存率與惡性腫瘤相仿[62]。盡管心血管疾病的藥物治療日益完善,但是仍無法阻止其繼續(xù)掠奪生命。近年來的研究發(fā)現(xiàn),外泌體能夠在心肌細胞、心臟成纖維細胞、內(nèi)皮細胞及心臟干細胞間進行分子信號傳導(dǎo)以及生物信息的傳遞,廣泛參與了細胞存活、心肌梗死、心室重構(gòu)及心臟再生等心血管系統(tǒng)的生理和病理生理過程。
5.1 外泌體與動脈粥樣硬化
動脈粥樣硬化是缺血性心肌病的主要病因之一,也是缺血性卒中的病因之一。研究發(fā)現(xiàn),來源于血小板、內(nèi)皮細胞、單核/巨噬細胞的外泌體在動脈粥樣硬化形成的過程中起著重要的調(diào)節(jié)作用,外泌體內(nèi)含物的細微變化甚至可以早于動脈粥樣硬化的臨床發(fā)生。
許多針對動脈粥樣硬化的研究將目光聚焦于血小板源性的外泌體,這類外泌體在已確診有嚴(yán)重外周動脈粥樣硬化的患者中顯著升高[63]。血小板源性的外泌體能夠黏附于內(nèi)皮細胞以及內(nèi)皮細胞前體,在內(nèi)皮細胞受損時募集血小板,同時促進白介素-1、白介素-6、白介素-8等炎癥因子的釋放,影響內(nèi)皮細胞和單核細胞的功能,最終促進動脈粥樣硬化的形成[64-65]。內(nèi)皮源性的外泌體在動脈粥樣硬化的形成中同樣重要,這類外泌體被證實與肥胖[66]、2型糖尿病[67]、冠心病[68]密切相關(guān)。研究發(fā)現(xiàn),在糖尿病患者內(nèi)皮源性的外泌體中NADPH酶的活性顯著升高,參與介導(dǎo)了內(nèi)皮炎癥和內(nèi)皮功能紊亂,促進了動脈粥樣硬化的形成[69]。
5.2 外泌體與心肌梗死
為心臟供血的冠狀動脈發(fā)生粥樣硬化一般而言有兩個結(jié)局:其一,粥樣硬化緩慢進展,逐漸減少部分血管周圍的血供,進而慢慢閉塞,這種情況下由于心肌長期缺血會代償性地形成側(cè)支循環(huán)以勉強維持心功能,但長期也會發(fā)展為心力衰竭;其二,在粥樣硬化緩慢形成的過程中,由于一些因素造成粥樣斑塊破裂,進而形成急性血栓和血管急性閉塞,引起短時間內(nèi)心肌缺血壞死,即臨床常見的心肌梗死。心肌梗死發(fā)生時,心肌細胞會大量壞死,炎癥因子激活,極易造成心臟的電活動紊亂及心功能喪失,甚至死亡。
研究發(fā)現(xiàn),梗死的心肌能夠釋放包含有特殊物質(zhì)的外泌體進入循環(huán)血,例如微小RNA-126、微小RNA-199a、微小RNA-1、微小RNA-133a等在心肌梗死發(fā)生的早期就能在循環(huán)血提取的外泌體中被檢測出來[56,70-71]。除血液樣本外,急性心肌梗死患者尿液提取的外泌體中的微小RNA-1和微小RNA-208也顯著高于正常對照。這些發(fā)現(xiàn)意味著外泌體有望作為一種新的生物標(biāo)記物應(yīng)用于心肌梗死的早期診斷[72]。
盡管心肌梗死在急性期的首選處理方式,如溶栓、冠脈旁路移植、冠脈介入等藥物及物理治療,已日益完善,但目前仍缺乏可以有效修復(fù)心肌細胞、抑制和延緩心室重構(gòu)的治療措施。外泌體作為一種細胞與細胞間生物學(xué)信息傳遞的重要載體,在心肌梗死治療中的潛力與價值已越來越多地受到科學(xué)家的關(guān)注。研究發(fā)現(xiàn),間充質(zhì)干細胞來源的外泌體能夠顯著降低小鼠心肌缺血再灌注損傷的梗死面積。這類外泌體不僅能夠提高急性期心肌的ATP和NADH水平、降低氧化損傷、保護線粒體功能,而且還可以激活A(yù)kt/ GSK-3信號通路、降低c-JNK磷酸化水平進而保護受損的心肌[73]。