丁曉浩, 齊 輝, 趙元博
(哈爾濱工程大學(xué) 航天與建筑工程學(xué)院,哈爾濱 150001)
雙相介質(zhì)半空間橢圓形夾雜與直線裂紋對SH波的散射
丁曉浩, 齊 輝, 趙元博
(哈爾濱工程大學(xué) 航天與建筑工程學(xué)院,哈爾濱 150001)
利用Green函數(shù)法、復(fù)變函數(shù)法和保角映射法研究了雙相介質(zhì)半空間存在直線裂紋與橢圓形夾雜組成的復(fù)合缺陷對SH波的散射問題并給出了解析解。采用保角映射法將橢圓形夾雜外域映射為單位圓外域并利用鏡像疊加原理構(gòu)造了一個(gè)能自動(dòng)滿足直角域兩個(gè)直線邊界應(yīng)力自由邊界條件的散射位移場。利用裂紋“切割”技術(shù)構(gòu)造區(qū)域I中的直線裂紋,并根據(jù)彈性疊加原理得出直角域中同時(shí)存在裂紋與橢圓形夾雜時(shí)的位移場和應(yīng)力場。采用“契合”法在界面上添加未知的外力系以滿足界面上的應(yīng)力和位移連續(xù)性條件,根據(jù)連續(xù)性條件建立求解未知力系的定解積分方程組,并通過截?cái)嘤邢揄?xiàng)求解。具體算例給出了不同參數(shù)條件下橢圓形夾雜的動(dòng)應(yīng)力集中系數(shù)分布情況,結(jié)果表明裂紋將對橢圓形夾雜的動(dòng)應(yīng)力集中系數(shù)的分布產(chǎn)生影響。
雙相介質(zhì)半空間;橢圓形夾雜;直線裂紋;保角映射;動(dòng)應(yīng)力集中系數(shù)(DSCF)
在自然界或人工材料中不可避免的會(huì)存在各類缺陷,如地質(zhì)斷層、斷崖,材料中異質(zhì)物等。當(dāng)彈性介質(zhì)受到動(dòng)態(tài)荷載作用時(shí),其內(nèi)部便會(huì)產(chǎn)生彈性波。介質(zhì)中的缺陷會(huì)對彈性波的傳播與散射的產(chǎn)生影響。對含有缺陷的介質(zhì)中彈性波散射問題的研究可以為土木工程、巖土工程、地震工程、無損檢測等領(lǐng)域提供理論參考。經(jīng)過數(shù)十年的發(fā)展,眾多學(xué)者在全空間和半空間模型中彈性波的散射問題研究領(lǐng)域已經(jīng)取得了很多有價(jià)值的研究成果[1]。Lee等[2-3]研究了半空間中半橢圓形凸起對SH波的散射,梁建文等[4]研究了地下圓形襯砌對SH波的散射,韓峰等[5]研究了半空間中多個(gè)凸起與凹陷對SH波的散射,楊在林等[8]研究了半空間中橢圓形夾雜與直線裂紋對SH波的散射。
近年來,部分學(xué)者開始關(guān)注自然界中普遍存在的地下異質(zhì)物(孔洞)與斷層或界面組成的復(fù)合缺陷對SH波的散射問題。陳志剛[9]研究了界面孔對SH波的散射問題,齊輝等[10-12]研究了含有直線裂紋的直角域中圓形夾雜以及雙相介質(zhì)半空間界面附近圓形或橢圓形夾雜對SH波的散射問題。可以看出,彈性波的研究模型由單一介質(zhì)中含有異質(zhì)物的簡單模型逐漸向含有界面和裂紋等復(fù)雜缺陷模型的方向發(fā)展。本文使用復(fù)變函數(shù)法和Green函數(shù)法,并利用保角變換及裂紋切割技術(shù)進(jìn)一步研究了含有橢圓形夾雜和直線裂紋的雙相介質(zhì)半空間中SH波的散射問題。
圖1為含有橢圓形夾雜和直線裂紋的雙相介質(zhì)半空間模型。橢圓形夾雜的長短軸半長分別為a,b;夾雜中心o距水平邊界距離為h,距豎直邊界的距離為d;介質(zhì)Ⅰ、介質(zhì)Ⅱ和介質(zhì)Ⅲ的質(zhì)量密度和剪切模量分別用ρi和μi(i=1,2,3)表示;裂紋起點(diǎn)距o″點(diǎn)的距離為A2,裂紋長度為B;裂紋與水平軸夾角為β;在o和o″點(diǎn)建立存在以下關(guān)系的坐標(biāo)系。
(1)
圖1 含有直線裂紋及橢圓形夾雜的雙相介質(zhì)半空間模型
(2)
