李珊紅 王埡曼 李彩亭 曾光明 丁倩倩 郭威
摘 要:為減少香煙抽吸過程中煙堿對(duì)人體健康的危害,在ISO抽吸模式下,采用標(biāo)準(zhǔn)kε湍流模型、SIMPLE算法和多孔介質(zhì)模型對(duì)普通醋纖香煙濾嘴內(nèi)煙氣溫度與煙堿截留規(guī)律進(jìn)行研究.結(jié)果表明,抽吸過程中煙氣總焓隨時(shí)間逐漸降低;煙堿在軸向上遷移速度快,但隨著向吸食端擴(kuò)散,煙堿溫度逐漸降低,速度減慢,截留量也不斷減少;徑向上煙堿在熱泳力作用下,布朗無規(guī)則運(yùn)動(dòng)加劇,煙堿在每一截面上分布較分散,煙堿截留效率降低.普通醋纖香煙濾嘴的煙堿模擬截留效率為30.59%,與相同實(shí)驗(yàn)條件下測得的效率接近.研究結(jié)果為濾嘴的優(yōu)化設(shè)計(jì)提供理論依據(jù).
關(guān)鍵詞:醋纖濾嘴;數(shù)值模擬;溫度分布;煙堿分布;截留效率
中圖分類號(hào):X701.3 文獻(xiàn)標(biāo)識(shí)碼:A
Abstract:In order to reduce the harm of the nicotine to human body during the suction, the distribution of nicotine interception and flue gas temperature in the cellulose acetate cigarette filter under ISO suction mode was simulated via the standard kε turbulence model, SIMPLE algorithm and porous medium model. The results showed that the total enthalpy of air decreased gradually with the time, and the nicotine spread quickly and decreased gradually along the axial direction, because nicotine temperature gradually decreased and nicotine slowly moved down when spreading to the smoking end. Moreover, the nicotine also distributed discretely, which reduced the nicotine intercept efficiency because of the fierce Brownian motion under thermophoretic force along the radial direction. Meanwhile, it is found that the simulation intercept efficiency of cellulose acetate cigarette filter was 30.59%, which was close to the experimental efficiency under the same conditions, and the results can provide theoretical basis for the optimal design of the filter.
Key words:acetate cigarette filter tip; numerical simulation; temperature distribution; nicotine distribution; intercept efficiency
卷煙在抽吸過程中經(jīng)高溫燃燒、裂解等過程產(chǎn)生的煙氣,包括煙堿、一氧化碳、氮氧化物、氨、氫氰酸、酚類等有害成分,其中煙堿占卷煙煙氣總生物堿量的95 %以上[1-4].煙堿對(duì)人體中樞神經(jīng)有強(qiáng)烈刺激和麻痹作用,大量攝入會(huì)令人暈眩、嘔吐甚至中毒死亡.抽吸一支煙,人體通常可吸入0.2~ 2.5 mg煙堿[5],因此去除香煙煙氣中的煙堿對(duì)人體健康有重要意義.通常用能過濾吸收煙草煙氣中多種有害成分的醋酸纖維制作卷煙濾嘴[6].目前汪秋安等[7]采用固相微萃取法測定了卷煙主流煙氣中的游離煙堿.曹建華[5]、王進(jìn)等[8]研究了醋酸纖維濾嘴對(duì)香煙主流煙氣中煙堿的去除效果.李艷平等[9]通過實(shí)驗(yàn)考察了卷煙濾嘴內(nèi)煙堿的空間分布及過濾效率.上述工作大多需進(jìn)行大量的實(shí)驗(yàn),而實(shí)驗(yàn)研究常受到各種條件的限制,計(jì)算機(jī)模擬可降低人力、物力消耗,并準(zhǔn)確、形象地再現(xiàn)濾嘴內(nèi)的煙堿分布[10-12].本研究在對(duì)普通醋纖濾嘴內(nèi)煙堿分布進(jìn)行模擬研究的基礎(chǔ)上[10],進(jìn)一步研究濾嘴內(nèi)部煙氣溫度變化及其對(duì)截留煙堿量的影響,分析截留煙堿的效果.
1 幾何模型及網(wǎng)格劃分
建立普通醋纖濾嘴(3.0Y32000)的幾何模型,其長為28 mm, 圓周長為24.5 mm,網(wǎng)格采用六面體劃分,并對(duì)邊界層進(jìn)行加密.經(jīng)網(wǎng)格無關(guān)性驗(yàn)證,選用150×100(濾嘴圓周×軸向)網(wǎng)格進(jìn)行模擬,其總結(jié)點(diǎn)數(shù)達(dá)到270 276,網(wǎng)格數(shù)達(dá)到260 000.濾嘴幾何模型及網(wǎng)格圖如圖1所示,其中,Z=28 mm為過濾嘴與煙絲相連的煙絲端,Z=0為吸食端.煙氣從煙絲端流向吸食端,煙堿在濾嘴內(nèi)部被截留.