另有研究發(fā)現(xiàn),心臟祖細胞來源的外泌體能夠替代心臟祖細胞的治療效果,在體外促進血管新生和心肌細胞存活[74-76]。此外,經(jīng)遺傳或蛋白質(zhì)修飾的外泌體可能進一步增強其心肌保護的效應(yīng),如GATA-4過表達的間充質(zhì)干細胞分泌的外泌體能夠釋放多種微小RNA激活細胞生存通路,改善心臟的收縮舒張功能,降低心肌梗死的面積[77]。更有趣的是,正常血漿來源的外泌體本身就可以激活Toll樣受體-4和熱休克蛋白70相關(guān)的信號通路,保護心肌缺血再灌注損傷[78-79]。近年來熱門研究的對象——缺血預(yù)處理,也被證實可以通過外泌體攜帶微小RNA-144來減少心肌梗死帶來的損傷[46]。
5.3 外泌體與心室重構(gòu)
心室重構(gòu)是心力衰竭的重要病理基礎(chǔ),其過程涉及心臟的炎癥反應(yīng)、心肌細胞肥大、心肌細胞凋亡和壞死、心臟間質(zhì)纖維化等。目前的研究發(fā)現(xiàn)這些復(fù)雜的過程也受到了外泌體攜帶的生物活性物質(zhì)的調(diào)控。心臟成纖維細胞來源的外泌體含有高表達的微小RNA-21-3p,后者可以經(jīng)旁分泌作用影響鄰近的心肌細胞,下調(diào)細胞內(nèi)SORBS2和PDLIM5蛋白的表達,誘導(dǎo)病理性心肌肥厚[80]。在壓力負荷增加的情況下,腎素-血管緊張素-醛固酮系統(tǒng)被激活,心肌細胞會同時分泌高表達1型血管緊張素II受體(AT1R)的外泌體,這種外泌體參與介導(dǎo)了血管緊張素II誘導(dǎo)的血壓升高和心力衰竭[81]。
外泌體在心室重構(gòu)治療中的研究和應(yīng)用也日益增多。研究發(fā)現(xiàn),間充質(zhì)干細胞來源的外泌體可以改善心肌損傷后的心臟微環(huán)境,促進血管新生,減輕炎癥反應(yīng),抑制心室重構(gòu),外泌體包含的微小RNA-221和微小RNA-22還能分別抑制P53誘導(dǎo)的心肌細胞凋亡和減輕心肌纖維化,這一系列保護效應(yīng)與激活I(lǐng)GF-1/PI3K/Akt信號通路密切相關(guān)[82]。心臟前體細胞來源的外泌體富含微小RNA-210和微小RNA-132,微小RNA-210可以抑制心肌細胞凋亡,而微小RNA-132促進血管新生,兩者共同參與改善心臟重構(gòu)[83]。
5.4 外泌體與心臟再生
在過去,心臟一度被認為是終末分化的臟器,不具備再生的能力。然而,這一觀點已在近年被推翻。事實上,成年心臟確實具有一定的再生能力,盡管這項能力微乎其微。研究表明,在心臟遭受急性損傷時,部分心臟干細胞會被激活并募集到受損部位分化形成新的心肌細胞[84]。遺憾的是,這種心肌再生的能力極其有限。相對而言,在心臟損傷修復(fù)的過程中,更多以心臟成纖維細胞為主。區(qū)別于病理性心肌肥大,生理性心肌肥大不會出現(xiàn)心肌細胞的凋亡和壞死、心臟間質(zhì)的纖維化和心功能下降,被認為對心臟具有保護作用。在生理性心肌肥大時,心臟也會產(chǎn)生新的心肌細胞。研究發(fā)現(xiàn),運動可以通過多種途徑誘導(dǎo)生理性心肌肥大,表現(xiàn)為有功能的心肌細胞體積增大(肥大)以及數(shù)量增加(新的心肌細胞形成)[85]。其中,心肌細胞增殖和心臟干細胞活化共同參與形成新的心肌細胞,提高心臟的再生能力可能為治療心血管疾病、防治心力衰竭提供了新的思路[86-88]。
在缺血性心臟病和心室重構(gòu)的治療中,干細胞來源的外泌體被報道可以通過促進心肌細胞存活、抑制心肌凋亡、促進血管新生等方式發(fā)揮保護心臟的作用。此外,心球樣細胞(cardiosphere-derived cell,CDC)來源的外泌體還被證實可以通過其富含的微小RNA-146a起到增強心肌細胞增殖的作用[89]。
