摘要: 核仁G蛋白1(Nucleolar G protein 1, NOG1)是一種高度保守的核仁GTP酶,在真核生物中廣泛存在,參與60 S核糖體亞基前體的組裝。在線蟲中敲減NOG1的表達(dá)造成生長(zhǎng)緩慢、蟲體變小和壽命延長(zhǎng)的表型,而過(guò)量表達(dá)NOG1則使線蟲的壽命縮短。擬南芥的At1g10300基因注釋為NOG12,但是其生物學(xué)功能還有待研究。該研究對(duì)其功能進(jìn)行了初步研究,首先檢測(cè)了該基因在擬南芥各個(gè)器官的表達(dá)情況。結(jié)果表明:該基因在7 d齡幼苗、莖生葉和花中均有表達(dá),其中在花中表達(dá)量最高。獲得了At1g10300基因的TDNA插入突變體,發(fā)現(xiàn)在長(zhǎng)日照條件下,At1g10300突變體植株的蓮座緊湊,蓮座葉片長(zhǎng)寬比降低,但葉面積和植株高度與野生型相比無(wú)顯著差異,表明其葉形發(fā)生改變;突變體植株的抽薹時(shí)間晚于野生型。熒光定量RTPCR結(jié)果表明,突變體植株中開花促進(jìn)因子FT、CO和GI的表達(dá)水平下調(diào),而開花抑制因子FLC的表達(dá)水平上調(diào)。以上結(jié)果揭示At1g10300基因的突變影響了FT、CO、GI及FLC基因的表達(dá),使植株出現(xiàn)晚花表型。
關(guān)鍵詞: 擬南芥, 核仁G蛋白1, At1g10300基因, 開花時(shí)間, 葉形
中圖分類號(hào): Q945.4文獻(xiàn)標(biāo)識(shí)碼: A文章編號(hào): 10003142(2017)08100008
Abstract: Nucleolar G protein 1 (NOG1) is a highly conserved eukaryotic GTPase. NOG1 plays a significant role in the assembly of pre60S ribosomal subunits. In yeast and animals, depletion of NOG1 results in reduced levels of 60S ribosomal subunits, aberrant prerRNA processing, and blockage of 60S ribosomal subunit export. A recent study in Caenorhabditis elegans found that knockdown NOG1 expression causes slower growth, smaller body size and increased life span, whereas overexpression of NOG1 results in decreased lifespan. However, the plant NOG1 has not been characterized. The Arabidopsis At1g10300 gene was annotated as NOG1-2. However, its role in Arabidopsis growth and development is still unknown. In this study, we used physiological, genetics and molecular tools to analyze the biological roles of the Arabidopsis At1g10300 gene. We firstly used semiquantitative RTPCR to investigate the transcriptional levels of At1g10300 gene in various tissues of Arabidopsis, including 7dayold seedling, rosette leaf, cauline leaf, stem, bud and flower. The transcription of the At1g10300 gene was detected in seedlings, cauline leaves and blooming flowers. Among them, the highest transcriptional level was detected in blooming flowers. We then isolated a TDNA insertion mutant allele of the At1g10300 gene. Phenotypic analysis found that the At1g10300 mutant had compact rosette and reduced ratio of leaf length/width compared to wild type. However, there was no significant difference in leaf area or plant height between the At1g10300 mutant and wild type. These data indicated that leaf morphology of At1g10300 mutant was altered. The At1g10300 mutant also displayed a late bolting phenotype under the condition of longday photoperiod. To determine the molecular mechanism of this late flowering phenotype, we used quantitative RTPCR to analyze the transcriptional levels of key genes of the flowering time pathway, including FLOWERING LOCUS T (FT), CONSTANS (CO), GIGANTEA (GI) and FLOWERING LOCUS C (FLC). The results showed that the transcriptional levels of the flowering promoting factors FT, CO and GI were downregulated in the mutant plants compared with the wild type, whereas the transcription levels of the flowering inhibiting factor FLC was upregulated. Taken together, these results suggest that mutation of At1g10300 gene delays flowering time by regulating the expressions of FT, CO, GI and FLC genes in Arabidopsis. Our data indicate that like its ortholog in worms, lossoffunction of At1g10300 gene also affects Arabidopsis rosette size and lifespan.
