董中亮 任曉曼 卜舒揚(yáng) 閃愛婷 王玉婷 楊建成*
(1.沈陽農(nóng)業(yè)大學(xué)畜牧獸醫(yī)學(xué)院,沈陽 110866;2.沈陽204醫(yī)院,沈陽 110043)
成纖維細(xì)胞生長因子23在骨礦物質(zhì)代謝中的作用及其調(diào)控機(jī)理
董中亮1任曉曼1卜舒揚(yáng)1閃愛婷1王玉婷2楊建成1*
(1.沈陽農(nóng)業(yè)大學(xué)畜牧獸醫(yī)學(xué)院,沈陽 110866;2.沈陽204醫(yī)院,沈陽 110043)
骨源性激素成纖維細(xì)胞生長因子23(FGF23)介導(dǎo)由甲狀旁腺、腎臟、骨骼和維生素D組成的負(fù)反饋回路,建立“骨骼-腎臟-甲狀旁腺”內(nèi)分泌軸,參與骨礦物質(zhì)代謝并發(fā)揮重要作用。鈣、磷、鐵、維生素D、甲狀旁腺素(PTH)、成纖維細(xì)胞生長因子受體(FGFR)/FGF以及蛋白質(zhì)翻譯后修飾調(diào)控FGF23的分泌、活性和胞內(nèi)過程。隨著深入的研究,探索出了一些以FGF23為靶點(diǎn)治療骨礦物質(zhì)代謝障礙疾病的新療法。本文綜述了FGF23在骨礦物質(zhì)代謝中的作用及其調(diào)控機(jī)理的研究進(jìn)展,以期為相關(guān)研究提供參考依據(jù)。
成纖維細(xì)胞生長因子23;骨礦物質(zhì)代謝;鈣;磷;鐵
鈣、磷是動(dòng)物生長、骨骼發(fā)育和維持機(jī)能所必需的礦物質(zhì)元素,是骨骼的基本組成成分,它們結(jié)合生成的羥基磷灰石構(gòu)成骨鹽。鈣、磷代謝是骨礦物質(zhì)代謝的重要部分,對骨代謝有很大影響,低血磷導(dǎo)致幼齡動(dòng)物佝僂病、成年家畜和產(chǎn)蛋家禽骨質(zhì)疏松癥;高血磷不僅延遲骨礦化,還引起由磷/鈣結(jié)晶沉淀導(dǎo)致的異位血管鈣化,繼發(fā)產(chǎn)生和激活趨鈣激素,從而間接影響骨形成。鐵是一種參與骨代謝的重要礦物質(zhì),能夠羥基化蛋白質(zhì),調(diào)節(jié)腎臟維生素D分泌[1],對骨膠原蛋白質(zhì)合成非常重要,過量和缺乏都會(huì)直接或間接影響骨生長[2]。成纖維細(xì)胞生長因子23(FGF23)是近年來發(fā)現(xiàn)的激素,它與甲狀旁腺素(PTH)和維生素D相互作用,共同保持鈣、磷平衡;此外,在一些低磷性骨疾病中,F(xiàn)GF23與鐵相互調(diào)節(jié),在維持骨礦物質(zhì)平衡中發(fā)揮作用。調(diào)控FGF23是一個(gè)復(fù)雜的多層次的過程,涉及鈣、磷、鐵、PTH、維生素D、成纖維細(xì)胞生長因子受體(FGFR)/成纖維細(xì)胞生長因子(FGF)以及蛋白質(zhì)翻譯后修飾,當(dāng)FGF23的分泌、活性和胞內(nèi)過程異常時(shí),會(huì)引起骨礦物質(zhì)代謝障礙從而導(dǎo)致各種骨疾病。在實(shí)踐中,人們已探索出了一些以FGF23為靶點(diǎn)的療法。本文對FGF23在骨礦物質(zhì)代謝中的作用及其調(diào)控機(jī)理的研究進(jìn)展進(jìn)行綜述。
FGF23屬于多肽類激素FGF家族,由成骨細(xì)胞和骨細(xì)胞合成與分泌,物種間略有差異,就人類而言,基因定位于常染色體12p13,由251個(gè)氨基酸組成,相對分子質(zhì)量為32 ku。血液中存在2種形式:一種是活性全長成熟FGF23,其N端具備FGFR結(jié)合位點(diǎn),C端具備α-Klotho(αKL)的結(jié)合位點(diǎn);另一種是無活性的水解裂解產(chǎn)物,N端FGF23和C端FGF23(cFGF23)。FGFR與FGF23結(jié)合的親和力十分低,需要和αKL結(jié)合成復(fù)合受體才具有高親和力,F(xiàn)GF23主要通過絲裂原活化蛋白激酶(MAPK)/胞外信號(hào)調(diào)節(jié)激酶(ERK)信號(hào)通路作用于腎臟和甲狀旁腺,與鈣、磷和鐵等礦物質(zhì)、維生素D以及PTH等激素相互作用,間接調(diào)節(jié)骨代謝。