2 數(shù)學(xué)模型
假定濾嘴為孔隙率一致、孔徑均勻的多孔介質(zhì),不考慮焦油的沉積及除煙堿外的其他組分的揮發(fā).模擬采用標(biāo)準(zhǔn)kε雙方程湍流模型,非穩(wěn)態(tài)3D分離隱式求解器,SIMPLE算法,標(biāo)準(zhǔn)壁面函數(shù)處理近壁面區(qū)域.煙氣與煙堿流動(dòng)視為定常流,其中煙堿看作連續(xù)相,并考慮到煙堿與煙氣之間的相互作用,如熱泳擴(kuò)散,在歐拉模型下進(jìn)行模擬.煙堿和煙氣作為互相貫穿連續(xù)的多相流動(dòng),占據(jù)的空間以體積分?jǐn)?shù)(αq)表示,且煙堿和煙氣相各自滿足質(zhì)量、動(dòng)量和能量守恒定律[13-14].煙氣的體積分?jǐn)?shù)方程如式(1)所示.
3 邊界條件
實(shí)驗(yàn)測試表明, 抽吸香煙時(shí),通過濾嘴的煙氣為一種氣溶膠,含有氣、粒兩相,煙堿存在于粒相,煙氣中粒子數(shù)約1011個(gè)/230 mL,平均粒徑0.1~0.4 μm,90%的粒子粒徑50 nm~1.0 μm,粒徑呈正態(tài)分布, 中位粒徑0.254 μm.因粒徑較小,跟隨性好,類似于氣體分子運(yùn)動(dòng)[17].本研究中濾嘴視為孔隙率為0.77的均勻多孔介質(zhì)[18].濾嘴內(nèi)部醋酸纖維素纖維傳熱系數(shù)為0.050 W/(m·K)[19].濾嘴近煙絲端采用速度入口,速度大小隨時(shí)間發(fā)生變化,通過自定義函數(shù)UDF(User Defined Function)加載.煙氣進(jìn)口溫度設(shè)定為373 K[20].濾嘴近吸食端采用壓力出口,大小為-1 100 Pa,濾嘴壁厚0.08 mm.
4 結(jié)果與分析
4.1 抽吸完畢軸向上煙堿的溫度分布
抽吸完畢(即t=2.0 s時(shí)),煙堿沿軸向中心軸線上的溫度分布如圖2所示.由圖可知,抽吸完畢時(shí),煙堿溫度沿軸向上逐漸下降,在近煙絲端煙堿的溫度最高,煙堿在濾嘴內(nèi)部由煙絲端向吸食端擴(kuò)散,與醋酸纖維表面接觸被吸附截留并與其傳熱,溫度降低,在近吸食端溫度降至最低,且接近室溫.
4.2 不同時(shí)刻濾嘴軸向上煙氣的總焓分布
在2 s的抽吸過程中,觀察濾嘴內(nèi)煙氣在不同時(shí)刻(0.4 s,0.8 s,1.2 s,1.6 s,2.0 s)的總焓分布情況.如圖3所示,煙氣進(jìn)入濾嘴后,總焓的分布效果與溫度大致相同,呈現(xiàn)出逐漸降低的趨勢.在前0.4 s時(shí),煙氣剛剛進(jìn)入濾嘴,傳熱與擴(kuò)散效果較弱,總焓量變化不明顯.0.4 s后,煙氣逐漸進(jìn)入濾嘴,在軸向方向,煙氣由煙絲端向吸食端擴(kuò)散,經(jīng)傳熱溫度不斷降低,總焓量隨之下降.1.6 s后到抽吸結(jié)束,總焓量較低且變化不大.
4.3 煙堿分布
4.3.1 不同時(shí)刻濾嘴X=0截面內(nèi)的煙堿分布
在2 s的抽吸時(shí)間內(nèi),模擬普通醋纖濾嘴對(duì)煙堿的截留,獲取不同時(shí)刻(t=0.4 s,0.8 s,1.2 s,1.6 s)濾嘴內(nèi)的煙堿分布,如圖4所示.由圖可知,0.4 s內(nèi),煙氣剛剛進(jìn)入濾嘴,煙堿量較少;隨著煙氣持續(xù)進(jìn)入濾嘴向吸食端擴(kuò)散,煙堿被截留,濾嘴內(nèi)的煙堿量少許增加;1.2 s后,由于煙氣入口速度降低,向吸食端擴(kuò)散較慢,煙堿繼續(xù)被截留,煙堿量由煙絲端向吸食端逐漸減少.