Key words: Arabidopsis, nucleolar G protein 1 (NOG1), At1g10300 gene, flowering time, leaf morphology
小G蛋白是一類通過(guò)結(jié)合并水解鳥嘌呤5′三磷酸(GTP)成為鳥嘌呤5′二磷酸(GDP)從而將細(xì)胞信號(hào)傳遞到下游因子的蛋白(Bourne et al,1991)。小G蛋白參與調(diào)控細(xì)胞生命活動(dòng)的各個(gè)方面,包括細(xì)胞增殖、囊泡運(yùn)輸、微管骨架的組裝和核糖體的生成。核仁G蛋白1(Nucleolar G protein1, NOG1)是一種高度保守的核仁GTP酶,在真核生物中廣泛存在,參與60S核糖體亞基前體的組裝 (Park et al,2001;Jensen et al,2003;Kallstrom et al,2003)。在線蟲中敲減NOG1的表達(dá)造成生長(zhǎng)緩慢、蟲體變小和壽命延長(zhǎng)的表型,而過(guò)量表達(dá)NOG1則使線蟲的壽命縮短(Kim et al,2014)。Wu et al(2016)對(duì)60S核糖體亞基前體的結(jié)構(gòu)解析發(fā)現(xiàn),NOG1與多個(gè)組裝蛋白和核糖體RNA相互作用,是60S核糖體亞基組裝和運(yùn)輸?shù)胶送獾闹匾?。目前關(guān)于植物NOG1同源基因的研究報(bào)道相對(duì)較少。擬南芥中存在At1g50920和At1g10300兩個(gè)NOG1的同源基因,分別注釋為NOG11和NOG12,二者編碼的蛋白均定位于細(xì)胞核中(Suwastika et al,2014)。但其是否具有與酵母和線蟲NOG1蛋白類似的功能以及在植物生長(zhǎng)發(fā)育中的作用還有待研究。擬南芥基因表達(dá)數(shù)據(jù)庫(kù)的資料顯示At1g10300基因在花中表達(dá)水平較其他組織高,故推測(cè)其可能與植物的開花相關(guān)。Heo et al(2012)研究表明,鈣離子依賴的G蛋白XLG2 (Extralarge G Protein 2, XLG2)可以促進(jìn)開花整合因子FT(FLOWERING LOCUS T)和SOC1/AGL20 (SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1)的表達(dá),促使擬南芥提早開花。
擬南芥的開花時(shí)間受許多內(nèi)部和外部因素的調(diào)控,可歸為4個(gè)基本途徑,即光周期途徑(photoperiod pathway)、自主途徑 (autonomous pathway)、春化途徑(vernalization pathway) 和赤霉素途徑(GA pathway)(Mouradov et al,2002; Simpson Dean,2002)。一般認(rèn)為有兩個(gè)基因在這些促進(jìn)開花途徑的下游起作用,其中一個(gè)是CONSTANS(CO)基因,另一個(gè)是FLOWERING LOCUS C(FLC)基因(李昱等,2007)。CO為光周期途徑下游的主要調(diào)控因子,也是生物鐘調(diào)節(jié)途徑的關(guān)鍵基因,該基因編碼具有兩個(gè)Bbox類型鋅指結(jié)構(gòu)的GATA轉(zhuǎn)錄因子,其C端有CTT域(Putterill et al,1995; SuárezLópez et al,2001; 張素芝和左建儒,2006)。GI基因也屬于光周期途經(jīng)中,是獨(dú)立于CO通過(guò)miR172來(lái)調(diào)節(jié)開花的(Jung et al,2007)。FLC編碼一個(gè)含MADS結(jié)構(gòu)域的轉(zhuǎn)錄因子,是開花抑制因子。自主途徑和春化作用都是通過(guò)抑制FLC的表達(dá)促進(jìn)開花的。因此,F(xiàn)LC是自主途徑和春化途徑的調(diào)節(jié)節(jié)點(diǎn)(Michaels Amasino,2001)。而成花素基因FT在調(diào)控開花時(shí)間途徑的下游起整合因子的作用(Samach et al,2000)。