自外泌體的生物學(xué)作用被發(fā)現(xiàn)至今,這個小小的囊泡在人類健康與疾病中的作用被日益挖掘。外泌體在各種生理和病理生理過程中的調(diào)控作用為各種疾病的診斷與治療提供了眾多新的研究靶點。
作為潛在的生物標(biāo)記物,這種能夠時刻反映機體狀況的“細作”是早期診斷隱匿性疾病的絕佳候選,尤其是腫瘤這類早期缺乏癥狀而晚期極其棘手的疾病。外泌體同時也是評估慢性疾病遠期預(yù)后和疾病治療反應(yīng)性的潛在標(biāo)記物。以心血管疾病為例,對眾多患者進行疾病的危險分層以更好地實施個體化治療對患者、醫(yī)生、甚至社會公共衛(wèi)生事業(yè)都具有重要的意義。無論是診斷疾病、治療疾病、評估治療反應(yīng)性還是判斷預(yù)后,都需要明確外泌體在疾病發(fā)病機制中所發(fā)揮的作用。同樣重要的是,如果要將這類生物標(biāo)記物應(yīng)用于臨床,還需要進一步優(yōu)化基于外泌體的檢測手段。
作為一種治療的載體,外泌體不僅自身包含豐富的生物活性物質(zhì),而且可以裝載外源性藥物,保持藥物分子在體內(nèi)的穩(wěn)定性。同時,外泌體沒有強烈的免疫排斥反應(yīng),外泌體表達的基因或蛋白還能在一定程度上引導(dǎo)其定向移動,到達目標(biāo)組織發(fā)揮治療效應(yīng),這些優(yōu)點使得外泌體成為科學(xué)家夢寐以求的理想治療載體。然而,距離外泌體作為治療載體真正運用于臨床還有很長一段距離,如何對外泌體的內(nèi)含物進行修飾,如何批量地在外泌體中加入藥物,如何大規(guī)模地制造外泌體,如何對不同病灶進行精準(zhǔn)定位等是科學(xué)家面臨和必須解決的一系列難題。
不可否認,外泌體在醫(yī)學(xué)研究的發(fā)展前景迷人,然而也任重道遠。最初發(fā)現(xiàn)外泌體的科學(xué)家并沒有意識到它們在囊泡運輸中的重要作用,而在被發(fā)現(xiàn)的數(shù)十年以后,外泌體的生物學(xué)作用才逐步受到科學(xué)家的關(guān)注。好奇是驅(qū)使文明進步最主要的動力,有問題則進而去探索,有興趣則進而去鉆研,有困難則進而去克服。誰也不知道一個小小的發(fā)現(xiàn)在將來會有多大的意義,正如外泌體這個小小囊泡中蘊藏著的大學(xué)問。
(2017年2月1日收稿)
[1] JOHNSTONE R M, ADAM M, HAMMOND J R, et al. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes) [J]. Journal of Biological Chemistry, 1987, 262: 9412-9420.
[2] RAPOSO G, NIJMAN H W, STOORVOGEL W, et al. Blymphocytes secrete antigen-presenting vesicles [J]. Journal of Experimental Medicine, 1996, 183: 1161-1172.
[3] VALADI H, EKSTROM K, BOSSIOS A, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells [J]. Nature Cell Biology, 2007, 9: 654-659.