4.3.2 濾嘴煙堿體積分?jǐn)?shù)的三維分布
為直觀地顯示煙堿在濾嘴中體積分?jǐn)?shù)的分布情況,選取抽吸時(shí)間t=1.6 s及2.0 s時(shí),觀察濾嘴內(nèi)3個(gè)不同截面(Z=0.007 m, 0.014 m, 0.021 m)的煙堿分布情況,如圖5所示.由圖可知,煙堿在3個(gè)不同截面內(nèi)的體積分布規(guī)律基本相近,在每個(gè)截面沿徑向方向分布較為均勻.由于中心區(qū)域的速度相對(duì)較大,從濾嘴中心流過的煙氣多于外周,但煙氣進(jìn)入濾嘴時(shí)溫度較高,煙堿比較活躍,在熱泳力作用下,布朗無規(guī)則運(yùn)動(dòng)加劇,使每一截面上煙堿分布較分散.
4.3.3 抽吸完畢軸向上煙堿的體積分?jǐn)?shù)分布
抽吸完畢(即t=2.0 s時(shí)),煙堿沿軸向中心軸線上的體積分?jǐn)?shù)分布如圖6所示.由圖可知,由于煙氣進(jìn)入濾嘴時(shí)溫度較高,煙堿在濾嘴內(nèi)部比較活躍,遷移速度快,使煙堿的體積分?jǐn)?shù)沿中心軸線首先變化不明顯,但隨著煙氣由煙絲端向吸食端擴(kuò)散,煙堿溫度逐漸降低,速度減慢,煙堿與醋酸纖維表面接觸而被吸附截留,使得煙堿沿中心軸線的截留量不斷降低,吸食端煙堿量低于煙絲端煙堿量.
4.3.4 抽吸完畢徑向上煙堿的體積分?jǐn)?shù)分布
抽吸完畢(t=2.0 s時(shí)),濾嘴中心面(即Z=0.014 m)徑向上煙堿的體積分?jǐn)?shù)分布如圖7所示.由圖可知,由過濾斷面的中心處至壁面處,煙堿的體積分?jǐn)?shù)大致呈下降趨勢.中心處通過的煙氣量較多,抽吸結(jié)束煙堿在此分布也較多.但由于煙堿受到熱泳力的作用,在濾嘴內(nèi)做布朗無規(guī)則運(yùn)動(dòng),使得煙堿在濾嘴內(nèi)隨機(jī)分布,其體積分?jǐn)?shù)在徑向上變化不大,在近壁面處,煙堿的體積分?jǐn)?shù)下降較多,這與圖5中的不同抽吸時(shí)刻,沿濾嘴長度方向不同截面(Z=0.007 m, 0.014 m, 0.021 m)的體積分?jǐn)?shù)分布規(guī)律基本一致.
4.4 煙堿的截留效率
通過監(jiān)視濾嘴入口及出口斷面得到煙堿的平均體積分?jǐn)?shù),經(jīng)計(jì)算可得模擬濾嘴煙堿的過濾效率達(dá)到30.59%.而實(shí)驗(yàn)條件與模擬幾何模型及邊界設(shè)置相近時(shí),ISO抽吸模式下普通濾嘴截留煙堿量和主流煙氣中煙堿量實(shí)驗(yàn)結(jié)果分別為0.75 mg/cig和1.17 mg/cig,相對(duì)于煙堿總釋放量1.92 mg/cig,實(shí)驗(yàn)測得的煙堿過濾效率為39.06 %.實(shí)驗(yàn)與模擬結(jié)果的相對(duì)誤差為21.6 %.產(chǎn)生誤差是由于實(shí)驗(yàn)中煙氣成份較復(fù)雜,煙氣中焦油可與煙堿粒子黏附形成更大的顆粒,并在濾嘴中不斷沉積形成煙塵過濾初層,使濾嘴內(nèi)部結(jié)構(gòu)更利于截留超細(xì)的煙堿粒子[21],但模擬過程中假定濾嘴孔隙率均勻不變,未考慮經(jīng)黏附等作用形成的新過濾層;同時(shí)煙氣進(jìn)入濾嘴內(nèi)溫度較高,煙堿在濾嘴內(nèi)部比較活躍,運(yùn)動(dòng)劇烈,遷移速度快,實(shí)驗(yàn)測得通過濾嘴的煙氣90%粒子粒徑為50 nm~1.0 μm,粒徑呈正態(tài)分布,粒子在熱泳力作用下做布朗運(yùn)動(dòng),粒徑對(duì)它的影響較大,但本研究中只考慮了對(duì)中位徑0.254 μm的煙堿粒子的模擬,因此濾嘴截留煙堿效率的模擬值較低.