為了研究At1g10300基因的功能,我們通過(guò)半定量RTPCR測(cè)定了該基因在擬南芥各個(gè)組織器官的表達(dá)情況,并獲得了該基因的純合突變體,對(duì)其表型進(jìn)行觀察及定量分析,并運(yùn)用熒光定量RTPCR測(cè)定了突變體中調(diào)控開花時(shí)間的關(guān)鍵基因CO、FLC、FT等的表達(dá)情況,為進(jìn)一步研究At1g10300基因在植物開花方面的調(diào)控機(jī)制奠定了基礎(chǔ)。
1材料與方法
1.1 材料
選用擬南芥哥倫比亞(Columbia, Col0)生態(tài)型作為研究材料。At1g10300基因的TDNA插入突變體SALK_043706訂購(gòu)自ABRC(Arabidopsis Biological Resource Center)擬南芥種子庫(kù)。
1.2 方法
1.2.1 擬南芥的培養(yǎng)消毒:將擬南芥種子倒入1.5 mL離心管中,加入1 mL 70%乙醇消毒,顛倒混勻5 min后吸出液體;再用1 mL 1%的次氯酸鈉消毒,顛倒混勻10 min;吸出次氯酸鈉,用無(wú)菌蒸餾水沖洗種子4~5次,最后加入1 mL無(wú)菌蒸餾水。為使種子萌發(fā)整齊,放入4 ℃冰箱中,低溫處理3 d。然后均勻鋪在MS固體培養(yǎng)基表面,在植物光照培養(yǎng)箱中豎直放置。待培養(yǎng)至7 d,將幼苗移到土中,在光周期為16 h光/8 h暗的培養(yǎng)室中培養(yǎng)。
1.2.2 擬南芥DNA的提取在1.5 mL的離心管中加入400 μL DNA提取緩沖液(0.2 mol·L1 TrisHCl、0.25 mol·L1 NaCl、0.5% SDS、0.025 mol·L1 EDTA),取約1 cm2的擬南芥葉片(3~4周齡植株)放入上述DNA提取緩沖液中,用研磨棒將葉片研碎成勻漿。之后14 000 r·min1離心10 min,用移液槍吸取200 μL上清轉(zhuǎn)移到新管中,加入400 μL無(wú)水乙醇,顛倒混勻。10 000 r·min1離心1 min,倒掉上清,沉淀于室溫下晾干。最后加入50~100 μL無(wú)菌水溶解DNA。提取到的擬南芥基因組DNA可在4 ℃條件下保存至少1個(gè)月。
1.2.3 總RNA的提取和cDNA的合成分別采集野生型擬南芥的7 d齡幼苗、蓮座葉、莖生葉、莖的第二節(jié)間、花苞和盛開的花用于At1g10300基因表達(dá)模式的分析。采集24 d苗齡的野生型和突變體植株的蓮座葉用于突變體植株的轉(zhuǎn)錄水平分析。分別取約100 mg植物材料,用“酸性酚-硫氰酸胍-酚氯仿提取法”提取總RNA,對(duì)得到的總RNA進(jìn)行瓊脂糖凝膠電泳檢測(cè)其質(zhì)量;對(duì)粗提后的RNA進(jìn)行DNAase I消化并除去多糖、蛋白質(zhì)等成分,用瓊脂糖凝膠電泳檢測(cè)純化后的RNA的質(zhì)量。用反轉(zhuǎn)錄試劑盒對(duì)2 μg總RNA進(jìn)行反轉(zhuǎn)錄,在PCR儀中42 ℃反應(yīng)30 min,85 ℃保溫5 min使酶失活,即合成cDNA。
1.2.4 半定量RTPCR分析采用反轉(zhuǎn)錄后合成的cDNA,通過(guò)PCR檢測(cè)At1g10300基因的轉(zhuǎn)錄水平,并選用ACTIN2基因作為內(nèi)參。反應(yīng)程序:預(yù)變性 94 ℃ 5 min; 變性94 ℃ 30 s,退火57 ℃ 30 s,延伸 72 ℃ 30 s,35個(gè)循環(huán)。共進(jìn)行3次實(shí)驗(yàn)重復(fù)。
1.2.5 熒光定量RTPCR分析以24 d苗齡的野生型和突變體植株的蓮座葉的總RNA反轉(zhuǎn)錄得到的cDNA作模板,以ACTIN2基因?yàn)閮?nèi)參,進(jìn)行定量 PCR反應(yīng)。采用Primer Premier 5.0軟件設(shè)計(jì)At1g10300基因的特異引物作為擴(kuò)增引物。擴(kuò)增程序如下:預(yù)變性94 ℃ 2 min; 變性94 ℃ 10 s,退火60 ℃ 10 s,延伸 72 ℃ 30 s,40個(gè)循環(huán)。3次實(shí)驗(yàn)重復(fù)。
2結(jié)果與分析
2.1 At1g10300基因的表達(dá)模式
為了探究At1g10300基因在擬南芥中的時(shí)空表達(dá)模式,我們?nèi)∫吧蛿M南芥的7 d齡幼苗、蓮座葉、莖生葉、第二節(jié)間莖、花苞和盛開的花作為材料,提取其總RNA并反轉(zhuǎn)錄獲得cDNA,通過(guò)RTPCR來(lái)檢測(cè)擬南芥不同組織中At1g10300基因的表達(dá)水平。結(jié)果顯示At1g10300基因在成熟的花中表達(dá)量最高,在7 d幼苗和莖生葉中也有一定的表達(dá)(圖1)。這暗示著At1g10300基因?qū)M南芥的開花有一定作用。
