林君潔,鄧新,鮑瀟涵,王學軍
(安徽大學數(shù)學科學學院,安徽 合肥230039)
?
非負WOD隨機變量的第k小矩不等式
林君潔,鄧新,鮑瀟涵,王學軍
(安徽大學數(shù)學科學學院,安徽 合肥230039)
WOD隨機變量; 矩不等式; 指數(shù)不等式
P(|ξ|≤t)≤αt, ?t≥0
(0.1)
P(|ξ|>t)≤e-βt, ?t≥0
(0.2)
(0.3)
則稱{Xn,n≥1}是WUOD隨機變量; 如果存在一個有限的實數(shù)序列{gL(n),n≥1}, 使得對任意的n≥1及所有xi∈(-∞,+∞),1≤i≤n, 滿足
(0.4)
(1.1)
設x為一正數(shù),Gamma函數(shù)定義為
(1.2)
(1.3)
如果進一步假定ξ1,ξ2,…,ξn是獨立的, 則
(1.4)
其中Γ(·)是Gamma函數(shù). 定理B[2]設α>0,β>0,p>0,2≤k≤n. 設0 (1.5) (1.6) (2.1) 其中g(shù)(n)=max(gU(n),gL(n)). 定理2.1的證明 記 Ai(t)={ω:xiξi(ω)>t}={ω:ξi(ω)>t/xi},i=1,2,…,n, P(Ai(t))≤e-βt/xi,i=1,2,…,n.由(0.3)式及上述不等式得, (2.2) 定理2.2的證明 不失一般性, 假定xi>0,i=1,2,…,n. 記 (2.3) 由定理2.1知 (2.4) 因此, 由(2.3)式和(2.4)式可得 (2.5) 特別地, 若{fn,n≥1}和{ξn,n≥1} 均為標準正態(tài)隨機變量序列, 則對任意的n≥1, 有 (2.6) 推論2.1的證明 由定理A知, 再由定理2.2和上面不等式可得, 定理2.3 設β>0,p>0,{xn,n≥1}為一非降的正數(shù)序列, {ξn,n≥1}為一個滿足(0.2)式的非負WOD隨機變量序列. 則對任意的n≥2和2≤k≤n, 有 (2.7) 因此, 由上述不等式及引理1得 定理得證. [1]GordonY,LitvakAE,SchüttC,etal.Orlicznormsofsequencesofrandomvariables[J].AnnalsofProbability, 2002, 30: 1833-1853. [2]GordonY,LitvakAE,SchüttC,etal.Ontheminimumofseveralrandomvariables[J].ProceedingsoftheAmericanMathematicalSociety, 2006, 134: 3665-3675. [3]WangXJ,WangSJ,HuSH.Momentinequalityoftheminimumfornonnegativenegativelyorthantdependentrandomvariables[J].Filomat, 2014, 28(7): 1475-1481. [4]LiuL.Preciselargedeviationsfordependentrandomvariableswithheavytails[J].StatisticsandProbabilityLetters, 2009, 79: 1290-1298. [5]ChenY,ChenA,NgKW.Thestronglawoflargenumbersforextendnegativelydependentrandomvariables[J].JournalofAppliedProbability, 2010, 47: 908-922. [6]ShenAT.ProbabilityinequalitiesforENDsequenceandtheirapplications[J].JournalofInequalitiesandApplications, 2011, 2011(1): 12. [7]ShenAT.Onasymptoticapproximationofinversemomentsforaclassofnonnegativerandomvariables[J].Statistics:AJournalofTheoreticalandAppliedStatistics, 2013, 48(6): 1371-1379. [8]WangYB,ChengDY.Basicrenewaltheoremsforarandomwalkwithwidelydependentincrementsandtheirapplications[J].JournalofMathematicalAnalysisandApplications, 2011, 384: 597-606. [9]WangXJ,ZhengLL,XuC,etal.Completeconsistencyfortheestimatorofnonparametricregressionmodelsbasedonextendednegativelydependenterrors[J].Statistics:AJournalofTheoreticalandAppliedStatistics, 2015, 49(2): 396-407. [10]EbrahimiN,GhoshM.Multivariatenegativedependence[J].CommunicationsinStatistics-TheoryandMethods, 1981, 10: 307-337. [11]Joag-DevK,ProschanF.Negativeassociationofrandomvariableswithapplications[J].TheAnnalsofStatistics, 1983, 11: 286-295. [12]WangXJ,HuSH,YangWZ,etal.ExponentialinequalitiesandinversemomentforNODsequence[J].StatisticsandProbabilityLetters, 