FGF23能夠降低維生素D的活性,其機(jī)制為:一方面下調(diào)腎1α-羥化酶(Cyp27b1)表達(dá),抑制活性維生素D的合成;同時(shí)上調(diào)維生素D-羥化酶(Cyp24a1)表達(dá),將活性維生素D轉(zhuǎn)化為活性低的產(chǎn)物。維生素D是調(diào)節(jié)FGF23的重要因子,能夠直接促進(jìn)FGF23分泌和增強(qiáng)其活性,研究發(fā)現(xiàn)給予小鼠維生素D可顯著提高血液FGF23含量;在體外培養(yǎng)的成骨細(xì)胞中,維生素D可誘導(dǎo)FGF23表達(dá)并劑量依賴性增強(qiáng)其啟動(dòng)子活性[3]。
FGF23通過以下方面抑制PTH合成和分泌:作用于甲狀旁腺上的維生素D受體以及鈣敏感受體抑制甲狀旁腺細(xì)胞增殖;降低PTHmRNA合成;上調(diào)甲狀旁腺Cyp27b1表達(dá),促進(jìn)活性維生素D合成,抑制PTH,甲狀旁腺分泌PTH并表達(dá)αKL,而FGF23需要與αKL結(jié)合并且能抑制PTH,在甲狀旁腺和骨之間構(gòu)成一個(gè)潛在負(fù)反饋回路,PTH通過它促進(jìn)骨表達(dá)FGF23。研究證明,PTH和其下游孤核受體[核受體相關(guān)蛋白1(Nurr1)]處理骨肉瘤細(xì)胞系促進(jìn)了FGF23 mRNA合成[4];小鼠被高磷飼糧誘導(dǎo)為腎衰竭后,血液FGF23含量顯著增高,切除甲狀旁腺可降低血液FGF23含量[5]。
血液中鈣通過以下方式維持平衡:血液中鈣降低促進(jìn)PTH分泌,PTH作用于遠(yuǎn)端腎單位促進(jìn)鈣重吸收[6],同時(shí)也增加腎Cyp27b1表達(dá),促進(jìn)活性維生素D合成,提高血液中鈣含量;血液中鈣含量升高促進(jìn)鈣、磷在腸道中吸收,通過負(fù)反饋回路抑制甲狀旁腺PTH分泌,從而降低血液中鈣含量。
磷代謝由腸、腎臟和骨組成的內(nèi)分泌反饋回路進(jìn)行系統(tǒng)調(diào)節(jié),其中腎臟是調(diào)節(jié)短期血液中磷含量的主要器官。FGF23調(diào)控血液中磷含量的機(jī)制為:高血液磷含量促進(jìn)骨分泌FGF23[7],F(xiàn)GF23作用于腎臟,直接下調(diào)近曲小管上皮細(xì)胞中的鈉磷協(xié)同轉(zhuǎn)運(yùn)蛋白(NaPi)-2a和NaPi-2c含量從而減少磷重吸收;抑制PTH的合成和分泌,間接影響NaPi活性,減少尿中磷的重吸收,增加尿磷排泄;此外,F(xiàn)GF23抑制活性維生素D合成,而磷在腸道的吸收依賴活性維生素D,造成腸磷吸收減少[8],最終血磷降低。
FGF23與維生素D和PTH相互作用調(diào)節(jié)鈣、磷代謝,降低血液鈣和磷含量,反過來,高鈣與高磷促進(jìn)FGF23分泌。添加外源鈣小幅增強(qiáng)FGF23的活性,而添加鈣通道阻滯劑則抑制FGF23的活性[9];在低鈣并添加能上調(diào)FGF23表達(dá)的維生素D或磷的體外細(xì)胞培養(yǎng)試驗(yàn)中,并不能上調(diào)FGF23表達(dá)[10]。
臨床和轉(zhuǎn)化研究表明,鐵抑制骨分泌FGF23,缺鐵可刺激FGF23轉(zhuǎn)錄,使血液FGF23含量升高。孕婦和處于青春期的青少年普遍比正常人群缺鐵,更容易患常染色體顯性遺傳低磷性佝僂病(ADHR)[11],血液FGF23和cFGF23含量增高且與血液鐵含量負(fù)相關(guān)[12];對于X連鎖低磷性佝僂病(XLH)患者,血液FGF23和cFGF23含量更高,且cFGF23與血液鐵含量有顯著的負(fù)相關(guān)性[13];這些研究表明,盡管ADHR與XLH患者的發(fā)病機(jī)理不同,但血液cFGF23含量都增高,且與血液鐵含量負(fù)相關(guān)。
FGF23的活性和FGF23表達(dá)受FGFR調(diào)控,研究表明,F(xiàn)GFR1增效劑增強(qiáng)FGF23啟動(dòng)子活性,F(xiàn)GFR1顯性負(fù)性結(jié)構(gòu)、磷脂酶C和MAPK的抑制劑抑制其啟動(dòng)子活性[14];用FGFR1的單克隆激活抗體(R1Mab)處理野生型小鼠,提高了血液FGF23含量并引起輕微低磷血癥,處理小鼠成骨細(xì)胞促進(jìn)FGF23 mRNA表達(dá)和FGF23的分泌,而敲除FGFR1則抑制了FGF23活性[15]。