(3)
式中:R=(a+b)/2;m=(a+b)/(a-b);a,b為橢圓形夾雜半長軸和半短軸的長度。
(4)
其對應(yīng)的應(yīng)力方程為
(5)
邊界條件可以表述為
(6)
2.1 Green 1
線源載荷δ(z-z0)在一個(gè)完整的直角域內(nèi)的擾動(dòng)可以視為入射波G(i),本文的研究的模型存在一個(gè)豎直直線邊界,這導(dǎo)致入射波在直線邊界和夾雜間發(fā)生多次反射,使得求解滿足自由表面上應(yīng)力自由條件的波場存在困難。為了克服這一難題,利用“鏡像法”將直角域沿邊界ΓV鏡像為對稱的半空間,如圖2所示,其中z02=z0+2d。
圖2 虛設(shè)點(diǎn)源模型
(7)
(8)
式中:ω(ζ)和ω(ζ0)分別為z,z0在映射平面上的映射;ω(ζ02)為z02的映射。
采用保角映射法將橢圓夾雜邊界外域映射為單位圓外域后,直角域中由橢圓形夾雜激發(fā)的散射波需滿足直線邊界處的應(yīng)力自由條件,根據(jù)鏡像疊加原理,如圖3所示。
圖3 鏡像模型
計(jì)算公式為
(9)
式中:
在橢圓形夾雜內(nèi)激發(fā)的駐波具有以下形式:
(10)
由橢圓形夾雜邊界上的位移和位移連續(xù)性條件可以建立求解未知系數(shù)An和Bn的方程組:
(11)
整理后得:
(12)
根據(jù)文獻(xiàn)[11]方法,在方程兩邊同乘exp(-imθ),并在(-π,π)上積分,通過有限項(xiàng)截?cái)嗲蠼鈩t可以求出未知系數(shù)An和Bn。
點(diǎn)源函數(shù)作用在介質(zhì)I內(nèi)部時(shí)的Green函數(shù):
(13)
2.2 Green 3
構(gòu)造點(diǎn)源作用在含有橢圓形夾雜與直線裂紋共存時(shí)的直角平面豎直邊界上時(shí)的Green函數(shù),需在介質(zhì)I中使用裂紋“切割”技術(shù)構(gòu)造直線裂紋,在欲出現(xiàn)裂紋的位置添加與此處切向應(yīng)力τθz′大小相等、方向相反的平面載荷[-τθz′],使得此處的應(yīng)力為零,則等效于出現(xiàn)直線裂紋。此時(shí)直角域內(nèi)的波場形式為
(14)
SH波入射完整直角域時(shí),利用鏡像疊加原理可以得出直角域內(nèi)入射波場和反射波場:
(15)
(16)
(17)
式中:γ0=π-α0;α1為水平邊界處的反射角;α1=-α0;γ1=π-α1;γ2=π-α2;且cosα2=(c2/c1)cosα0;而W1和W2分別為反射波和折射波的位移幅值。
穩(wěn)態(tài)SH波入射到模型中時(shí),夾雜的散射波場與求解Green函數(shù)時(shí)橢圓形夾雜的散射波場具有相同的形式。此時(shí),介質(zhì)I中存在以下形式波場:
(18)
將雙相介質(zhì)半空間分為兩個(gè)獨(dú)立的直角域研究的方法破壞了界面上原有的應(yīng)力和位移連續(xù)性條件,根據(jù)界面“契合”方法在剖分面上添加待求的外力系f1(r″0,θ″0)和f2(r″0,θ″0)以恢復(fù)界面上應(yīng)力和位移的連續(xù)性條件,如圖4所示。
圖4 界面契合模型
(19)
界面“契合”后位移連續(xù)條件
W(I)+W(f1)+W(C)=W(II)+W(f2)
(20)
式中:W(I)=W(i)+W(r)+W(s),W(II)=W(f),W(f1)和W(f2)為附加未知力系產(chǎn)生的波場;W(C)為構(gòu)造裂紋時(shí)添加的切應(yīng)力[-τθ″z″]產(chǎn)生的波場。
求附加力系f的定解積分方程組具體表達(dá)為
(22)
式中:G3和G4分別為介質(zhì)I和介質(zhì)II中的Green函數(shù)。G4為點(diǎn)源荷載作用下完整直角域豎直邊界上時(shí)域內(nèi)的Green函數(shù)[12]。
(23)
(a)
