黃靜聰,王毅鑫,蘇文利
·綜 述·
損傷相關(guān)分子模式與創(chuàng)傷后全身炎癥反應(yīng)綜合征
黃靜聰,王毅鑫,蘇文利
損傷相關(guān)分子模式可通過相關(guān)受體信號(hào)轉(zhuǎn)導(dǎo)通路刺激多種炎性介質(zhì)的產(chǎn)生,誘導(dǎo)及增強(qiáng)機(jī)體炎癥反應(yīng)。近年來發(fā)現(xiàn)損傷相關(guān)分子模式與創(chuàng)傷后全身炎癥反應(yīng)綜合征息息相關(guān),并嚴(yán)重影響創(chuàng)傷患者的預(yù)后。通過對(duì)損傷相關(guān)分子模式在創(chuàng)傷后全身炎癥反應(yīng)綜合征中的作用、信號(hào)轉(zhuǎn)導(dǎo)機(jī)制相關(guān)研究的回顧發(fā)現(xiàn),損傷相關(guān)分子模式可作為創(chuàng)傷后炎癥反應(yīng)程度及預(yù)后的預(yù)警指標(biāo),并可成為治療創(chuàng)傷后全身炎癥反應(yīng)綜合征新的標(biāo)靶。
創(chuàng)傷; 損傷; 分子模式; 全身炎癥反應(yīng)綜合征
近年來隨著現(xiàn)代科技水平的不斷發(fā)展,嚴(yán)重創(chuàng)傷患者的死亡人數(shù)也呈明顯上升趨勢(shì)。據(jù)2014年世界衛(wèi)生組織統(tǒng)計(jì),2000~2012年創(chuàng)傷患者的死亡人數(shù)約占全世界死亡人數(shù)的10%,已遠(yuǎn)遠(yuǎn)超過了同期瘧疾、結(jié)核病和艾滋病死亡人數(shù)的總和[1]。因此,目前對(duì)嚴(yán)重創(chuàng)傷患者的救治已成為急救醫(yī)學(xué)的重點(diǎn)和難點(diǎn)之一。而創(chuàng)傷后全身炎癥反應(yīng)綜合征(systemic inflammatory response syndrome,SIRS)因其與嚴(yán)重創(chuàng)傷患者的預(yù)后息息相關(guān)而備受關(guān)注。根據(jù)最新的研究表明,組織細(xì)胞在受損后將會(huì)釋放一類內(nèi)源性的物質(zhì),其可與模式識(shí)別受體相結(jié)合啟動(dòng)機(jī)體的過度炎癥反應(yīng),即SIRS[2-8]。研究人員將這類可引起機(jī)體炎癥反應(yīng)的內(nèi)源性物質(zhì)稱為損傷相關(guān)分子模式(damage-associated molecular patterns,DAMPs)。目前,DAMPs分子在SIRS發(fā)生發(fā)展中的作用已漸漸得到共識(shí),其中代表性物質(zhì)高遷移率族蛋白1 、細(xì)胞外熱休克蛋白 、線粒體損傷相關(guān)分子模式、S100蛋白等在創(chuàng)傷后SIRS中作為新的預(yù)測(cè)指標(biāo)及治療靶點(diǎn)也越來越受到人們的重視。但這些DAMPs對(duì)創(chuàng)傷后SIRS的具體作用及其可能的機(jī)制,仍需進(jìn)一步的研究,故本文將對(duì) DAMPs在創(chuàng)傷后SIRS中的作用機(jī)制、相關(guān)信號(hào)通路以及臨床研究的相關(guān)進(jìn)展進(jìn)行簡(jiǎn)要的概述。
目前認(rèn)為SIRS在創(chuàng)傷后30min內(nèi)即便發(fā)生,其主要是由損傷或壞死組織釋放并被稱為DAMPs或"警報(bào)素"的內(nèi)源性危險(xiǎn)信號(hào)引起。 根據(jù)Manson等[3]研究表明DAMPs除了來源于受損的組織和細(xì)胞外,還來源于被激活的免疫細(xì)胞。DAMPs在機(jī)體正常的情況下被限制在細(xì)胞內(nèi),而當(dāng)細(xì)胞激活或破壞時(shí)則被主動(dòng)分泌或被動(dòng)釋放到細(xì)胞外[9],并可通過細(xì)胞表面的模式識(shí)別受體直接激活白細(xì)胞、巨噬細(xì)胞等多種免疫細(xì)胞參與機(jī)體的炎癥反應(yīng)[3]。另外,DAMPs也是補(bǔ)體系統(tǒng)強(qiáng)效的激活物,可誘導(dǎo)補(bǔ)體激活產(chǎn)物補(bǔ)體3a和補(bǔ)體5a的快速產(chǎn)生,而補(bǔ)體激活產(chǎn)物與被激活的多種炎癥細(xì)胞還可通過正反饋?zhàn)饔眠M(jìn)一步觸發(fā)炎癥介質(zhì)的產(chǎn)生和釋放,如白細(xì)胞介素的產(chǎn)生,最終引發(fā)、維持并擴(kuò)大SIRS的全身反應(yīng)[10-11]。