5 結(jié) 論
本文對(duì)抽吸過程中濾嘴內(nèi)煙氣的溫度及濾嘴截留煙堿的規(guī)律進(jìn)行了研究,并探討了溫度對(duì)濾嘴截留煙堿的影響.結(jié)果表明,抽吸過程中,煙氣總焓隨時(shí)間逐漸降低;煙堿在軸向上由于入口溫度較高而遷移速度快,隨著向吸食端擴(kuò)散,煙堿溫度逐漸降低,速度減慢,截留量不斷降低;徑向上煙堿在熱泳力作用下,布朗無規(guī)則運(yùn)動(dòng)加劇,煙堿在每一截面上分布較分散,在壁面處減少,不利于截留煙堿.模擬的煙堿截留效率為30.59%,采用模擬的方法研究濾嘴內(nèi)煙堿截留規(guī)律對(duì)濾嘴的優(yōu)化設(shè)計(jì)具有理論指導(dǎo)意義.
參考文獻(xiàn)
[1] BAKER R R, BISHOP L J. The pyrolysis of tobacco ingredients [J]. Journal of Analytical and Applied Pyrolysis, 2004,71(1): 223-311.
[2] BABER R R. Smoke generation inside a burning cigarette: modifying combustion to develop cigarettes that may be less hazardous to health [J]. Progress in Energy and Combustion Science, 2006, 32(4): 373-385.
[3] 韓敏, 戴云輝, 庹蘇行, 等. 醋纖和改性丙纖濾嘴過濾卷煙煙氣有害成分效果比較[J]. 煙草科技, 2010(3): 8-10.
HAN Min, DAI Yunhui, TUO Suxing, et al. Comparison of filtration effects of cellulose acetate and modified polypropylene filters for harmful components in cigarette smoke[J]. Tobacco Science & Technology, 2010(3): 8-10.(In Chinese)
[4] 李超, 張健, 姜黎, 等. 卷煙主流煙氣中6種化學(xué)成分的逐口釋放量分析[J]. 煙草科技, 2015, 48(3): 39-46.
LI Chao, ZHANG Jian, JIANG Li, et al. Analysis of puffbypuff release of six chemical components in mainstream cigarette smoke[J]. Tobacco Science & Technology, 2015, 48(3): 39-46.(In Chinese)
[5] 曹建華. 改性醋酸纖維絲束及其在煙氣過濾中的應(yīng)用研究[D]. 上海:東華大學(xué)紡織學(xué)院, 2006: 26-28.
CAO Jianhua. Preparation of modified cellulose acetate fibers and studies on its application in filtration of cigarette smoke[D]. Shanghai: College of Textiles, Donghua University, 2006: 26-28.(In Chinese)
[6] 王純鳳, 高衛(wèi)東, 王鴻博. 卷煙濾嘴用醋酸纖維的過濾機(jī)制與過濾性能的提高[J]. 人造纖維, 2003, 33(4): 23-25.
WANG Chunfeng, GAO Weidong, WANG Hongbo. Improvement for filtration mechanisms and performance of cellulose acetate in cigarette filter[J]. Artificial Fibre, 2003, 33(4): 23-25.(In Chinese)
[7] 汪秋安, 王明峰, 者為, 等. 固相微萃取法測定卷煙主流煙氣中的游離煙堿[J]. 湖南大學(xué)學(xué)報(bào): 自然科學(xué)版, 2011, 38(11):70-75.
WANG Qiuan, WANG Mingfeng, ZHE Wei, et al. Determination of freebase nicotine in mainstream cigarette smoke by HSSPME GC/MS[J]. Journal of Hunan University: National Sciences, 2011, 38(11):70-75. (In Chinese)
[8] 王進(jìn), 楊占平, 曹建華,等. 殼聚糖改性醋纖濾嘴對(duì)煙堿和焦油的吸附效果[J]. 無錫輕工大學(xué)學(xué)報(bào), 2004, 23(5):34-37.
WANG Jin, YANG Zhanping, CAO Jianhua, et al. The influences of chitosan on nicotine and tar in mainstream tobacco smoke[J]. Journal of Wuxi University of Light Industry, 2004, 23(5):34-37.(In Chinese)
[9] 李艷平, 文建輝, 彭斌, 等. 不同結(jié)構(gòu)濾嘴的煙堿截留效率和空間分布模式[J]. 煙草科技, 2013(2): 57-61.