[4] SLUIJTER J P, VERHAGE V, DEDDENS J C, et al. Microvesicles and exosomes for intracardiac communication [J]. Cardiovascular Research, 2014, 102: 302-311.
[5] MURALIDHARAN-CHARI V, CLANCY J W, SEDGWICK A, et al. Microvesicles: mediators of extracellular communication during cancer progression [J]. Journal of Cell Science, 2010, 123: 1603-1611.
[6] BERDA-HADDAD Y, ROBERT S, SALERS P, et al. Sterile inf l ammation of endothelial cell-derived apoptotic bodies is mediated by interleukin-1α [J]. Proceedings of the National Academy of Sciences, 2011, 108: 20684-20689.
[7] HRISTOV M, ERL W, LINDER S, et al. Apoptotic bodies from endothelial cells enhance the number and initiate the differentiation of human endothelial progenitor cells in vitro [J]. Blood, 2004, 104: 2761-2766.
[8] DISTLER J H W, HUBER L C, GAY S, et al. Microparticles as mediators of cellular cross-talk in inflammatory disease [J]. Autoimmunity, 2006, 39: 683-690.
[9] GY?RGY B, SZABó T G, PáSZTóI M, et al. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles [J]. Cellular and Molecular Life Sciences, 2011, 68: 2667-2688.
[10] THERY C, OSTROWSKI M, SEGURA E. Membrane vesicles as conveyors of immune responses [J]. Nature Reviews Immunology, 2009, 9: 581-593.
[11] VILLARROYA-BELTRI C, GUTIéRREZ-VáZQUEZ C, SáNCHEZMADRID F, et al. Analysis of microRNA and protein transfer by exosomes during an immune synapse [M]// KOSAKA N (ed). Circulating MicroRNAs: Methods and Protocols. Totowa, NJ: Humana Press, 2013: 41-51.
[12] RAPOSO G, STOORVOGEL W. Extracellular vesicles: exosomes, microvesicles, and friends [J]. Journal of Cell Biology, 2013, 200: 373-383.
[13] MATHIVANAN S, SIMPSON R J. ExoCarta: a compendium of exosomal proteins and RNA [J]. Proteomics, 2009, 9: 4997-5000.
[14] KHARAZIHA P, CEDER S, LI Q, et al. Tumor cell-derived exosomes: a message in a bottle [J]. Biochimica et Biophysica Acta, 2012, 1826, 103-111.
[15] BLANCHARD N, LANKAR D, FAURE F, et al. TCR activation of human T cells induces the production of exosomes bearing the TCR/ CD3/zeta complex [J]. Journal of Immunology, 2002, 168: 3235-3241.
[16] FELICETTI F, DE FEO A, COSCIA C, et al. Exosome-mediated transfer of miR-222 is sufficient to increase tumor malignancy in melanoma [J]. Journal of Translational Medicine, 2016, 14: 56.
[17] HOSSEINI-BEHESHTI E, CHOI W, WEISWALD L B, et al. Exosomes confer pro-survival signals to alter the phenotype of prostate cells in their surrounding environment [J]. Oncotarget, 2016, 5: 14639-14658.
[18] LIU Z M, WANG Y B, YUAN X H. Exosomes from murine-derived GL26 cells promote glioblastoma tumor growth by reducing number and function of CD8+T cells [J]. Asian Pacific Journal of Cancer Prevention Apjcp, 2013, 14: 309-314.
[19] SHI J, REN Y, ZHEN L, et al. Exosomes from breast cancer cells stimulate proliferation and inhibit apoptosis of CD133+ cancer cells in vitro [J]. Molecular Medicine Reports, 2014, 11: 405-409.
[20] THOMAS L M, SALTER R D. Activation of macrophages by P2X7-induced microvesicles from myeloid cells is mediated by phospholipids and is partially dependent on TLR4 [J]. Journal of Immunology, 2010, 185: 3740-3749.
[21] ABD ELMAGEED Z Y, YANG Y, THOMAS R, et al. Neoplastic reprogramming of patient-derived adipose stem cells by prostate cancer cell-associated exosomes [J]. Stem Cells, 2014, 32: 983-997.