(b)
(a)
(b)
(a)
(b)
(a)
(b)
(a)
(b)
本文采用復(fù)變函數(shù)法和Green函數(shù)法并結(jié)合“鏡像”疊加原理、保角映射技術(shù)和裂紋“切割”技術(shù)研究了雙相介質(zhì)半空間界面附近存在橢圓形夾雜和直線裂紋時(shí)橢圓形夾雜的動(dòng)應(yīng)力集中系數(shù)分布情況。通過算例可以得出結(jié)論,夾雜附近的直線裂紋對夾雜的動(dòng)應(yīng)力集中系數(shù)的影響不可以忽略,裂紋存在時(shí)的夾雜動(dòng)應(yīng)力集中系數(shù)較無裂紋時(shí)提高了約28%并且靠近裂紋一側(cè)的值有明顯的增大。界面兩側(cè)材料的波數(shù)比對橢圓形夾雜的動(dòng)應(yīng)力集中系數(shù)的影響比較大,在SH波低頻且介質(zhì)I較介質(zhì)II硬時(shí)動(dòng)應(yīng)力集中系數(shù)的的值有明顯的增大,橢圓形夾雜與基體的波數(shù)比在SH波高頻入射時(shí)對結(jié)果有明顯的影響,低頻時(shí)則影響很小。同時(shí),夾雜的與界面和水平面之間的距離較近時(shí)動(dòng)應(yīng)力集中系數(shù)值較大,隨著距離的增大逐漸減小。
[1] WONG H L, TRIFUNAC M D. Surface motion of a semi-elliptical alluvial valley for incident plane SH waves[J]. Bulletin of the Seismological Society of America, 1974, 64(5): 1389-1403.
[2] LEE V W, AMORNWONGPAIBUN A. Scattering of anti-plane(SH) waves by a semi-elliptical hill: I-Shallow hill[J]. Soil Dynamic and Earthquake Engineering, 2012, 52: 116-125.
[3] AMORNWONGPAIBUN A, LEE V W. Scattering of anti-plane(SH) waves by a semi-elliptical hill: II-Deep hill[J]. Soil Dynamic and Earthquake Engineering, 2012, 52: 126-137.
[4] 梁建文,丁美,杜金金. 柱面SH波在地下圓形襯砌洞室周圍散射解析解[J]. 地震工程與工程振動(dòng),2013,33(1):1-7.
LIANG Jianwen, DING Mei, DU Jinjin. Diffraction of cylindrical SH waves around circular lined cavity: analytical solution[J].Journal of Earthquake Engineering and Engineering Vibration,2013,33(1):1-7.
[5] LUO Hao, LEE V W, LIANG Jianwen. Anti-plane(SH) waves diffraction by an underground semi-circular cavity: analytical solution[J]. Earthquake Engineering and Engineering Vibration, 2010,9(3): 385-396.
[6] HSU M S, TSAUR D H. Scattering of SH Waves by a Truncated Semi-Elliptic Canyon[J]. Journal of Mechanics, 2014, 30: 137-144.
