彭文博, 龐 濤
(湖州師范學(xué)院 理學(xué)院, 浙江 湖州 313000)
CaSnO3:Yb3+,Er3+,Li+的反能量傳遞與熱效應(yīng)
彭文博, 龐 濤
(湖州師范學(xué)院 理學(xué)院, 浙江 湖州 313000)
以CaSnO3:Yb3+,Er3+,Li+作為研究對(duì)象,借助光譜分析法研究Yb3+濃度有關(guān)的能量傳遞和熱效應(yīng).結(jié)果發(fā)現(xiàn):Yb3+到Er3+的反能量傳遞隨Yb3+濃度的增加而加強(qiáng),有助于提升光譜的紅色占比;濃度增加的Yb3+吸收更多的紅外光子,并大部分通過無輻射躍遷轉(zhuǎn)化為熱能,使樣品的溫度隨著Yb3+濃度的增加而升高,進(jìn)而抑制光譜的紅色占比.該研究結(jié)果可用于指導(dǎo)Yb3+/Er3+共摻系統(tǒng)上轉(zhuǎn)換發(fā)光顏色的調(diào)控.
上轉(zhuǎn)換; 熱效應(yīng); 能量傳遞; Yb3+敏化
上轉(zhuǎn)換發(fā)光材料是一種能夠吸收兩個(gè)或兩個(gè)以上低能光子而發(fā)射一個(gè)高能光子的光致發(fā)光材料,在生物標(biāo)記、醫(yī)學(xué)診斷、彩色顯示、溫度傳感器等領(lǐng)域具有潛在的應(yīng)用價(jià)值,因此對(duì)上轉(zhuǎn)換發(fā)光的研究一直是發(fā)光學(xué)領(lǐng)域的熱點(diǎn)[1-5].Er3+因能級(jí)結(jié)構(gòu)豐富、中間能級(jí)壽命長,是迄今研究最多、應(yīng)用最廣的一種分立發(fā)光中心.通過Yb3+的敏化作用,研究人員已經(jīng)在玻璃、薄膜、單晶、粉末等材料中實(shí)現(xiàn)高效的上轉(zhuǎn)換輸出,并實(shí)驗(yàn)證實(shí)Yb3+到Er3+的共振能量傳遞負(fù)責(zé)Er3+發(fā)射能級(jí)的布居.
Yb3+濃度有關(guān)的熱效應(yīng)可能對(duì)Er3+發(fā)射能級(jí)的布居有重要影響,但一直以來并未引起人們的重視[6].Er3+到Y(jié)b3+的能量傳遞雖早有報(bào)導(dǎo),但這種能量傳遞與Yb3+濃度的關(guān)系以及低Yb3+濃度下是否存在很少被研究.本文以CaSnO3:Yb3+,Er3+,Li+為研究對(duì)象,利用光譜技術(shù)研究Yb3+濃度有關(guān)的反能量傳遞與熱效應(yīng).
按化學(xué)計(jì)量比稱取一定量的 CaCO3(分析純)、SnO2(化學(xué)純)、YbNO3·6H2O (99.99%) 和ErNO3·6H2O (99.99%).為了提升稀土離子溶解力,調(diào)節(jié)Er3+的局部晶體場,加快反應(yīng)速度,降低反應(yīng)溫度,將10 wt% Li2CO3(分析純)作為助溶劑加入上述反應(yīng)原料.利用研缽充分研磨后,置入氧化鋁坩堝于1 300 ℃焙燒 3 h,得到白色目標(biāo)產(chǎn)物CaSnO3:x%Yb3+,1%Er3+, 10wt%Li+,x=0,4,8,12[7].F-4600分光光度計(jì)用于樣品的上轉(zhuǎn)換、下轉(zhuǎn)換光譜檢測;自制的加熱裝置用于研究樣品的光學(xué)溫度傳感特性.
如圖1所示,在980nm紅外輻射下,所有樣品在可見光區(qū)均產(chǎn)生兩個(gè)發(fā)射帶,分別對(duì)應(yīng)Er3+的2H11/2/4S3/2→4I15/2和4F9/2→4I15/2的躍遷.隨著Yb3+濃度的增加,兩個(gè)發(fā)射帶均呈先增強(qiáng)后減弱的變化,8%為Yb3+的最佳摻雜濃度.
通過計(jì)算綠、紅光發(fā)射的積分強(qiáng)度比發(fā)現(xiàn),隨著Yb3+濃度的增加,光譜的紅色占比由0%Yb的7.5%逐漸增大到12%Yb的87.9%,導(dǎo)致發(fā)光所對(duì)應(yīng)的色調(diào)由黃綠色逐漸變?yōu)殚冱S色.980nm激發(fā)下0%Yb和12%Yb樣品的色度圖見圖2.