[22] ROCCARO A M, SACCO A, MAISO P, et al. BM mesenchymalstromal cell-derived exosomes facilitate multiple myeloma progression [J]. Journal of Clinical Investigation, 2013, 123: 1542-1555.
[23] YANG L, WU X H, WANG D, et al. Bladder cancer cell-derived exosomes inhibit tumor cell apoptosis and induce cell proliferation in vitro [J]. Mol Med Rep, 2013, 8: 1272-1278.
[24] KOGURE T, YAN I K, LIN W L, et al. Extracellular vesicle-mediated transfer of a novel long noncoding RNA TUC339: a mechanism of intercellular signaling in human hepatocellular cancer [J]. Genes Cancer, 2013, 4: 261-272.
[25] JOSSON S, GURURAJAN M, SUNG S Y, et al. Stromal fi broblastderived miR-409 promotes epithelial-to-mesenchymal transition and prostate tumorigenesis [J]. Oncogene, 2015, 34: 2690-2699.
[26] LIU Y, CAO X. Organotropic metastasis: role of tumor exosomes [J]. Cell Research, 2016, 26: 149-150.
[27] GUNTHERT U, HOFMANN M, RUDY W, et al. A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells [J]. Cell, 1991, 65: 13-24.
[28] JUNG T, CASTELLANA D, KLINGBEIL P, et al. CD44v6 dependence of premetastatic niche preparation by exosomes [J]. Neoplasia, 2009, 11: 1093-1105.
[29] WANG H, RANA S, GIESE N, et al. Tspan8, CD44v6 and alpha6beta4 are biomarkers of migrating pancreatic cancer-initiating cells [J]. International Journal of Cancer, 2013, 133: 416-426.
[30] TOMINAGA N, KOSAKA N, ONO M, et al. Brain metastatic cancer cells release microRNA-181c-containing extracellular vesicles capable of destructing blood-brain barrier [J]. Nature Communications, 2015, 6: 6716.
[31] HOSHINO A, COSTA-SILVA B, SHEN T L, et al. Tumour exosome integrins determine organotropic metastasis [J]. Nature, 2015, 527: 329-335.
[32] SYN N, WANG L, SETHI G, et al. Exosome-mediated metastasis: from epithelial-mesenchymal transition to escape from immunosurveillance [J]. Trends in Pharmacological Sciences, 2016, 37: 606-617.
[33] TAYLOR D D, GERCEL-TAYLOR C. Tumour-derived exosomes and their role in cancer-associated T-cell signalling defects [J]. British Journal of Cancer, 2005, 92: 305-311.
[34] COE G L, REDD P S, PASCHALL A V, et al. Ceramide mediates FasL-induced caspase 8 activation in colon carcinoma cells to enhance FasL-induced cytotoxicity by tumor-specif i c cytotoxic T lymphocytes [J]. Scientif i c Reports, 2016, 6: 30816.
[35] CEREGHETTI D M, LEE P P. Tumor-derived exosomes contain microRNAs with immunological function: implications for a novel immunosuppression mechanism [J]. Microrna, 2014, 2: 194-204.
[36] CAZZOLI R, BUTTITTA F, DI NICOLA M, et al. microRNAs derived from circulating exosomes as noninvasive biomarkers for screening and diagnosing lung cancer [J]. Journal of Thoracic Oncology, 2013, 8: 1156-1162.
[37] EISELE G, WISCHHUSEN J, MITTELBRONN M, et al. TGF-beta and metalloproteinases differentially suppress NKG2D ligand surface expression on malignant glioma cells [J]. Brain, 2006, 129: 2416-2425.
[38] BAGINSKA J, VIRY E, PAGGETTI J, et al. The critical role of the tumor microenvironment in shaping natural killer cell-mediated antitumor immunity [J]. Frontiers in Immunology, 2013, 4: 490.
[39] MACHIDA T, TOMOFUJI T, MARUYAMA T, et al. miR1246 and miR4644 in salivary exosome as potential biomarkers for pancreatobiliary tract cancer [J]. Oncology Reports, 2016, 36: 2375-2381.