2.3 At1g10300突變體葉形改變
對(duì)At1g10300基因突變體植株的生長(zhǎng)發(fā)育情況進(jìn)行觀察,發(fā)現(xiàn)與野生型相比,At1g10300突變體植株蓮座形態(tài)較緊湊(圖3:A),測(cè)量結(jié)果也表明其蓮座直徑顯著小于野生型(圖3:B)。為探究產(chǎn)生這一表型的原因,首先測(cè)量了植株的葉柄長(zhǎng)度,發(fā)現(xiàn)At1g10300突變體植株與野生型的葉柄長(zhǎng)度無(wú)顯著差異(圖3:C)。接下來(lái)測(cè)量了葉片長(zhǎng)度和葉片寬度,結(jié)果顯示At1g10300突變體植株的葉片長(zhǎng)度比野生型小0.4~0.7 cm(圖3:D),且差異極顯著(P<0.01),葉片寬度比野生型多0.3~0.5 cm(圖3:E),且差異極顯著(P<0.01),計(jì)算得出At1g10300突變體植株與野生型相比葉片長(zhǎng)寬比顯著降低(P < 0.01)(圖3:F)。而經(jīng)測(cè)量發(fā)現(xiàn),雖然突變體植株葉片長(zhǎng)度和寬度發(fā)生變化,但其葉面積與野生型相比并無(wú)顯著差異(圖3:G),植株高度(圖3:H)也無(wú)顯著變化。以上結(jié)果表明,At1g10300突變體特異地影響了葉片的形態(tài),使葉片長(zhǎng)度縮短,寬度變寬,造成蓮座緊湊的表型。
2.4 At1g10300突變體開花延遲
觀察發(fā)現(xiàn)At1g10300突變體植株開花明顯晚于野生型(圖4:A)。擬南芥植株在營(yíng)養(yǎng)生長(zhǎng)過(guò)程中蓮座葉持續(xù)成對(duì)出現(xiàn)直至其轉(zhuǎn)變?yōu)樯成L(zhǎng),而植株的抽薹正是其由營(yíng)養(yǎng)生長(zhǎng)轉(zhuǎn)變?yōu)樯成L(zhǎng)的重要節(jié)點(diǎn),因此為了準(zhǔn)確衡量野生型與At1g10300突變體植株的開花時(shí)間,選取植株抽薹時(shí)間以及植株抽薹時(shí)的葉片數(shù)來(lái)進(jìn)行統(tǒng)計(jì)。結(jié)果顯示At1g10300突變體植株比野生型植株抽薹時(shí)間晚3~5 d (圖4:B),開花時(shí)突變體蓮座葉片數(shù)比野生型多7~10片(圖4:C)。以上結(jié)果表明,At1g10300突變體植株出現(xiàn)明顯的開花延遲的表型。
2.5 At1g10300突變體植株中開花時(shí)間相關(guān)基因的表達(dá)量改變
基于上述表型觀察及統(tǒng)計(jì)結(jié)果,對(duì)于At1g10300突變體植株開花推遲的分子機(jī)制開展進(jìn)一步探究。首先選擇控制植物由營(yíng)養(yǎng)生長(zhǎng)轉(zhuǎn)變?yōu)樯成L(zhǎng)的關(guān)鍵基因FT,測(cè)定其在野生型及突變體中的相對(duì)表達(dá)水平,發(fā)現(xiàn)在At1g10300突變體植株中FT基因的相對(duì)表達(dá)量比野生型降低了一倍多(圖5:A)。接下來(lái)測(cè)定了控制開花時(shí)間的正調(diào)節(jié)基因CO、GI以及負(fù)調(diào)節(jié)基因FLC的轉(zhuǎn)錄情況,結(jié)果表明在At1g10300突變體植株中CO及GI基因的相對(duì)表達(dá)量比野生型降低50%左右(圖5:BC);而突變體中開花時(shí)間負(fù)調(diào)節(jié)因子FLC的相對(duì)表達(dá)量則比野生型提高20多倍(圖5:D)。因此,At1g10300基因突變使開花時(shí)間正調(diào)節(jié)基因FT CO和GI的轉(zhuǎn)錄水平降低, 使開花抑制基因FLC的表達(dá)上調(diào), 造成突變體植株晚花的表型。
3討論