目前已知的DAMPs分子包括蛋白質(zhì)及非蛋白質(zhì)兩類,蛋白質(zhì)DAMPs包括:高遷移率族蛋白1 、S100蛋白、透明質(zhì)酸、補(bǔ)體和熱休克蛋白;非蛋白DAMPs包括腺苷三磷酸、尿酸、硫酸肝素、RNA和DNA等[12]。在創(chuàng)傷后SIRS方面研究較多的DAMPs包括高遷移率族蛋白1 、細(xì)胞外熱休克蛋白 、線粒體損傷相關(guān)分子模式、S100蛋白等。
2.1 高遷移率族蛋白1 高遷移率族蛋白1 (high mobility group box 1,HMGB1) 是一種位于真核細(xì)胞核內(nèi)高度保守的非組蛋白[12],主要由激活的單核/巨噬細(xì)胞主動(dòng)分泌或由受損壞死的細(xì)胞被動(dòng)釋放至細(xì)胞外[13],并可通過高級(jí)糖基化終產(chǎn)物受體以及Toll樣受體2、Toll樣受體4激活p38絲裂素活化蛋白激酶和細(xì)胞外信號(hào)調(diào)節(jié)激酶1/2的信號(hào)轉(zhuǎn)導(dǎo)通路,調(diào)節(jié)機(jī)體炎癥反應(yīng)的活動(dòng)[14-16]。目前大量研究表明,細(xì)胞外的HMGB1 可誘導(dǎo)單核/巨噬細(xì)胞及中性粒細(xì)胞分泌腫瘤壞死因子α、白細(xì)胞介素1α、白細(xì)胞介素1β、白細(xì)胞介素6、白細(xì)胞介素8等炎癥介質(zhì),而這些炎癥介質(zhì)又能進(jìn)一步增強(qiáng)HMGB1本身的釋放,從而維持并放大局部或全身的炎癥反應(yīng),影響SIRS的進(jìn)程[17]。根據(jù)Cohen等[18]研究表明血清HMGB1水平在嚴(yán)重創(chuàng)傷后的30min內(nèi)即可顯著上升,并與損傷的嚴(yán)重程度,組織灌注不足和創(chuàng)傷后的SIRS明顯相關(guān),并且他們發(fā)現(xiàn)因創(chuàng)傷而死亡的患者相對(duì)于存活者有著更高的血清HMGB-1水平。最近Wang等[19]的一項(xiàng)前瞻性隊(duì)列研究也顯示,與單純的嚴(yán)重胸部鈍性創(chuàng)傷的患者相比,患有嚴(yán)重胸部鈍性創(chuàng)傷且并發(fā)SIRS、膿毒血癥或多器官功能障礙綜合征患者的血清HMGB1水平在創(chuàng)傷后的第3、5、7天均有顯著的提升,且均持續(xù)維持在一個(gè)較高的水平上。這些皆提示血清HMGB1水平是嚴(yán)重創(chuàng)傷患者進(jìn)展為SIRS、膿毒癥甚至多器官功能障礙綜合征的獨(dú)立危險(xiǎn)因素,并與嚴(yán)重創(chuàng)傷患者的不良預(yù)后密切相關(guān)。而在另一項(xiàng)Kornblit 等[20]的關(guān)于HMGB1基因遺傳變異的臨床隨機(jī)試驗(yàn)也顯示,擁有一個(gè)HMGB1基因的外顯子或純合子的患者,其創(chuàng)傷后更易發(fā)展為SIRS,且其血清HMGB1水平也更高,預(yù)后也更差。
綜上,目前已知的大部分研究皆已證明HMGB1可以影響創(chuàng)傷后SIRS的進(jìn)程以及預(yù)后,但兩者相關(guān)的程度、層次以及階段仍未十分清楚,如局部HMGB1的釋放在多大程度上影響血清HMGB1水平的上升,又在多大程度上影響炎癥部位以及遠(yuǎn)處器官的損傷等等,這些都將可能會(huì)是今后關(guān)于HMGB1在SIRS方面研究的熱點(diǎn)。