[40] BARAN J, BAJKRZYWORZEKA M, WEGLARCZYK K, et al. Circulating tumour-derived microvesicles in plasma of gastric cancer patients [J]. Cancer Immunology, Immunotherapy, 2010, 59: 841-850.
[41] HONG C S, MULLER L, BOYIADZIS M, et al. Isolation and characterization of CD34+ blast-derived exosomes in acute myeloid leukemia [J]. PLoS ONE, 2014, 9: e103310.
[42] SUGIMACHI K, MATSUMURA T, HIRATA H, et al. Identification of a bona fi de microRNA biomarker in serum exosomes that predicts hepatocellular carcinoma recurrence after liver transplantation [J]. British Journal of Cancer, 2015, 112: 532-538.
[43] BECKHAM C J, OLSEN J, YIN P N, et al. Bladder cancer exosomes contain EDIL-3/Del1 and facilitate cancer progression [J]. Journal of Urology, 2014, 192: 583-592.
[44] RABINOWITS G, GER?ELTAYLOR C, DAY J M, et al. Exosomal microRNA: a diagnostic marker for lung cancer [J]. Clinical Lung Cancer, 2009, 10: 42-46.
[45] EICHELSER C, STüCKRATH I, MüLLER V, et al. Increased serum levels of circulating exosomal microRNA-373 in receptor-negative breast cancer patients [J]. Oncotarget, 2014, 5: 9650-9663.
[46] LIU J, SUN H, WANG X, et al. Increased exosomal microRNA-21 and microRNA-146a levels in the cervicovaginal lavage specimens of patients with cervical cancer [J]. International Journal of Molecular Sciences, 2014, 15: 758-773.
[47] OGATAKAWATA H, IZUMIYA M, KURIOKA D, et al. Circulating exosomal microRNAs as biomarkers of colon cancer [J]. PLoS ONE, 2014, 9: e92921.
[48] YOSHIOKA Y, KOSAKA N, KONISHI Y, et al. Ultra-sensitive liquid biopsy of circulating extracellular vesicles using ExoScreen [J]. Nature Communications, 2014, 5: 3591.
[49] MATSUMURA T, SUGIMACHI K, IINUMA H, et al. Exosomal microRNA in serum is a novel biomarker of recurrence in human colorectal cancer [J]. British Journal of Cancer, 2015, 113: 275-281.
[50] LOGOZZI M, DE M A, LUGINI L, et al. High Levels of exosomes expressing CD63 and Caveolin-1 in plasma of melanoma patients [J]. PLoS ONE, 2009, 4: e5219.
[51] TANAKA Y, KAMOHARA H, KINOSHITA K, et al. Clinical impact of serum exosomal microRNA-21 as a clinical biomarker in human esophageal squamous cell carcinoma [J]. Cancer, 2013, 119: 1159-1167.
[52] LI Q, SHAO Y, ZHANG X, et al. Plasma long noncoding RNA protected by exosomes as a potential stable biomarker for gastric cancer [J]. Tumor Biology, 2015, 36: 2007-2012.
[53] MADHAVAN B, YUE S, GALLI U, et al. Combined evaluation of a panel of protein and miRNA serum-exosome biomarkers for pancreatic cancer diagnosis increases sensitivity and specif i city [J]. Int J Cancer, 2015, 136: 2616-2627.
[54] TAYLOR D D, GERCEL-TAYLOR C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer [J]. Gynecologic Oncology, 2008, 110: 13-21.
[55] SKOG J, WüRDINGER T, VAN R S, et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers [J]. Nature Cell Biology, 2008, 10: 1470-1476.
[56] ALVAREZ-ERVITI L, SEOW Y, YIN H F, et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes [J]. Nature Biotechnology, 2011, 29: 341-345.
[57] OHNO S, TAKANASHI M, SUDO K, et al. Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells [J]. Molecular Therapy, 2013, 21: 185-191.
[58] SHTAM T A, KOVALEV R A, VARFOLOMEEVA E Y, et al. Exosomes are natural carriers of exogenous siRNA to human cells in vitro [J]. Cell Communication and Signaling, 2013, 11: 1-10.