本研究通過(guò)植物生理學(xué)、遺傳學(xué)和分子生物學(xué)手段初步分析了擬南芥注釋為編碼NOG1的At1g10300基因的功能。對(duì)At1g10300突變體植株的表型觀察表明,突變體開花延遲,并檢測(cè)了At1g10300突變體植株中CO、GI、FLC和FT基因的相對(duì)表達(dá)情況。本研究結(jié)果表明,由于At1g10300基因功能的缺失,導(dǎo)致CO和GI基因表達(dá)量降低,F(xiàn)LC基因表達(dá)量升高,進(jìn)而影響FT基因表達(dá)量降低,最終導(dǎo)致突變體植株的晚花表型。但是,At1g10300基因是如何調(diào)節(jié)這些開花時(shí)間相關(guān)基因的表達(dá)還有待進(jìn)一步研究。線蟲中的研究發(fā)現(xiàn),NOG1基因可通過(guò)胰島素信號(hào)通路調(diào)節(jié)線蟲的脂肪積累、生長(zhǎng)速率和壽命長(zhǎng)短(Kim et al, 2014)。擬南芥At1g10300基因是否通過(guò)某種信號(hào)通路調(diào)節(jié)開花基因的表達(dá)還有待后續(xù)的研究。
At1g10300突變體蓮座葉形態(tài)發(fā)生改變,與野生型相比突變體蓮座葉片變短、變寬,但葉面積無(wú)顯著差異。葉在空間三維軸向上的極性包括第一維軸向是基—頂軸(proximaldistal axis),基部靠近莖頂端分生組織分化出葉柄,遠(yuǎn)離莖頂端分生組織分化出葉片。第二個(gè)軸向是中—側(cè)軸(mediallateral axis),沿著葉的中脈向葉的邊緣水平擴(kuò)展的方向。第三個(gè)軸向是近—遠(yuǎn)軸(adaxialabaxial axis),也稱背—腹軸(dorsalventral axis),葉原基靠近莖頂端分生組織的一側(cè)稱為近軸面(背面),遠(yuǎn)離莖頂端分生組織的一側(cè)稱為遠(yuǎn)軸面(腹面)。本研究中,At1g10300突變體植株的基—頂軸分化顯著縮短,中—側(cè)軸分化顯著增加,長(zhǎng)寬比顯著縮短。擬南芥的葉沿基—頂軸分化會(huì)產(chǎn)生基部的葉柄和頂部的葉片,ROTUNDIFOLIA3/4(ROT3/4)是調(diào)控?cái)M南芥葉基—頂軸極性的兩個(gè)基因。ROT3編碼細(xì)胞色素P450家族的CYP90C1,參與油菜素內(nèi)脂(BR)的合成,可能通過(guò)BR影響細(xì)胞的極性擴(kuò)展來(lái)調(diào)節(jié)葉的長(zhǎng)度(Kim et al,2005)。ROT4編碼一種小肽,可能通過(guò)抑制細(xì)胞在基—頂軸方向的分裂來(lái)調(diào)節(jié)葉的長(zhǎng)度(Narita et al,2004)。擬南芥ANGUSTIFOLIA(Folkers et al,2002; Kim et al,2002)和SPIKE1主要通過(guò)影響細(xì)胞在中—側(cè)軸方向的生長(zhǎng)來(lái)調(diào)節(jié)葉的寬度(Tsuge et al,1996), 而ANGUSTIFOLIA3則主要通過(guò)調(diào)控中—側(cè)軸方向上的細(xì)胞數(shù)量來(lái)調(diào)控葉的寬度(Horiguchi et al,2005)。葉在基—頂軸和中—側(cè)軸兩個(gè)軸向上的協(xié)調(diào)生長(zhǎng),決定了葉具有一定的長(zhǎng)/寬比(Tsukaya,2006)。At1g10300基因的缺失,可能影響到上述調(diào)節(jié)葉片形態(tài)的相關(guān)基因的表達(dá),進(jìn)而產(chǎn)生葉片長(zhǎng)寬比顯著減小的表型。
綜上所述,本研究獲得了At1g10300基因功能缺失的突變體,其與野生型相比出現(xiàn)了明顯的開花延遲,蓮座葉片形態(tài)改變的表型。突變體中開花時(shí)間的正調(diào)節(jié)因子CO、GI、FT基因的相對(duì)表達(dá)量顯著降低,而負(fù)調(diào)節(jié)因子FLC基因的相對(duì)表達(dá)量顯著升高。以上結(jié)果表明At1g10300基因在調(diào)控植物的生長(zhǎng)發(fā)育中起到重要作用,也為今后深入研究At1g10300基因在植物開花過(guò)程和葉形態(tài)建成中的作用打下了基礎(chǔ)。
參考文獻(xiàn):
BOURNE HR, SANDERS DA, MCCORMICK F, 1991. The GTPase superfamily: conserved structure and molecular mechanism [J]. Nature, 349(6305): 117-127.
