陳 春,李偉龍,陶 晶,黎國(guó)慶
(1.陸軍軍官學(xué)院 二系,合肥 230031; 2. 69240部隊(duì),烏魯木齊 830031)
【后勤保障與裝備管理】
基于模糊綜合評(píng)判的炮兵部(分)隊(duì)機(jī)動(dòng)訓(xùn)練評(píng)估
陳 春1,李偉龍1,陶 晶1,黎國(guó)慶2
(1.陸軍軍官學(xué)院 二系,合肥 230031; 2. 69240部隊(duì),烏魯木齊 830031)
著眼炮兵部(分)隊(duì)機(jī)動(dòng)訓(xùn)練的特點(diǎn),從信息獲取、指揮控制、戰(zhàn)術(shù)機(jī)動(dòng)、整體防護(hù)和綜合保障等方面構(gòu)建炮兵機(jī)動(dòng)訓(xùn)練的評(píng)估指標(biāo)體系,采用層次分析法和模糊綜合評(píng)判的方法對(duì)炮兵部(分)隊(duì)機(jī)動(dòng)訓(xùn)練進(jìn)行了綜合評(píng)估。
炮兵部(分)隊(duì)機(jī)動(dòng);訓(xùn)練評(píng)估;模糊綜合評(píng)判
當(dāng)前,長(zhǎng)時(shí)間、遠(yuǎn)距離機(jī)動(dòng)訓(xùn)練是檢驗(yàn)部隊(duì)作戰(zhàn)能力的有力舉措。炮兵部(分)隊(duì)機(jī)動(dòng)涉及裝備多,情況處置復(fù)雜,保障難度大,訓(xùn)練需要協(xié)調(diào)和解決的問(wèn)題也復(fù)雜多樣。因此,對(duì)炮兵部(分)隊(duì)機(jī)動(dòng)訓(xùn)練的評(píng)估能為部隊(duì)在實(shí)戰(zhàn)時(shí)提高機(jī)動(dòng)效率和避免機(jī)動(dòng)風(fēng)險(xiǎn)提供真實(shí)有效的依據(jù)和參考。
炮兵部(分)隊(duì)機(jī)動(dòng)訓(xùn)練評(píng)估一級(jí)指標(biāo)通常包括信息獲取、指揮控制、戰(zhàn)術(shù)機(jī)動(dòng)、整體防護(hù)和綜合保障5個(gè)方面。根據(jù)部隊(duì)訓(xùn)練的實(shí)際,綜合當(dāng)前部隊(duì)機(jī)動(dòng)訓(xùn)練中的主要影響因素,各個(gè)指標(biāo)的二級(jí)指標(biāo)如圖1。
2.1 層次分析法(AHP)確定各指標(biāo)權(quán)重
在評(píng)估過(guò)程中,各因素的權(quán)重至關(guān)重要,它直接影響到評(píng)估的最終效果,在此引用層次分析法確定炮兵機(jī)動(dòng)訓(xùn)練各指標(biāo)的權(quán)重。同時(shí),為了使評(píng)估更加直觀,采進(jìn)1~9標(biāo)度方法構(gòu)造比較矩陣。在求各因素的權(quán)重時(shí),按以下步驟計(jì)算。
2.1.1 構(gòu)建比較矩陣
規(guī)定奇數(shù)標(biāo)度值即1、3、5、7、9按照遞進(jìn)的關(guān)系分別表示同等重要、略微重要、更加重要、強(qiáng)烈重要、絕對(duì)重要。而偶數(shù)標(biāo)度2、4、6、8表示上述兩個(gè)相鄰判斷之間的中間值。具體如表1所示。
圖1 炮兵部(分)隊(duì)機(jī)動(dòng)訓(xùn)練評(píng)估指標(biāo)體系
標(biāo)度定義(比較因素i與j)1因素i與因素j同等重要3因素i與因素j略微重要5因素i與因素j更加重要7因素i與因素j強(qiáng)烈重要9因素i與因素j絕對(duì)重要2、4、6、8兩相鄰判斷因素的中間值倒數(shù)因素i與j比較得到判斷值aij,則因素j與i的判斷值為aji=1/aij。
這里aij表示因素i與j重要度的比值。比值越大,說(shuō)明因素i比因素j重要程度越大。例如,一級(jí)指標(biāo)中a12=1/2表示炮兵部(分)隊(duì)機(jī)動(dòng)訓(xùn)練中指揮控制指標(biāo)比信息獲取重要性介于同等重要和略微重要之間。對(duì)于同一個(gè)元素之間的重要度應(yīng)該是相同的,即aii=1。
據(jù)此,這里采用專家咨詢法,選取10名資深專家給每個(gè)層次各元素進(jìn)行重要性打分,對(duì)打分結(jié)果進(jìn)行綜合處理分別構(gòu)建比較判斷矩陣。
2.1.2 計(jì)算權(quán)重向量