[59] DAI S, WAN T, WANG B, et al. More efficient induction of HLAA*0201-restricted and carcinoembryonic antigen (CEA)-specif i c CTL response by immunization with exosomes prepared from heat-stressed CEA-positive tumor cells [J]. Clinical Cancer Research, 2005, 11: 7554-7563.
[60] TIAN Y, LI S, SONG J, et al. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy [J]. Biomaterials, 2014, 35: 2383-2390.
[61] SUN D, ZHUANG X, XIANG X, et al. A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes [J]. Molecular Therapy, 2010, 18: 1606-1614.
[62] 王菲,DAS S. 基于循環(huán)血微小RNA預(yù)測心臟再同步化治療療效[J]. 上海大學(xué)學(xué)報(自然科學(xué)版), 2016, 22: 265-269.
[63] TAN K T, TAYEBJEE M H, LYND C, et al. Platelet microparticles and soluble P selectin in peripheral artery disease: relationship to extent of disease and platelet activation markers [J]. Annals of Medicine, 2005, 37: 61-66.
[64] MERTEN M, PAKALA R, THIAGARAJAN P, et al. Platelet microparticles promote platelet interaction with subendothelial matrixin a glycoprotein IIb/IIIa-dependent mechanism [J]. Circulation, 1999, 99: 2577-2582.
[65] BARRY O P, PRATICò D, SAVANI R C, et al. Modulation of monocyte-endothelial cell interactions by platelet microparticles [J]. Journal of Clinical Investigation, 1998, 102: 136-144.
[66] TAYLOR D D, AKYOL S, GERCEL-TAYLOR C. Pregnancyassociated exosomes and their modulation of T cell signaling [J]. Journal of Immunology, 2006, 176: 1534-1542.
[67] FENG B, CHEN Y, LUO Y, et al. Circulating level of microparticles and their correlation with arterial elasticity and endothelium-dependent dilation in patients with type 2 diabetes mellitus [J]. Atherosclerosis, 2010, 208: 264-269.
[68] WERNER N, WASSMANN S, AHLERS P, et al. Circulating CD31+/annexin V+ apoptotic microparticles correlate with coronary endothelial function in patients with coronary artery disease [J]. Arteriosclerosis Thrombosis and Vascular Biology, 2006, 26: 112-116.
[69] JANSEN F, YANG X, FRANKLIN B S, et al. High glucose condition increases NADPH oxidase activity in endothelial microparticles that promote vascular inf l ammation [J]. Cardiovascular Research, 2013, 98: 94-106.
[70] JANSEN F, YANG X, PROEBSTING S, et al. MicroRNA expression in circulating microvesicles predicts cardiovascular events in patients with coronary artery disease [J]. Journal of the American Heart Association, 2014, 3: A9724-A9724.
[71] KUWABARA Y, ONO K, HORIE T, et al. Increased microRNA-1 and microRNA-133a levels in serum of patients with cardiovascular disease indicate myocardial damage [J]. Circulation Cardiovascular Genetics, 2011, 4: 446-454.
[72] CHENG Y, WANG X, YANG J, et al. A translational study of urine miRNAs in acute myocardial infarction [J]. Journal of Molecular and Cellular Cardiology, 2012, 53: 668-676.
[73] ARSLAN F, LAI R C, SMEETS M B, et al. Mesenchymal stem cellderived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury [J]. Stem Cell Research, 2013, 10: 301-312.
[74] ASAHARA T, MASUDA H, TAKAHASHI T, et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization [J]. Circulation Research, 1999, 85: 221-228.
[75] VRIJSEN K R, BALKOM B W M V, NOORT W A, et al. Cardiomyocyte progenitor cell-derived exosomes stimulate migration of endothelial cells [J]. Journal of Cellular and Molecular Medicine, 2010, 14: 1064-1070.
[76] MALLIARAS K, ZHANG Y, SEINFELD J, et al. Cardiomyocyte proliferation and progenitor cell recruitment underlie therapeutic regeneration after myocardial infarction in the adult mouse heart [J]. EMBO Molecular Medicine, 2013, 5: 191-209.