DUGAS DV, BARTEL B, 2004. MicroRNA regulation of gene expression in plants [J]. Curr Opin Plant Biol, 7(5): 512-520.
EMERY JF, FLOYD SK, ALVAREZ J, 2003. Radial patterning of Arabidopsis shoots by class III HDZIP and KANADI genes [J]. Curr Biol, 13(20): 1768-1774.
FOLKERS U, KIRIK V, SCHOBINGER U,et al, 2002. The cell morphogenesis gene ANGUSTIFOLIA encodes a CtBP/BARSlike protein and is involved in the control of the microtubule cytoskeleton [J]. EMBO J, 21(6): 1280-1288.
HEO JB, SUNG S, ASSMANN SM, 2012. Ca2+dependent GTPase, extralarge G protein 2 (XLG2), promotes activation of DNAbinding protein related to vernalization 1 (RTV1), leading to activation of floral integrator genes and early flowering in Arabidopsis [J]. J Biol Chem, 287(11): 8242-8253.
HORIGUCHI G, KIM GT, TSUKAYA H, 2005. The transcription factor AtGRF5 and the transcription coactivator AN3 regulate cell proliferation in leaf primordia of Arabidopsis thaliana [J]. Plant J, 43(1): 68-78.
JENSEN BC, WANG Q, KIFER CT, 2003. The NOG1 GTPbinding protein is required for biogenesis of the 60s ribosomal subunit [J]. J Biol Chem, 278: 32204-32211.圖 3At1g10300突變體葉片形態(tài)改變A. 四周苗齡的野生型和At1g10300突變體植株; B-G. 24 d苗齡的野生型和At1g10300
突變體植株的蓮座直徑,葉片長(zhǎng)度,葉片寬度,葉柄長(zhǎng)度,葉片長(zhǎng)寬比和葉面積; H. 野生型和At1g10300突變體植株最終植株高度;
I. 展示葉片長(zhǎng)度、寬度和葉柄長(zhǎng)度的測(cè)量方法。n = 20,3次實(shí)驗(yàn)重復(fù),**表示極顯著差異,經(jīng)t檢驗(yàn), P<0.01。下同。
Fig. 3At1g10300 mutation effects on leaf morphologyA. Phenotypes of fourweekold wildtype and At1g10300 mutant;
B-G. Rosette diameter, length and width of leaf, length of petiole, ratio of leaf length/width, and leaf area of 24dayold wildtype
and At1g10300 mutant; H. Height of mature wildtype and At1g10300 mutant plants; I. Schematic measuring of length and
width of leaf, and length of petiole. The data were derived from three experiments and are presented as the x ± s
(n = 20 for three experiments, ** means extreme differences, P < 0.01, Student’s ttest). The same below.
JUNG J, SEO Y, SEO PJ, 2007. The GIGANTEAregulated microRNA172 mediates photoperiodic flowering independent of CONSTANS in Arabidopsis [J]. Plant Cell, 19(9): 2736-2748.
JUAREZ MT, KUI JS, THOMAS J, 2000. MicroRNAmediated repression of rolled leaf1 specifies maize leaf polarity [J]. Nature, 428(6978): 84-88.