2.2 線粒體損傷相關(guān)分子模式 線粒體損傷相關(guān)分子模式主要包括線粒體DNA(mitochondrial DNA,mtDNA)和N-甲酰肽(N-formyl peptides,NFP)兩種物質(zhì)。mtDNA是一種閉合的圓形雙鏈DNA,其包含有大量與細(xì)菌相同的非甲基化CpG序列[21]。據(jù)Zhang等[2]研究顯示,具有非甲基化CpG序列的mtDNA可在創(chuàng)傷后作為DAMPs釋放進(jìn)入循環(huán)系統(tǒng),并通過Toll樣受體9激活中性粒細(xì)胞的p38絲裂原活化蛋白激酶誘導(dǎo)創(chuàng)傷后SIRS的產(chǎn)生。多項(xiàng)研究表明mtDNA還能夠激活Toll樣受體9/核因子-κB信號(hào)通路并誘導(dǎo)促炎細(xì)胞因子的產(chǎn)生來啟動(dòng)創(chuàng)傷后的SIRS[22-24]。最近,Li 等[25]也發(fā)現(xiàn)機(jī)體骨折后,骨折部位可釋放mtDNA進(jìn)入局部血腫,通過趨化因子將多形核白細(xì)胞募集到局部組織,然后增加血清中外周多形核白細(xì)胞和SIRS相關(guān)細(xì)胞因子的數(shù)量,開啟創(chuàng)傷后SIRS。另外,Gu等[26]研究也發(fā)現(xiàn)血清mtDNA水平與Nod樣受體的全身炎癥反應(yīng)標(biāo)記物呈正相關(guān),從而也間接證明mtDNA參與了創(chuàng)傷后的全身炎癥反應(yīng)。同時(shí),他們還表示創(chuàng)傷后的血清mtDNA水平與創(chuàng)傷患者的臨床嚴(yán)重程度獨(dú)立相關(guān),并可作為創(chuàng)傷后SIRS早期預(yù)測(cè)指標(biāo)用以預(yù)測(cè)創(chuàng)傷后SIRS、多器官功能障礙綜合征、急性肺損傷等創(chuàng)傷后并發(fā)癥的發(fā)生率。Simmons等[27]研究也獲得類似結(jié)果,他們認(rèn)為mtDNA是觸發(fā)創(chuàng)傷后SIRS關(guān)鍵性的起始因子,可作為最早預(yù)測(cè)創(chuàng)傷后SIRS和多器官功能障礙綜合征的獨(dú)立預(yù)測(cè)指標(biāo)。此外,有研究[28]表明腦脊液中的mtDNA水平亦與創(chuàng)傷性腦損傷不良預(yù)后相關(guān),且mtDNA被認(rèn)為是解析創(chuàng)傷性腦損傷后局部和全身炎癥反應(yīng)不可或缺的組成成分。而最近Krychtiuk等[29]的一項(xiàng)關(guān)于危重患者前瞻性觀察性臨床研究則進(jìn)一步分析了以上現(xiàn)象,他們認(rèn)為循環(huán)的mtDNA與Toll樣受體9低表達(dá)狀態(tài)危重患者的死亡率無關(guān),只有當(dāng)Toll樣受體9呈現(xiàn)出高表達(dá)狀態(tài)時(shí),血清mtDNA水平才能體現(xiàn)出先天免疫系統(tǒng)的高度活化(包括創(chuàng)傷后SIRS),才能真正成為預(yù)測(cè)危急重癥患者預(yù)后的重要預(yù)測(cè)因子。
N-甲酰肽是由線粒體 DNA 編碼的含有 N-甲酰甲硫氨酸的內(nèi)源性蛋白質(zhì)。它是一種強(qiáng)效的趨化因子,可以與甲酰肽受體及類甲酰肽受體1結(jié)合,通過G蛋白信號(hào)傳導(dǎo)通路,誘導(dǎo)吞噬細(xì)胞的趨化、鈣離子的動(dòng)員、細(xì)胞外信號(hào)調(diào)節(jié)激酶和絲裂原活化蛋白激酶信號(hào)通路的激活、細(xì)胞因子的產(chǎn)生及釋放等觸發(fā)創(chuàng)傷后的炎癥反應(yīng)[13,30]。近期,Wenceslau等[6,8]發(fā)現(xiàn)創(chuàng)傷后伴有SIRS或膿毒癥患者的血清NFP水平較單純創(chuàng)傷者有顯著的提高,且NFP可誘導(dǎo)患者氣管、支氣管、細(xì)支氣管收縮以及肺的炎癥反應(yīng),并可刺激一氧化氮和組胺的釋放,從而共同擴(kuò)張血管引起低血壓,增加創(chuàng)傷后患者循環(huán)呼吸衰竭的發(fā)生率和死亡率。Wenceslau等[31]還對(duì)以上現(xiàn)象作出了解釋,他們認(rèn)為創(chuàng)傷和細(xì)胞損傷后釋放的線粒體N-甲酰肽,可通過激活甲酰肽受體導(dǎo)致內(nèi)皮細(xì)胞細(xì)胞骨架的變化,以誘導(dǎo)內(nèi)皮細(xì)胞收縮和血管通透性增高,從而造成血管滲漏,引起組織水腫和終末器官損傷,最終增加創(chuàng)傷后SIRS患者循環(huán)呼吸衰竭的發(fā)生率和死亡率??