利用判斷矩陣計(jì)算各層指標(biāo)對(duì)目標(biāo)層的相對(duì)權(quán)重,權(quán)重通常用特征向量表示。特征向量的近似矩陣主要有求和法和求根法。本文采用求根法,即先求判斷矩陣每行元素乘積的n次方根,然后進(jìn)行歸一化得到向量W。W即為所求矩陣。其表達(dá)式為
(1)
通過(guò)式(1)即可求得特征向量近似矩陣W=(w1,w2,…,wn),此近似矩陣即為各因素的權(quán)重。
同時(shí),可計(jì)算出特征向量對(duì)應(yīng)的最大特征值
(2)
2.1.3 判斷矩陣一致性
為了避免出現(xiàn)邏輯上的誤判,這里對(duì)矩陣進(jìn)行一致性檢驗(yàn)。一致性比例因子的計(jì)算公式為
(3)
其中C.I.的表達(dá)式為
(4)
其中:n為判斷矩陣的階數(shù);R.I.為平均隨機(jī)一致性指標(biāo),查表2可以獲得。
表2 平均隨機(jī)一致性指標(biāo)
一般認(rèn)為當(dāng)一致性比例因子小于0.1時(shí),矩陣的一致性可以接受。否則,應(yīng)當(dāng)對(duì)判斷矩陣進(jìn)行適當(dāng)修改,直到滿足條件為止。在得到各指標(biāo)相對(duì)其上層權(quán)重的基礎(chǔ)上,最終得到各指標(biāo)對(duì)于總目標(biāo)的相對(duì)權(quán)重。
2.2 二級(jí)模糊評(píng)判模型
2.2.1 建立因素集U
根據(jù)炮兵機(jī)動(dòng)訓(xùn)練評(píng)估指標(biāo)體系將因素集分成5個(gè)子集U1,U2,…,U5,滿足條件
(5)
設(shè)第i個(gè)子集的因素為Ui,應(yīng)滿足條件
(6)
比如二級(jí)指標(biāo)中信息獲取因素的子因素集即為:U1={機(jī)動(dòng)前的情況分析U11,機(jī)動(dòng)中的情報(bào)偵察U12,機(jī)動(dòng)中的情報(bào)處理U13}。
這里n=n1+n2+…+n5,n表示U的元素總個(gè)數(shù)。ni表示Ui的元素個(gè)數(shù)。
2.2.2 確定評(píng)語(yǔ)集V
為了更加直觀地展現(xiàn)評(píng)估效果,在具體評(píng)估某一項(xiàng)指標(biāo)時(shí)可以將評(píng)估結(jié)果分為若干不同的等級(jí),所有的等級(jí)構(gòu)成的集合就是評(píng)語(yǔ)集。考慮評(píng)估的精確性,本文將評(píng)估結(jié)果分為:優(yōu)秀(V1)、良好(V2)、一般(V3)、合格(V4)、差(V5)5個(gè)等級(jí),評(píng)語(yǔ)集可表示為
(7)
2.2.3 第一級(jí)綜合評(píng)判
對(duì)每個(gè)因素集Ui,分別進(jìn)行單因素綜合評(píng)判。Ui中各因素相對(duì)Ui的權(quán)重分配為
(8)
這里應(yīng)滿足wi1+wi2+…+wini=1。
設(shè)Ri為Ui到V的模糊判斷矩陣
rij,k表示因素Uij被評(píng)為vk隸屬度。采用專家打分法確定因素Uij的隸屬度。于是得出第一級(jí)模糊綜合評(píng)判向量為
(9)
2.2.4 第二級(jí)綜合評(píng)判向量
對(duì)因素U作二級(jí)模糊綜合評(píng)判,將每個(gè)Ui視為U的一個(gè)因素,把Bi看作U的單因素模糊綜合評(píng)判向量,構(gòu)成U到V的模糊矩陣R
(10)
Ui為U中的一部分,反映了U的某種屬性,可以按它們的重要性(層次分析法確定)給出權(quán)重分配
(11)
則第二級(jí)綜合評(píng)判向量為
(12)
這里:m為評(píng)語(yǔ)等級(jí),值為5;bk表示機(jī)動(dòng)訓(xùn)練能力被評(píng)為Vk的隸屬度。
按照最大隸屬度原則,取B中最大隸屬度對(duì)應(yīng)的評(píng)判集指標(biāo)作為最終評(píng)判結(jié)果。這樣就確定了機(jī)動(dòng)能力好壞的程度。