KALLSTROM G, HEDGES J, JOHNSON A, 2003. The putative GTPases Nog1p and Lsg1p are required for 60S ribosomal subnit biogenesis and are localized to the nucleus and cytoplasm, respectively [J]. Mol Cell Biol, 23 (12): 4344-4355.
KIDNER C.A, MARTIENSSEN RA, 2004. Spatially restricted microRNA directs leaf polarity through ARGONAUTE1 [J]. Nature, 428(6978): 81-84.
KIM YI, BANDYOPADHYAY J, CHO I, et al, 2014. Nucleolar GTPase NOG1 regulates development, fat storage, and longevity through insulin/IGF signaling in C. elegans [J]. Mol Cells, 37 (1):51-57.
KIM GT, FUJIOKA S, KOZUKA T, et al, 2005. CYP90C1 and CYP90D1 are involved in different steps in the brassinosteroid biosynthesis pathway in Arabidopsis thaliana [J]. Plant J, 41(5): 710-721.
LI Y, LUO ZP, ZHAO SQ, 2007. Integration pathway of flowering time control in Arabidopsis [J]. Plant Physiol Comm, 43(5): 799-804. [李昱, 羅志鵬, 趙淑清, 2007. 擬南芥開花時(shí)間調(diào)控的整合途徑 [J]. 植物生理學(xué)通訊,43(5): 799-804.]
MALLORY AC, REINHART BJ, JONESRHOADES MW, 2004. MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5’ region [J]. Embo J, 23(16): 3356-3364.
MICHAELS SD, AMASINO RM, 2001. Loss of flowering locus C activity eliminates the lateflowering phenotype of frigida and autonomous pathway mutations but not responsiveness to vernalization [J]. Plant Cell, 13(4): 935-941.
MOURADOV A, CREMER F, COUPLAND G, 2002. Control of flowering time: interacting pathways as a basis for diversity [J]. Plant Cell, 14: 111-130.
NARITA NN, MOORE S, HHOIGUCHI G, et al, 2004. Overexpression of a novel small peptide ROTUNDIFOLIA4 decreases cell proliferation and alters leaf shape in Arabidopsis thaliana [J]. Plant J, 38: 699-713.
PARK JH, JENSEN BC, KIFER CT, et al, 2001. A novel nucleolar Gprotein conserved in eukaryotes [J]. Cell Sci, 114(Pt1): 173-185.
PUTTERILL J, ROBSON F, LEE K, et al, 1995. The COSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zincfiger transcription factors [J]. Cell, 80: 847-857.
SAMACH A, ONOUCH H, GOLD SE, 2000. Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis [J]. Science, 288(5471): 1613-1616.
SIMPSON GG, DEAN C, 2002. Arabidopsis, the Rosetta stone of flowering time [J]. Science, 296(5566): 285-289.
SUAREZLOPEZ P, WHEATLEY K, ROBSON F, 2001. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis [J]. Nature, 410(6832): 1116-1120.
SUWASTIKA IN, DENAWA M, YOMOGIJARA, 2014. Evidence for lateral gene transfer (LGT) in the evolution of eubacteriaderived small GTPases in plant organelles [J]. Front Plant Sci, 5: 678.
TSUGE T, TSUKAYA H, UCHIMIYA H, 1996. Two independent and polarized processes of cell elongation regulate leaf blade expansion in Arabidopsis thaliana(L.) [J]. Heynh Dev, 122(5): 1589-1600.
TSUKAYA H, 2006. Mechanism of leafshape determination [J]. Ann Rev Plant Biol, 57: 477-496.
WU S, TUTUNCUOGLU B, YAN K, et al, 2016. Diverse roles of assembly factors revealed by structures of late nuclear pre60S ribosomes [J]. Nature, 534 (7605):133-137.
YAO Y, WANG XP, 2015. Molecular mechanisms of flowering in Arabidopsis thaliana [J]. J Anhui Agric Sci, 43(9): 7-10. [姚遠(yuǎn), 王曉萍, 2015. 擬南芥開花相關(guān)的分子調(diào)控機(jī)制的研究 [J]. 安徽農(nóng)業(yè)科學(xué), 43(9): 7-10.]
ZHANG SZ, ZUO JR, 2006. Advance in the flowering time control of Arabidopsis [J]. Prog Biochem Biophys, 33(4): 301-309. [張素芝, 左建儒, 2006. 擬南芥開花時(shí)間調(diào)控的研究進(jìn)展 [J]. 生物化學(xué)與生物物理進(jìn)展, 33(4): 301-309.]