梢姡壳把芯拷砸炎C明NFP是一種強(qiáng)效的炎癥介質(zhì)可促進(jìn)創(chuàng)傷后SIRS的發(fā)生及發(fā)展,而當(dāng)前NFP的研究熱點(diǎn)主要體現(xiàn)在對(duì)NFP促炎機(jī)制的進(jìn)一步探討上,如Crouser等[32]發(fā)現(xiàn)純化的NFP并不引起單核細(xì)胞的炎癥反應(yīng),除非在其中加入線粒體轉(zhuǎn)錄因子A等核基因物質(zhì),其提示NFP的促炎反應(yīng)中亦存在著某種協(xié)同機(jī)制,啟動(dòng)或促進(jìn)NFP促炎反應(yīng)的發(fā)生,但這種機(jī)制目前仍然尚未明確 。而近期Marutani等[33]發(fā)現(xiàn)一種來自于線粒體細(xì)胞色素b的新的N-甲?;行粤<?xì)胞激活肽“mitocryptide-2(MCT-2)”。他們認(rèn)為MCT-2在NFP的促炎癥反應(yīng)中起到了主要作用,并且他們還制備了MCT-2的單克隆抗體以印證自己的推斷,這為NFP促炎機(jī)制進(jìn)一步細(xì)化提供了方向。
2.3 細(xì)胞外熱休克蛋白 細(xì)胞外熱休克蛋白(extracellular Heat Shock Proteins,eHSPs)屬于非分泌型蛋白,其胞外形式通常提示細(xì)胞的損傷或壞死,是一種內(nèi)源性危險(xiǎn)信號(hào)。目前研究表明eHSPs的釋放與創(chuàng)傷相關(guān),且與創(chuàng)傷后SIRS有著密切的聯(lián)系。根據(jù)Flohe等[34]研究表明eHSPs可從創(chuàng)傷后損傷或壞死的組織中釋放,并可誘導(dǎo)創(chuàng)傷后免疫功能的抑制。Vardas等[35]研究也顯示創(chuàng)傷后SIRS患者的血清e(cuò)HSP72、eHSP90α水平早期即有顯著的提升,并與疾病的嚴(yán)重程度呈正相關(guān),eHSP90α水平與IL-6、IL-10的水平也呈正相關(guān),而eHSP72水平則只與IL-10相關(guān)。其一方面提示eHSP72、eHSP90α可作為創(chuàng)傷后炎癥反應(yīng)程度及預(yù)后的預(yù)警指標(biāo),另一方面也提示eHSP72、eHSP90α分別在創(chuàng)傷后SIRS中具有抗炎和促炎作用,且均可誘導(dǎo)或促進(jìn)創(chuàng)傷后免疫功能抑制的發(fā)生。最近,F(xiàn)itrolaki等[36]研究也得到相似的結(jié)果,并且證明eHSP72、eHSP90α與創(chuàng)傷后多器官系統(tǒng)衰竭有關(guān),與eHSP72相比,eHSP90α更能預(yù)測(cè)患者患病的最終結(jié)果,且更能準(zhǔn)確地反應(yīng)創(chuàng)傷后機(jī)體的炎癥應(yīng)激狀態(tài)。另外,他們認(rèn)為eHSP90α具有顯著促炎效應(yīng),增強(qiáng)創(chuàng)傷后SIRS及嚴(yán)重膿毒癥早期的全身炎癥反應(yīng)。因此,目前eHSP72、eHSP90α作為一種DAMPs,在創(chuàng)傷后的SIRS及免疫抑制狀態(tài)中的作用已經(jīng)逐漸明朗,這為進(jìn)一步說明eHSPs可作為調(diào)節(jié)免疫系統(tǒng)危險(xiǎn)信號(hào)的假說提供了依據(jù)[37]。另外,Wang等[38]動(dòng)物實(shí)驗(yàn)表明,HSP90抑制劑可改善嚴(yán)重膿毒癥大鼠的炎癥、休克和多器官衰竭狀態(tài),提高大鼠的生存率。Zhao等[39]研究也發(fā)現(xiàn)HSP90抑制劑靶向治療能顯著抑制大鼠腹部膿毒癥的腸道炎癥和腸滲漏,并已提出應(yīng)用于膿毒癥中改善腸衰竭的有效策略。這雖與創(chuàng)傷后SIRS無直接聯(lián)系,但也提示HSP90相關(guān)制劑未來將有希望成為改進(jìn)創(chuàng)傷后SIRS、嚴(yán)重膿毒癥和多器官系統(tǒng)衰竭的有效治療方法。