2010, 80: 452-461. [13]WangXJ,SiZY.CompleteconsistencyoftheestimatorofnonparametricregressionmodelunderNDsequence[J].StatisticalPapers, 2015, 56(3): 585-596. [14]WuQY,JiangYY.ThestrongconsistencyofMestimatorinalinearmodelfornegativelydependentrandomsamples[J].CommunicationsinStatistics-TheoryandMethods, 2011, 40: 467-491. [15]SungSH.Ontheexponentialinequalitiesfornegativelydependentrandomvariables[J].JournalofMathematicalAnalysisandApplications, 2011, 381: 538-545. [16]QiuDH,ChangKC,GiulianoAR,etal.Onthestrongratesofconvergenceforarraysofrowwisenegativelydependentrandomvariables[J].StochasticAnalysisandApplications, 2011, 29: 375-385. [17]ShenAT,ZhangY,VolodinA.Ontherateofconvergenceinthestronglawoflargenumbersfornegativelyorthant-dependentrandomvariables[J].CommunicationsinStatistics-TheoryandMethods, 2016, 45(21): 6209-6222. [18]HuTZ.Negativelysuperadditivedependenceofrandomvariableswithapplications[J].ChineseJournalofAppliedProbabilityandStatistics, 2000, 16: 133-1440. [19]ChristofidesTC,VaggelatouE.Aconnectionbetweensupermodularorderingandpositive/negativeassociation[J].JournalofMultivariateAnalysis, 2004, 88: 138-151. [20]WangK,WangYB,GaoQW.Uniformasymptoticforthefinite-timeruinprobabilityofanewdependentriskmodelwithaconstantinterestrate[J].MethodologyandComputinginAppliedProbability, 2013, 15: 109-124. [21] Wang Y B, Cui Z, Wang K, et al. Uniform asymptotic of the finite-time ruin probability for all times[J]. Journal of Mathematical Analysis and Applications, 2012, 390: 208-223. [22] Liu X J, Gao Q W, Wang Y B. A note on a dependent risk model with constant interest rate[J]. Statistics and Probability Letters, 2012, 82: 707-712. [23] He W, Cheng D Y, Wang Y B. Asymptotic lower bounds of precise large deviations with nonnegative and dependent random variables[J]. Statistics and Probability Letters, 2013, 83: 331-338. [24] Shen A T. Bernstein-type inequality for widely dependent sequence and its application to nonparametric regression models[J]. Abstract and Applied Analysis, 2013(1): 9. (責任編輯 趙燕) Moment inequalities of thek-minimum for nonnegative widely orthant dependent random variables LIN Junjie,DENG Xin,BAO Xiaohan,WANG Xuejun (School of Mathematical Sciences, Anhui University, Hefei 230039, China) 2017-02-26 安徽省自然科學基金(1508085J06);安徽高校優(yōu)秀拔尖人才培育資助項目(gxb-jZD2016005);大學生創(chuàng)新創(chuàng)業(yè)訓練計劃項目(201610357001)資助 林君潔(1997-),女,本科生;王學軍,通信作者,教授,E-mail:wxjahdx 2000@126.com 1000-2375(2017)03-0248-05 O211.4 A 10.3969/j.issn.1000-2375.2017.03.0072 主要結(jié)果