在最近的研究中[7],我們根據(jù)摻雜離子與基質(zhì)陽離子的半徑和電荷失配,把上述這種現(xiàn)象歸結(jié)為Yb3+到Er3+的反能量傳遞.為了進(jìn)一步理解CaSnO3:Yb3+,Er3+,Li+的強(qiáng)紅光發(fā)射,本文測量了所有樣品在378nm激發(fā)下的發(fā)光特性.如圖3所示,Yb3+的引入使得Er3+的綠光發(fā)射呈明顯的猝滅,表明Yb3+共摻提升了4S3/2能級(jí)的無輻射躍遷幾率,而且Yb3+濃度越大無輻射躍遷幾率越大.此外,378nm激發(fā)下紅光發(fā)射非常微弱,意味著室溫下4S3/2到4F9/2的多聲子弛豫率非常低,而且不受Yb3+濃度的影響.由于引起無輻射躍遷的微觀過程主要為多聲子弛豫和能量傳遞,因此圖3中與Yb3+濃度有關(guān)的熒光猝滅必定源自離子間的能量傳遞.此外,由于Yb3+濃度變化并不引起Er3+的間距變化,上述濃度猝滅只能源自Er3+到Y(jié)b3+的能量傳遞.結(jié)合圖1和圖3中的上轉(zhuǎn)換和下轉(zhuǎn)換光譜,本文認(rèn)為在Yb3+/Er3+共摻樣品中發(fā)生下列能量傳遞過程:4S3/2(Er3+)+2F7/2(Yb3+)→4I13/2(Er3+)+2F5/2(Yb3+)[6].顯然,上述過程抑制了綠光發(fā)射能級(jí)的粒子數(shù)布居,同時(shí)提升了紅光發(fā)射中間能級(jí)的粒子數(shù)布居,進(jìn)而導(dǎo)致圖1中上轉(zhuǎn)換光譜的紅色占比隨Yb3+濃度增加而增大.
利用光譜分析研究了CaSnO3:Yb3+,Er3+,Li+中Yb3+濃度有關(guān)的熱效應(yīng)和能量傳遞作用,結(jié)果發(fā)現(xiàn):Yb3+到Er3+的能量傳遞和反能量傳遞是共存的,而且隨著Yb3+濃度的增加,反能量傳遞作用逐漸加強(qiáng),從而導(dǎo)致光譜的紅色占比逐漸加強(qiáng);Yb3+敏化能引起熱效應(yīng),而且Yb3+濃度越大溫升越大,結(jié)果抑制了Yb3+濃度變化的調(diào)色作用.
[1]CHENDQ,CHENY,LUHW,etal.AbifunctionalCr/Yb/Tm:Ca3Ga2Ge3O12phosphorwithnear-infraredlong-lastingphosphorescenceandupconversionluminescence[J].InorgChem,2014,53:8 638-8 645.
[2]GAVRILOVICATV,JOVANOVICADJ,SMITSBK,etal.MulticolorupconversionluminescenceofGdVO4:Ln3+/Yb3+(Ln3+=Ho3+,Er3+,Tm3+,Ho3+/Er3+/Tm3+)nanorods[J].DyesPigments,2016,126:1-7.
[3]CHENDQ,ZHOUY,WANZY,etal.Tunableupconversionluminescenceinself-crystallizedEr3+:K(Y1-xYbx)3F10nano-glass-ceramics[J].PhysChemChemPhys,2015,17:7 100-7 103.
[4]PANGT,CAOWH,XINGMM,etal.DesignandachievingmechanismofupconversionwhiteemissionbasedonYb3+/Tm3+/Er3+tri-dopedKY3F10nanocrystals[J].OptMater,2011,33:485-489.
[5]WUJL,CAOBS,LINF,etal.Anewmolybdatehostmaterial:synthesis,upconversion,temperaturequenchingandsensingproperties[J/OL].(2016-09-10).Http:∥dx.doi.org/10/1016/j.ceramint,2016.09.004.
[6]PANGT,LUWH.TheinfluenceofthermaleffectinducedbyYb3+sensitizationoncolorregulationinGd2O3:Yb3+,Er3+upconversionphosphors[J/OL].(2016-10-07).Http:∥dx.doi.org/10. 1016.j.ceramint,2016.10.040.
[7]PANGT,LUWH,SHENWJ.ChromaticitymodulationofupconversionluminescenceinCaSnO3:Yb3+,Er3+,Li+phosphorsthroughYb3+concentration,pumpingpowerandtemperature[J].Physicab,2016,502:11-15.
[8]LEIYQ,SONGHW,YANGLM,etal.Upconversionluminescence,intensitysaturationeffect,andthermaleffectinGd2O3:Er3+,Yb3+nanowires[J].JChemPhys,2005,123:174710.
[9]XUS,XIANGSY,ZHANGYQ,etal.808nmlaserinducedphotothermaleffectonSm3+/Nd3+dopedNaY(WO4)2microstructures[J].SensorsandActuatorsB,2017,24:386-391.
[責(zé)任編輯 高俊娥]
Energy Back Transfer and Thermal Effect of CaSnO3:Yb3+,Er3+,Li+
PENG Wenbo, PANG Tao
(School of Science, Huzhou University, Huzhou 313000, China)
In this article, CaSnO3:Yb3+,Er3+,Li+phosphors were selected as the object of study, and the Yb3+concentration dependent energy-back-transfer and thermal effect were investigated by using the method of spectrum analysis. On one hand, the energy-back-transfer from Yb3+to Er3+increases with the Yb3+concentration, making the red percentage of upconversion spectra strengthen; On the other hand, with the increase of Yb3+concentration more and more 980 nm photons were absorbed. Since most of photons absorbed by Yb3+ions were converted to the thermal energy in the way of non-radiation, the temperature of samples was raised. And the more the Yb3+concentration, the higher the temperature, which depresses the red percentage of upconversion spectra. These results were helpful for designing the multi-color upconversion luminescence in the Yb3+/Er3+codoped system.
upconversion; thermal effect; energy transfer; Yb3+sensitization
2016-11-07
湖州師范學(xué)院校級(jí)項(xiàng)目(2016XJXM23;JGB027).
龐濤,講師,研究方向:發(fā)光材料與納米材料.E-mail:tpang@126.com
O482.31
A
1009-1734(2017)02-0023-04