2.4 S100蛋白 S100蛋白家族由25個(gè)成員組成,它們?cè)诩?xì)胞的內(nèi)部具有調(diào)節(jié)細(xì)胞增殖、分化、遷移、能量代謝、鈣離子平衡、炎癥和死亡等多種功能。而當(dāng)S100蛋白釋放到細(xì)胞外空間時(shí),特定的S100蛋白將作為一種DAMPs,通過與不同受體的相互作用,促進(jìn)免疫細(xì)胞的遷移和趨化,并促使其釋放多種炎癥細(xì)胞因子,調(diào)整機(jī)體的炎癥和免疫反應(yīng)[40-42]。而在目前已知的S100蛋白家族成員中,S100B蛋白與創(chuàng)傷及創(chuàng)傷后的炎癥反應(yīng)有著密切的聯(lián)系。多項(xiàng)研究表明,嚴(yán)重創(chuàng)傷患者的S100 B蛋白血清濃度在創(chuàng)傷后顯著升高,且與創(chuàng)傷患者的創(chuàng)傷嚴(yán)重程度以及生存率的下降均有著明顯的相關(guān)關(guān)系,即S100B蛋白血清濃度越高,創(chuàng)傷患者的創(chuàng)傷嚴(yán)重程度越重,存活率也將更低[43-45]。然而,目前S100B蛋白作為有效評(píng)估患者創(chuàng)傷嚴(yán)重程度和存活率標(biāo)志物的潛在作用機(jī)制仍不十分明確。Dang等[43]研究發(fā)現(xiàn),創(chuàng)傷后患者的S100 B蛋白血清濃度與血管性血友病因子等血管內(nèi)皮損傷標(biāo)志物的血清濃度呈正相關(guān)。并且隨著S100B蛋白血清濃度的升高,創(chuàng)傷患者內(nèi)皮細(xì)胞的凋亡率與同期健康人相比增加了33%,且在細(xì)胞的凋亡同時(shí)還伴隨著IL-6和IL-8等促炎細(xì)胞因子水平的增加。目前大部分研究已表明內(nèi)皮細(xì)胞參與了各種炎性疾病的發(fā)生發(fā)展,而內(nèi)皮細(xì)胞的損傷也在創(chuàng)傷后SIRS和多器官功能障礙綜合征的發(fā)展過程中發(fā)揮著至關(guān)重要的作用[43-46]。這些皆表明,S100B蛋白可通過介導(dǎo)內(nèi)皮細(xì)胞功能的障礙,促進(jìn)創(chuàng)傷后SIRS和多器官功能障礙綜合征等嚴(yán)重并發(fā)癥發(fā)生,從而也提示S100B蛋白與創(chuàng)傷后嚴(yán)重并發(fā)癥之間潛在機(jī)制的研究也將會(huì)成為今后S100蛋白在創(chuàng)傷炎癥方面研究的熱點(diǎn),如進(jìn)一步評(píng)估S100B蛋白的血清濃度水平與SIRS和多器官功能障礙綜合征之間的關(guān)系等。
綜上所述,目前已證明DAMPs分子可誘導(dǎo)和促進(jìn)創(chuàng)傷后SIRS的發(fā)生,并會(huì)嚴(yán)重影響嚴(yán)重創(chuàng)傷患者的預(yù)后。但目前對(duì)其發(fā)病機(jī)制以及干預(yù)措施的研究仍不夠完善,尚存在著許多問題需要進(jìn)一步的探討,如各種DAMPs分子產(chǎn)生和釋放的共同信號(hào)轉(zhuǎn)導(dǎo)機(jī)制是什么?是否還存在其他的釋放調(diào)節(jié)機(jī)制及信號(hào)轉(zhuǎn)導(dǎo)通路?不同種類的DAMPs分子之間是否存在著相互的作用?創(chuàng)傷后SIRS與創(chuàng)傷后的免疫抑制密切相關(guān),而DAMPs分子亦體現(xiàn)出免疫系統(tǒng)調(diào)節(jié)功能,三者的聯(lián)系是什么?以及如何在臨床實(shí)踐中利用DAMPs分子的局部和全身炎癥反應(yīng)作用準(zhǔn)確診斷和評(píng)估創(chuàng)傷后SIRS患者的病情,并將其作為新型的治療靶標(biāo),都將會(huì)是以后研究的重點(diǎn)。
[1] WHO.Global Health Estimates 2014 Summary Tables.Deaths by Cause,Age and Sex,2000-2012.WHO 2014.http://www.who.int/healthinfo/global_burden_disease/estimates/en/index1.html.