LI Yanping, WEN Jianhui, PENG Bin, et al. Filtration efficiencies and spatial distribution patterns of nicotine in filters of different structure[J]. Tobacco Science & Technology, 2013(2): 57-61.(In Chinese)
[10]李珊紅, 唐奇, 李彩亭, 等. 普通醋纖香煙濾嘴中煙堿分布模擬研究[J]. 環(huán)境工程學(xué)報(bào), 2015,9(8): 3955-3959.
LI Shanhong, TANG Qi, LI Caiting, et al. Study nicotine distribution in ordinary acetate fiber cigarette filter tip[J]. Chinese Journal of Environmental Engineering, 2015, 9(8): 3955-3959.(In Chinese)
[11]COGGINS C R E, GAWORSKI C L. Could charcoal filtration of cigarette smoke reduce smokinginduced disease? A review of the literature[J]. Regulatory Toxicology and Pharmacology, 2008, 50(3): 359-365.
[12]楊林, 付海明, 李杰,等. 單纖維對(duì)慣性顆粒穩(wěn)態(tài)過濾捕集效率的數(shù)值模擬分析[J]. 東華大學(xué)學(xué)報(bào):自然科學(xué)版, 2014, 40(3): 345-349.
YANG Lin, FU Haiming, LI Jie, et al. Numerical simulation analysis of stationary collection efficiency of inertial particles on single fiber surface[J]. Journal of Donghua University: Natural Science, 2014, 40(3):345-349.(In Chinese)
[13]張政, 謝灼利. 流體固體兩相流的數(shù)值模擬[J]. 化工學(xué)報(bào), 2001, 52(1): 1-12.
ZHANG Zheng, XIE Zhuoli. Numerical simulation of fluidsolid twophase flows[J]. Journal of Chemical Industry and Engineering, 2001, 52(1): 1-12.(In Chinese)
[14]COKLJAT D, SLACK M, VASQUEZ S A, et al. Reynoldsstress model for Eulerian multiphase [J]. Progress in Computational Fluid Dynamics, 2006, 6(1/3): 168-178.
[15]CHEN Yanjun, LI Yuanyang, LIU Zhenhua. Numerical simulations of forced convection heat transfer and flow characteristics of nanofluids in small tubes using twophase models [J]. International Journal of Heat and Mass Transfer, 2014, 78(7): 993-1003.
[16]MOUSAZADEH F, AKKER H E A, MUDDE R F. Eulerian simulation of heat transfer in a trickle bed reactor with constant wall temperature[J]. Chemical Engineering Journal, 2012, 207(10): 675-682.
[17]王海霞. 亞微米氣溶膠的粒徑譜及其中多環(huán)芳烴的研究[D]. 大連:中國科學(xué)院大連化學(xué)物理研究所,2007: 40-51.
WANG Haixia. Studies on the size distribution and polycyclic aromatic hydrocarbon contents of submicron aerosols[D]. Dalian: Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 2007: 40-51.(In Chinese)
[18]楊占平, 李海峰, 陸書明, 等. 合纖絲濾棒吸阻等效模型及其波動(dòng)分析初探[J]. 過濾與分離, 2013, 23(3): 5-8.
YANG Zhanping, LI Haifeng, LU Shuming, et al. Equivalent model of fiber tow filter tips and fluctuations analysis of pressure drop[J]. Journal of Filtration & Separation, 2013,23(3):5-8.(In Chinese)
[19]田保中, 郭恒勇. 模擬燃吸香煙過程中蠶絲過濾嘴內(nèi)部溫度變化[J]. 紡織學(xué)報(bào), 2011, 32(3): 21-24.
TIAN Baozhong, GUO Hengyong. Change of temperature inside silk filter tip in course of simulating someone smoking cigarette[J]. Journal of Textile Research, 2011, 32(3): 21-24.(In Chinese)
[20]許保鑫. 復(fù)合濾嘴吸附性能的熱脫附研究[D]. 昆明:昆明理工大學(xué)化學(xué)工程學(xué)院, 2007:3-5.
XU Baoxin. Thermodesorption study on adsorbability of active carbon composite filter[D]. Kunming: Faculty of Chemical Engineering, Kunming University of Science and Technology, 2007: 3-5.(In Chinese)
[21]MANINER D C, ASHLEY M, SHEPPERD C J, et al. Mouth level smoke exposure using analysis of filters from smoked cigarettes: a study of eight countries[J]. Regulatory Toxicology and Pharmacology, 2011, 61(3Suppl): S39-S50.