[7] 韓峰,王光政,陳翰. SH波對多個(gè)凸起與凹陷相連地形的散射問題研究[J]. 應(yīng)用數(shù)學(xué)和力學(xué),2013, 34(4): 355-363.
HAN Feng, WANG Guangzheng, CHEN Han. Research on scattering of SH waves on multiple hills and canyons[J]. Applied Mathematics and Mechanics, 2013, 34(4): 355-363.
[8] 楊在林,許華南,黑寶平. 半空間橢圓夾雜與裂紋對SH波的散射[J]. 振動(dòng)與沖擊,2013, 32(11): 56-61.
YANG Zailin, XU Huanan, HEI Baoping. Interaction of elliptical and crack under incident SH-wave in a half-space[J]. Journal of Vibration and Shock, 2013, 32(11): 56-61.
[9] 陳志剛. SH波在界面孔上散射的遠(yuǎn)場解[J]. 振動(dòng)與沖擊,2014,33(12):138-144.
CHEN Zhigang. Far field solution to SH-wave scattered by an interface cavity[J]. Journal of Vibration and Shock, 2014, 33(12): 138-144.
[10] 齊輝,楊杰,李宏亮,等. 含任意直線型裂紋的直角域中圓柱夾雜對SH波的散射[J]. 振動(dòng)與沖擊, 2011, 30(5): 208-212.
QI Hui, YANG Jie, LI Hongliang, et al. Scattering of SH-wave by a cylindrical inclusion in right-angle plane with arbitrary beeline crack[J]. Journal of Vibration and Shock, 2011, 30(5): 208-212.
[11] QI Hui, YANG Jie. Dynamic analysis for circular inclusion of arbitrary positions near interfacial crack impacted by SH-wave in half-space[J]. European Journal of Mechanics /A Solids, 2012, 36: 18-24.
[12] 齊輝,丁曉浩,趙元博. 雙相介質(zhì)彈性半空間垂直界面附近橢圓形夾雜對SH波的散射[J]. 振動(dòng)與沖擊,2015, 34(24): 76-81.
QI Hui, DING Xiaohao, ZHAO Yuanbo. Scattering of SH-wave by an elliptic inclusion near vertical interface in a bi-material half-space[J]. Journal of Vibration and Shock, 2015, 34(24): 76-81.
Scattering of SH-wave caused by an elliptical inclusion and a beeline crack in bi-material half space
DING Xiaohao, QI Hui, ZHAO Yuanbo
(College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin 150001, China)
The scattering problem of SH-wave caused by an elliptical inclusion and a beeline crack in bi-material half space was investigated using Green’s function, the complex function method and the conformal mapping method, its analytical solution was derived. Firstly, the conformal mapping method was used to map the outside region of the elliptical inclusion into the outside region of a unit circle. The principle of image superposition was employed to construct the scattering wave displacement field satisfying two stress free line-boundary conditions of a right angle domain. Secondly, with the aid of the crack-division technique, a beeline crack was constructed. When there were both the crack and elliptical inclusion, displacement and stress fields in the right angle domain were deduced with the elastic superposition principle. Finally, the interface conjunction method was employed to add an unknown force system on the interface to satisfy continuity conditions of displacement and stress. The governing integral equation to solve the unknown force system was established according to the continuity conditions and solved with the finite truncated terms method. Distributions of dynamic stress concentration factor(DSCF) on the edge of the elliptical inclusion under different parameters were revealed in some examples. The results showed that the crack has an obvious effect on distributions of DSCF.
bi-material half space; elliptical inclusion; beeline crack; conformal mapping; dynamic stress concentration factor(DSCF)
黑龍江省自然科學(xué)基金(A201404)
2016-03-04 修改稿收到日期:2016-04-19
丁曉浩 男,博士生,1989年生
齊輝 男,教授,博士生導(dǎo)師,1963年生
O343.1;P315.3
A
10.13465/j.cnki.jvs.2017.11.012