[2] Zhang Q,Raoof M,Chen Y,et al.Circulating mitochondrial DAMPs cause inflammatory responses to injury[J].Nature,2010,464(7285):104-107.
[3] Manson J,Thiemermann C,Brohi K.Trauma alarmins as activators of damage-induced inflammation[J].Br J Surg,2012,99(S1):12-20.
[4] Pugin J.How tissue injury alarms the immune system and causes a systemic inflammatory response syndrome[J].Ann Intensive Care,2012,2(1):27-32.
[5] Wenceslau CF,Mccarthy CG,Szasz T,et al.Mitochondrial damage-associated molecular patterns and vascular function[J].Eur Heart J,2014,35(18):1172-1177.
[6] Wenceslau CF,Mccarthy CG,Szasz T,et al.Mitochondrial N-formyl peptides induce cardiovascular collapse and sepsis-like syndrome[J].Am J Physiol Heart Circ Physiol,2015,308(7):H768-H777.
[7] Wenceslau F,Mccarthy G,Goulopoulou S,et al.Mitochondrial-derived N-formyl peptides:novel links between trauma,vascular collapse and sepsis[J].Med Hypotheses,2013,81(4):532-535.
[8] Wenceslau CF,Szasz T,McCarthy CG,et al.Mitochondrial N-formyl peptides cause airway contraction and lung neutrophil infiltration via formyl peptide receptor activation[J].Pulm Pharmacol Ther,2016,37(37):49-56.
[9] Rubartelli A,Lotze MT.Inside,outside,upside down:damage-associated molecular-pattern molecules (DAMPs) and redox[J].Trends Immunol,2007,28(10):429-436.
[10] Burk AM,Martin M,Flierl MA,et al.Early complementopathy after multiple injuries in humans[J].Shock,2012,37(4):348-354.
[11] Huber-Lang M,Kovtun A,Ignatius A.The role of complement in trauma and fracture healing[J].Semin Immunol,2013,25(1):73-78.
[12] Sa?d-Sadier N,Ojcius DM.Alarmins inflammasomes and immunity[J].Biomed J,2012,35(6):437-449.
[13] Hirsiger S,Simmen HP,Werner CM,et al.Danger signals activating the immune response after trauma[J].Mediators Inflamm,2012,2012(2):189-194.
