萬樹園,王智勇
(南京信息工程大學(xué)數(shù)學(xué)與統(tǒng)計學(xué)院,江蘇 南京 210044)
一類具有p-Laplace算子的二階Hamilton系統(tǒng)周期解的存在性
萬樹園,王智勇
(南京信息工程大學(xué)數(shù)學(xué)與統(tǒng)計學(xué)院,江蘇 南京 210044)
利用臨界點理論中的極大極小方法,在一個新的局部漸近p-二次條件下研究了一類具有p-Laplace算子的二階Hamilton系統(tǒng)周期解的存在性,得到了新的存在性定理.
p-Laplace系統(tǒng);局部漸近p-二次;周期解;鞍點定理
考慮系統(tǒng)
(1)
其中p>1,F(xiàn):R×RN→R對所有u∈RN關(guān)于t是T-周期的(T>0).本文假設(shè):
‖u‖∞≤d2‖u‖.
(2)
當(dāng)p=2時,系統(tǒng)(1)退化為二階Hamilton系統(tǒng)
(3)
近年來,許多學(xué)者利用變分法研究了系統(tǒng)(3)周期解的存在性,得到了一系列存在性和多解性結(jié)果.[2-10]但其局部漸近p-二次的情形很少被考慮過,受文獻[3,6,8-10]的啟發(fā),本文利用鞍點定理,研究系統(tǒng)(1)中位勢函數(shù)F(t,x)僅為局部漸近p-二次的情形,得到新的存在性定理.
定理1.1 若F滿足假設(shè)(A)及以下條件:
則系統(tǒng)(1)至少有一個T-周期解.
注1.1 (a) 由條件(H3)—(H4)可知定理1.1中的F(t,x)弱于通常的漸近p-二次條件:
這里的(H3),(H4)僅僅只是局部漸近p-二次的.
(b) 存在函數(shù)F滿足定理1.1但不滿足文獻[2-10]中相關(guān)定理的條件.例如,令
其中
由文獻[1]易知φ是連續(xù)可微的,且φ的臨界點對應(yīng)系統(tǒng)(1)的T-周期解.
定義2.1[1]設(shè)X是實Banach空間,φ∈C1(X,R).如果{un}?X,φ(un)有界,φ′(un)→0(n→+∞)蘊含{un}有收斂子列,則稱泛函φ滿足Palais-Smale條件(簡稱PS條件).
定義2.2[1]設(shè)X是實Banach空間,φ∈C1(X,R).如果{un}?X,φ(un)有界,‖φ′(un)‖(1+‖un‖)→0(n→+∞)蘊含{un}有收斂子列,則稱泛函φ滿足Cerami條件(簡稱C條件).
則當(dāng)φ滿足PS條件時,c為臨界值.
注2.1 文獻[11]表明,鞍點定理在更弱的C條件下仍然成立.
引理2.2 若假設(shè)條件(A),(H1)—(H3)成立,則能量泛函φ滿足C條件.
|φ(un)|≤L,(1+‖un‖)‖φ′(un)‖≤L.
(4)
由條件(H2)可知存在常數(shù)M1>0,使得對所有|x|≥M1,幾乎處處的t∈[0,T]有
F(t,x)>0.
(5)
再結(jié)合條件(H1),對?β>0,存在常數(shù)M2>M1>0使得
(6)
令Ωn∶={t∈[0,T]||un(t)|≥M2},根據(jù)假設(shè)(A)與(4)─(6)式有
(p+1)L≥(1+‖un‖)‖φ′(un)‖-pφ(un)≥(φ′(un),un)-pφ(un)=
(7)
由此結(jié)合(2)與(5)式可得
(8)
利用假設(shè)(A)與(8)式有
(9)
另一方面,由(4)與(9)式,
(10)
(11)
(12)
在不等式(10)兩邊同時除以‖un‖p,由β的任意性有
(13)
(14)
故當(dāng)n→+∞時,|un(t)|→+∞,a.e.t∈[0,T]一致成立.結(jié)合(H2),(H3)及Fatou引理,
(15)
(16)
另一方面,?u∈RN,利用(H2),(H3)與Fatou引理,當(dāng)|u|→+∞時有
即(ⅱ)也成立.
[1] MAWHIN J,WILLEM M.Critical point theory and Hamiltonian systems[M].New York:Springer-Verlag,1989:1-277.
[2] TANG C L,WU X P.Notes on periodic solutions of subquadratic second order systems[J].J Math Anal Appl,2003,285:8-16.
[3] JIANG Q,TANG C L.Periodic and subharmonic solutions of a class of subquadradic second-order Hamiltonian systems[J].J Math Anal Appl,2007,328:380-389.
[4] WANG Z Y,XIAO J Z.On periodic solutions of subquadratic second order non-autonomous Hamiltonian systems[J].Appl Math Lett,2015,40:72-77.
[5] FEI G H.On periodic solutions of superquadratic Hamiltonian systems[J].Electron J Differential Equations,2002,8:1-12.
[6] WANG Z Y,ZHANG J H,ZHANG Z T.Periodic solutions of second order non-autonomous Hamiltonian systems with local superquadratic potential[J].Nonlinear Anal,2009,70:3672-3681.
[7] TAO Z L,YAN S,WU S L.Periodic solutions for a class of superquadratic Hamiltonian systems[J].J Math Anal Appl,2007,331:152-158.
[8] SCHECHTER M.Periodic nonautonomous second order dynamical systems[J].J Differential Equations,2006,223:290-302.
[9] ZHANG Q,TANG X H.New existence of periodic solutions for second order nonautonomous Hamiltonian systems[J].J Math Anal Appl,2010,369:357-367.
[10] MA S W,ZHANG Y X.Existence of infinitely many periodic solutions for ordinaryp-Laplacian systems[J].J Math Anal Appl,2009,351:469-479.
[11] RABINOWITZ P H.Minimax methods in critical point theory with applications to differential equations[M].Providence:American Mathematical Society,1986:58-96.
(責(zé)任編輯:李亞軍)
Existence of periodic solutions for a class of second-order Hamiltonian systems withp-Laplace
WAN Shu-yuan,WANG Zhi-yong
(School of Mathematics and Statistics,Nanjing University of Information Science & Technology,Nanjing 210044,China)
Using the minimax methods in critical point theory,the existence of periodic solutions for a class of second-order Hamiltonian systems withp-Laplace under a local asymptoticp-quadratic condition is considered and a new existence theorem is given.
p-Laplacian systems;local asymptoticp-quadratic;periodic solution;saddle point theorem
1000-1832(2017)01-0025-04
10.16163/j.cnki.22-1123/n.2017.01.005
2015-09-15
國家自然科學(xué)基金資助項目(11571176).
萬樹園(1992—),女,碩士,主要從事非線性泛函分析研究;通信作者:王智勇(1979—),男,博士,副教授,主要從事非線性泛函分析研究.
O 175.12 [學(xué)科代碼] 110·41
A