通過(guò)咨詢相關(guān)專家(10名),綜合部隊(duì)實(shí)際對(duì)炮兵(部)分隊(duì)機(jī)動(dòng)能力的各項(xiàng)評(píng)估指標(biāo)進(jìn)行評(píng)分,統(tǒng)計(jì)結(jié)果。這里為了便于判斷,將評(píng)語(yǔ)集V={優(yōu)秀,良好,一般,合格,差}轉(zhuǎn)化成標(biāo)準(zhǔn)值h=(90,80,70,60,0)。模糊化以后的評(píng)語(yǔ)集的論域即為h′=(100~85,85~75,75~65,65~55,55~0)。
利用Matlab語(yǔ)言編寫的計(jì)算程序計(jì)算得到各因素的權(quán)重和評(píng)估值。
3.1 各級(jí)因素權(quán)重計(jì)算
通過(guò)10位專家對(duì)每個(gè)因素的權(quán)重構(gòu)造10個(gè)判斷矩陣,計(jì)算平均權(quán)重。由于數(shù)據(jù)比較多,這里僅以第二指標(biāo)層對(duì)目標(biāo)層為例進(jìn)行計(jì)算(見(jiàn)表3),其余不一一列舉。
表3 第二指標(biāo)層對(duì)目標(biāo)層的判斷矩陣(專家1)
得到專家1的權(quán)重
W(1)=(0.098 9, 0,190 7, 0.512 7, 0.098 9, 0.098 9)
n=5,故R.I.=1.12,得
C.R.=0.000 9<0.1
通過(guò)一致性檢驗(yàn)。
其余9位專家的權(quán)重分別如表4所示。
表4 其余9位專家的權(quán)重
綜合專家的打分,二級(jí)指標(biāo)對(duì)目標(biāo)層權(quán)重為
W=(0.105 7, 0.171 9, 0.512 1, 0.105 2, 0.105 2)
經(jīng)過(guò)Matlab處理,第三層對(duì)第二層權(quán)重依次為
第三層對(duì)信息獲取的權(quán)重
W1=(0.411 0, 0.289 0, 0.300 0)
第三層對(duì)指揮控制的權(quán)重
W2=(0.191 0, 0.409 1, 0.399 9)
第三層對(duì)戰(zhàn)術(shù)機(jī)動(dòng)的權(quán)重
W3=(0.444 4, 0.444 4, 0.111 2)
第三層對(duì)整體防護(hù)的權(quán)重
W4=(0.500, 0.500)
第三層對(duì)綜合保障的權(quán)重
W5=(0.190 4, 0.250 3, 0.254 4, 0.304 9)
3.2 二級(jí)層次的綜合評(píng)判
專家組對(duì)訓(xùn)練評(píng)估指標(biāo)的打分情況如表5所示。
表5 專家對(duì)訓(xùn)練指標(biāo)打分表
經(jīng)過(guò)計(jì)算,得到一級(jí)指標(biāo)因素的評(píng)語(yǔ)集為
一級(jí)指標(biāo)的評(píng)估值為
H1=(74.733, 71.710, 80.660, 75.500, 59.884)
3.3 一級(jí)層次的綜合評(píng)判
權(quán)重為
W=(0.105 7, 0.171 9, 0.512 1, 0.105 2, 0.105 2)
模糊判斷矩陣為R,則最后評(píng)語(yǔ)集及評(píng)估值為
B=W·R=(0.213 9, 0.418 6, 0.258 4, 0.082 5, 0.026 7)
H=75.777
按照評(píng)語(yǔ)集取值范圍,該部隊(duì)在機(jī)動(dòng)訓(xùn)練中,信息獲取、指揮控制、戰(zhàn)術(shù)機(jī)動(dòng)、整體防護(hù)和綜合保障的評(píng)估結(jié)果依次為一般、一般、良好、良好、及格。最終評(píng)估結(jié)果為良好。從結(jié)果上看,該部隊(duì)基本抓住了機(jī)動(dòng)訓(xùn)練的重點(diǎn)。但是該部隊(duì)整體訓(xùn)練水平仍然有待提高。從評(píng)估的其他要素來(lái)看,基本無(wú)拔尖得分,綜合保障方面相對(duì)較弱。
該模型避開了傳統(tǒng)的“一鍋端”的訓(xùn)練評(píng)估現(xiàn)狀,引進(jìn)層次分析法對(duì)不同因素按重要性進(jìn)行權(quán)重設(shè)置,對(duì)部隊(duì)“抓訓(xùn)抓重點(diǎn)”起到很好的引導(dǎo)作用。同時(shí)對(duì)各因素的評(píng)估分析也為尋找訓(xùn)練中的薄弱環(huán)節(jié)提供了依據(jù)。但是,模糊評(píng)判模型只能為機(jī)動(dòng)訓(xùn)練提供一定的理論參考,要科學(xué)深入的研究實(shí)際情況,結(jié)合訓(xùn)練實(shí)際,靈活設(shè)置權(quán)重,確實(shí)找到部隊(duì)訓(xùn)練的薄弱環(huán)節(jié),提高訓(xùn)練水平。