[14] Wakefield D,Gray P,Chang J,et al.The role of PAMPs and DAMPs in the pathogenesis of acute and recurrent anterior uveitis[J].Br J Ophthalmol,2010,94(3):271-274.
[15] Luan ZG1,Zhang H,Yang PT,et al.HMGB1 activates nuclear factor-κB signaling by RAGE and increases the production of TNF-α in human umbilical vein endothelial cells[J].Immunobiology,2010,215(12):956-962.
[16] Rouhiainen A,Kuja-Panula J,Tumova S,et al.RAGE-mediated cell signaling[J].Methods Mol Biol,2013,963(963):239-263.
[17] Harris HE,Andersson U,Pisetsky DS.HMGB1:a multifunctional alarmin driving autoimmune and inflammatory disease[J].Nat Rev Rheumatol,2012,8(4):195-202.
[18] Cohen MJ,Brohi K,Calfee CS,et al.Early release of high mobility group box nuclear protein 1 after severe trauma in humans:role of injury severity and tissue hypoperfusion[J].Crit Care,2009,13(6):1-10.
[19] Wang XW,Karki A,Zhao XJ ,et al.High plasma levels of high mobility group box 1 is associated with the risk of sepsis in severe blunt chest trauma patients:a prospective cohort study[J].J Cardiothorac Surg,2014,9(1):1-7.
[20] Kornblit B,Munthe-Fog L,Madsen HO,et al.Association of HMGB1 polymorphisms with outcome in patients with systemic inflammatory response syndrome[J].Crit Care,2008,188(3):1394-1403.
[21] Yu P,Bennett R.Mitochondrial DNA damage and atherosclerosis[J].Trends Endocrinol Metab,2014,25(9):481-487.
[22] Zhang JZ,Liu Z,Liu J,et al.Mitochondrial DNA induces inflammation and increases TLR9/NF-κB expression in lung tissue[J].Int J Mol Med,2014,33(4):817-824.
[23] Gan L,Chen X,Sun T,et al.Significance of serum mtDNA concentration in lung injury induced by hip fracture[J].Shock,2015,44(1):52-57.
[24] Jounai N,Kobiyama K,Takeshita F,et al.Recognition of damage-associated molecular patterns related to nucleic acids during inflammation and vaccination[J].Front Cell Infect Microbiol,2011,2(2):83-84.
[25] Li H,Liu J,Yao J,et al.Fracture initiates systemic inflammatory response syndrome through recruiting polymorphonuclear leucocytes[J].Immunol Res,2016,64(4):1053-1059.
[26] Gu X,Yao Y,Wu G,et al.The plasma mitochondrial DNA is an Independent predictor for post-traumatic systemic inflammatory response syndrome[J].PLoS One,2013,8(8):e72834.
[27] Simmons JD,Lee YL,Mulekar S,et al.Elevated levels of plasma mitochondrial DNA DAMPs are linked to clinical outcome in severely injured human subjects[J].Ann Surg,2013,258(4):591-596; discussion 596-598.
[28] Walko IT,Bola RA,Hong JD,et al.Cerebrospinal fluid mitochondrial DNA:a novel DAMP in pediatric traumatic brain injury[J].Shock,2014,41(6):499-503.
[29] Krychtiuk KA,Ruhittel S,Hohensinner PJ,et al.Mitochondrial DNA and Toll-Like receptor-9 are associated with mortality in critically ill patients[J].Crit Care Med,2015,43(12):2633-2641.
[30] Hazeldine J,Hampson P,Opoku FA,et al.N-Formyl peptides drive mitochondrial damage associated molecular pattern induced neutrophil activation through ERK1/2 and P38 MAP kinase signalling pathways[J].Injury,2015,46(6):975-984.
[31] Wenceslau F,Mccarthy G,Webb C.Formyl peptide receptor activation elicits endothelial cell contraction and vascular leakage[J].Front Immunol,2016,7(2):297-301.
[32] Crouser ED,Shao G,Julian MW,et al.Monocyte activation by necrotic cells is promoted by mitochondrial proteins and formyl peptide receptors[J].Crit Care Med,2009,37(6):2000-2009.
[33] Marutani T,Hattori T,Tsutsumi K,et al.Mitochondrial protein-derived cryptides:Are endogenous N-formylated peptides including mitocryptide-2 components of mitochondrial damage-associated molecular patterns[J].Biopolymers,2016,106(4):580-587.