[77] YU B, KIM H W, GONG M, et al. Exosomes secreted from GATA-4 overexpressing mesenchymal stem cells serve as a reservoir of antiapoptotic microRNAs for cardioprotection [J]. International Journal of Cardiology, 2015, 182: 349-360.
[78] MALIK Z A, KOTT K S, POE A J, et al. Cardiac myocyte exosomes: stability, HSP60, and proteomics [J]. American Journal of Physiology Heart & Circulatory Physiology, 2013, 304: 954-965.
[79] VICENCIO J M, YELLON D M, SIVARAMAN V, et al. Plasma exosomes protect the myocardium from ischemia-reperfusion injury [J]. Journal of the American College of Cardiology, 2015, 65: 1525-1536.
[80] BANG C, BATKAI S, DANGWAL S, et al. Cardiac fibroblast–derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy [J]. Journal of Clinical Investigation, 2014, 124: 2136-2146.
[81] PIRONTI G, STRACHAN R T, ABRAHAM D, et al. Circulating exosomes induced by cardiac pressure overload contain functional angiotensin II type 1 receptors [J]. Circulation, 2015, 131: 2120-2130.
[82] BARILE L, MOCCETTI T, MARBáN E, et al. Roles of exosomes in cardioprotection [J]. European Heart Journal, 2016: ehw304.
[83] BARILE L, LIONETTI V, CERVIO E, et al. Extracellular vesicles from human cardiac progenitor cells inhibit cardiomyocyte apoptosis and improve cardiac function after myocardial infarction [J]. Cardiovascular Research, 2014, 103: 530-541.
[84] BERGMANN O, BHARDWAJ R D, BERNARD S, et al. Evidence for cardiomyocyte renewal in humans [J]. Science, 2009, 324: 98-102.
[85] BERNARDO B C, WEEKS K L, PRETORIUS L, et al. Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies [J]. Pharmacology & Therapeutics, 2010, 128: 191-227.
[86] LIU X, XIAO J, ZHU H, et al. miR-222 is necessary for exerciseinduced cardiac growth and protects against pathological cardiac remodeling [J]. Cell Metabolism, 2015, 21: 584-595.
[87] BOSTR?M P, MANN N, WU J, et al. C/EBPβ controls exerciseinduced cardiac growth and protects against pathological cardiac remodeling [J]. Cell, 2010, 143: 1072-1083.
[88] 貝毅樺, 肖俊杰. 運動誘導(dǎo)心臟再生:治療心血管疾病的新途徑[J].上海大學(xué)學(xué)報(自然科學(xué)版), 2016, 22: 293-301.
[89] IBRAHIM A G, CHENG K, MARBáN E. Exosomes as critical agents of cardiac regeneration triggered by cell therapy [J]. Stem Cell Reports, 2014, 2: 606-619.
(編輯:段艷芳)
Big knowledge in small vesicles: preexistence and this life of exosomes
BEI Yihua, YU Pujiao, XIAO Junjie
School of Life Sciences, Shanghai University, Shanghai 200444, China
Exosomes are endosomes derived extracellular vesicles of 30~100 nm size range, which carry nucleic acid and protein. Exosomes have powerful biological functions. Here we described the discovery and functions of exosomes. In addition, we also summarized the roles of exosomes in cancer growth, metastasis, immune escape, diagnosis, and treatment. Besides, functions of exosomes in a variety of cardiovascular physiological and pathological processes including atherosclerosis, myocardial infarction, ventricular remodeling, and cardiac regeneration are reported. In summary, a big knowledge is contained in these small vesicles.
exosome, cancer, cardiovascular disease
10.3969/j.issn.0253-9608.2017.03.006
*上海市人才發(fā)展資金、國家自然科學(xué)基金青年項目(81400647)、國家自然科學(xué)基金面上項目(81570362)和國家自然科學(xué)基金重大研究計劃培育項目(91639101)資助
?通信作者,E-mail: junjiexiao@shu.edu.cn