[1] 司守奎,孫兆亮.數(shù)學(xué)建模算法與應(yīng)用[M].北京:國(guó)防工業(yè)出版社,2015.
[2] 畢義明,劉良.軍事建模與仿真[M].北京:國(guó)防工業(yè)出版社,2009.
[3] 朱奎玉.軍事建模與輔助決策研究[M].北京:軍事科學(xué)出版社,2014.
[4] 王蓮芳,許樹柏.層次分析法引論[M].北京:中國(guó)人民出版社,1990.
[5] 胡國(guó)橋,戴偉.作戰(zhàn)指揮前沿理論研究[M].北京:國(guó)防大學(xué)出版社,2000.
[6] 陳開余,徐華.信息化炮兵作戰(zhàn)研究[M].北京:解放軍出版社,2012.
[7] 陳春.炮兵指揮自動(dòng)化[M].北京:解放軍出版社,2005.[8] 任富興.炮兵信息化建設(shè)[M].北京:解放軍出版社,2004.
[9] 劉洪甜,張鵬.運(yùn)用模糊綜合評(píng)判法對(duì)戰(zhàn)役戰(zhàn)術(shù)導(dǎo)彈所打擊目標(biāo)進(jìn)行價(jià)值排序[J].射擊學(xué)報(bào),2004(2).
[10]張冀湘,倪發(fā)軍.陸軍師進(jìn)攻戰(zhàn)術(shù)演習(xí)機(jī)動(dòng)處置能力評(píng)估模型[J].軍事運(yùn)籌與系統(tǒng)工程,2007,21(3):68-70.
(責(zé)任編輯 唐定國(guó))
Artillery Maneuvering Drill Evaluation Based on Fuzzy Comprehensive Evaluation
CHEN Chun1, LI Wei-long1, TAO Jing1, LI Guo-qing2
(1.The Second Department of Army Officer Academy, Hefei 230031, China; 2.The No. 69240thTroop of PLA,Urumqi 830031, China)
Focused on the performance characteristics of artillery maneuvering drill, we built artillery maneuvering drill evaluation index system from the aspects of information acquisition, command and control, tactical maneuvering, integral protection, comprehensive support and so on. Mathematical methods such as fuzzy comprehensive evaluation, the level of analysis were used for artillery maneuvering drill assessment.
artillery maneuvering; drill evaluation; fuzzy comprehensive evaluation
2016-10-15;
2016-11-20 作者簡(jiǎn)介:陳春(1963—),男,教授,碩士,主要從事指揮信息系統(tǒng)研究。
10.11809/scbgxb2017.03.020
陳春,李偉龍,陶晶,等.基于模糊綜合評(píng)判的炮兵部(分)隊(duì)機(jī)動(dòng)訓(xùn)練評(píng)估[J].兵器裝備工程學(xué)報(bào),2017(3):89-92.
format:CHEN Chun, LI Wei-long, TAO Jing,et al.Artillery Maneuvering Drill Evaluation Based on Fuzzy Comprehensive Evaluation[J].Journal of Ordnance Equipment Engineering,2017(3):89-92.
E271.4
A
2096-2304(2017)03-0089-04