[34] Flohé B,Bangen M,Flohé S,et al.Origin of immunomodulation after soft tissue trauma:potential involvement of extracellular heat-shock proteins[J].Shock,2007,27(5):494-502.
[35] Vardas K,Apostolou K,Briassouli E,et al.Early response roles for prolactin cortisol and circulating and cellular levels of heat shock proteins 72 and 90α in severe sepsis and SIRS[J].Biomed Res Int,2013,2014(36):803561.
[36] Fitrolaki MD,Dimitriou H,Venihaki M,et al.Increased extracellular heat shock protein 90α in severe sepsis and SIRS associated with multiple organ failure and related to acute inflammatory-metabolic stress response in children[J].Medicine (Baltimore),2016,95(35):e4651.
[37] Wheeler DS,Wong HR.Heat shock response and acute lung injury[J].Free Radic Biol Med,2007,42(1):1-14.
[38] Wang YL,Shen HH,Cheng PY,et al.17-DMAG,an HSP90 inhibitor,ameliorates multiple organ dysfunction syndrome via induction of HSP70 in endotoxemic rats[J].PLoS One,2016,11(5):e015558.
[39] Zhao Y,Huang ZJ,Rahman M,et al.Radicicol,an Hsp90 inhibitor,inhibits intestinal inflammation and leakage in abdominal sepsis[J].J Surg Res,2013,182(2):312-318.
[40] Gross SR,Sin CG,Barraclough R,et al.Joining S100 proteins and migration:for better or for worse,in sickness and in health[J].Cell Mol Life Sci,2014,71(9):1551-1579.
[41] Donato R,Cannon BR,Sorci G,et al.Functions of S100 Proteins[J].Curr Mol Med,2013,13(1):24-57 .
[42] Leclerc E,Fritz G,Vetter SW,et al.Binding of S100 proteins to RAGE:an update[J].Biochim Biophys Acta,2009,1793(6):993-1007.
[43] Dang X,Guan L,Hu W,et al.S100B ranks as a new marker of multiple traumas in patients and may accelerate its development by regulating endothelial cell dysfunction[J].Int J Clin Exp Pathol,2014,7(7):3818-3826.
[44] Bloomfield SM,Mckinney J,Smith L,et al.Reliability of S100B in predicting severity of central nervous system injury[J].Neurocritical Care,2007,6(2):121-138.
[45] Pfortmueller CA,Drexel C,Krahenmann-Müller S,et al.S-100 B Concentrations are a predictor of decreased survival in patients with major trauma,independently of head injury[J].Intensive Care Med Exp,2016,11(3):e0152822.
[46] Horio E,Kadomatsu T,Miyata K,et al.Role of endothelial cell-derived angptl2 in vascular inflammation leading to endothelial dysfunction and atherosclerosis progression[J].Arterioscler Thromb Vasc Biol,2014,34(4):790-800.
(本文編輯: 黃利萍)
Damage associated molecular patterns and traumatic systemic inflammatory response syndrome
HUANGJing-cong,WANGYi-xin,SUWen-li
(Department of Emergency Surgery,Putuo Hospital Affiliated to Shanghai University of TCM,Shanghai 200333,China)
Damage-related molecular models can stimulate the production of many inflammatory mediators,induce and enhance the inflammatory response of the body through the relevant receptor signal transduction pathways. In recent years,it has been discovered that damage associated molecular patterns are closely related to post-traumatic systemic inflammatory response syndrome and have great impact on prognosis of patients with severe trauma. By reviewing related research on the role played by damage associated molecular patterns in post-traumatic systemic inflammatory response syndrome and the signal transformation mechanism,it is found that damage associated molecular patterns can be used as early-warning indicators for the degree and prognosis of post-traumatic inflammatory response,and can also become the new target of therapy for post-traumatic systemic inflammatory response syndrome.
trauma; damage; molecular patterns; systemic inflammatory response syndrome
上海市重點(diǎn)??平ㄔO(shè)(ZK2015A19)
200333 上海,上海中醫(yī)藥大學(xué)附屬普陀醫(yī)院急診外科
王毅鑫,E-mail:bt1237db605@163.com
1009-4237(2017)06-0475-04
R 641
A
10.3969/j.issn.1009-4237.2017.06.023
2016-11-30;
2017-01-27)