成纖維細(xì)胞生長因子2(FGF2)與FGFR一起調(diào)節(jié)骨分泌FGF23,方式分別為:高分子質(zhì)量FGF2(HMW-FGF2)激發(fā)FGFR1信號(hào)傳導(dǎo),低分子質(zhì)量FGF2激活細(xì)胞表面的FGFR。骨過表達(dá)HMW-FGF2促進(jìn)FGF23分泌,引起低磷性佝僂??;HMW-FGF2轉(zhuǎn)基因小鼠的骨髓間質(zhì)細(xì)胞中存在高含量FGF23和礦化內(nèi)在缺陷,使用FGF23中和抗體、MAPK抑制劑和FGFR酪氨酸激酶抑制劑可以改善[16]。HMW-FGF2基因敲除小鼠,F(xiàn)GF23 mRNA表達(dá)減少,血液磷和PTH含量正常,骨礦物質(zhì)密度增大以及成骨細(xì)胞活性增強(qiáng)[17]。
調(diào)控FGF23的細(xì)胞系統(tǒng)不僅影響FGF23 mRNA表達(dá),而且根據(jù)實(shí)時(shí)狀態(tài)逐步調(diào)節(jié)蛋白質(zhì)翻譯后修飾在蛋白質(zhì)水平進(jìn)行調(diào)控。弗林蛋白酶是一種類枯草桿菌前體蛋白轉(zhuǎn)化酶,能夠在FGF23 179位精氨酸(Arg179)和180位絲氨酸(Ser180)之間剪切從而水解FGF23,乙酰-α-D-半乳糖氨基轉(zhuǎn)移酶3(GalNacT3)特異性識(shí)別FGF23 178位蘇氨酸(Thr178),并在此位置催化FGF23 O-糖基化,阻止水解,這對于保持FGF23的穩(wěn)定和維持其活性非常重要[18-19]。序列相似性家族20成員C(family with sequence similarity 20, member C,F(xiàn)AM20c)在Ser180處磷酸化FGF23,抑制GalNacT3催化FGF23 O-糖基化,使FGF23易被胞內(nèi)蛋白酶裂解[20]。序列相似性家族20成員A(family with sequence similarity 20, member A,F(xiàn)AM20a)為假激酶,可與FAM20c形成一個(gè)功能型復(fù)合體增強(qiáng)FAM20c的活性[21],它們之間的轉(zhuǎn)化能夠增強(qiáng)或降低FGF23的活性。
當(dāng)FGF23的分泌、活性和胞內(nèi)過程異常時(shí),能引起骨礦物質(zhì)代謝障礙從而導(dǎo)致各種遺傳性和后天獲得性骨疾病。隨著對FGF23研究的深入,發(fā)現(xiàn)了一些以FGF23為靶點(diǎn)的新療法,比如抑制FGF23活性治療與FGF23相關(guān)的獲得性低磷癥間質(zhì)瘤-腫瘤性骨軟化癥[22];FGF23中和抗體幾乎完全逆轉(zhuǎn)XLH小鼠低磷性佝僂病表型[23],給XLH患者注射抗FGF23的單克隆抗體KRN23,患者的生化指標(biāo)得到了改善,盡管血維生素D提高很多并且持續(xù)超過50 d,但沒有并發(fā)高磷血癥,血液和尿中鈣含量也維持在正常范圍內(nèi)[24];ADHR患者缺鐵時(shí)會(huì)出現(xiàn)高血液FGF23含量,患者補(bǔ)鐵后,血液中鐵、磷、維生素D含量和腎小管最大磷酸鹽重吸收力/腎小球?yàn)V過率等生化指標(biāo)得到改善,待血液中鐵含量穩(wěn)定后,逐步減少直至停服佝僂病藥和鐵,血液FGF23含量恢復(fù)正常,低磷血癥也得到了改善[25]。
鈣、磷和鐵是參與骨代謝重要的礦物質(zhì),它們代謝紊亂能引起各種骨疾病。FGF23通過“骨骼-腎臟-甲狀旁腺”內(nèi)分泌軸,全面調(diào)節(jié)包括鈣、磷和鐵代謝在內(nèi)的骨礦物質(zhì)代謝,同時(shí)很多因素也共同影響FGF23的分泌、活性以及胞內(nèi)過程,已在研究過程中探索出了一些以FGF23為靶點(diǎn)治療骨礦物質(zhì)代謝障礙疾病的新療法,這刷新了人們對骨礦物質(zhì)代謝的認(rèn)識(shí),F(xiàn)GF23已經(jīng)成為目前研究的熱點(diǎn)。
畜禽骨礦物質(zhì)代謝障礙疾病發(fā)病率高,危害大,不可小覷,找出發(fā)病原因并將其去除十分具有意義,這不僅可以降低普通畜禽的經(jīng)濟(jì)損失,而且對于具有較高價(jià)值的珍稀野生動(dòng)物、寵物和特種經(jīng)濟(jì)動(dòng)物具有特殊意義。遺憾的是,目前關(guān)于FGF23的研究主要集中在動(dòng)物模型和人類,對畜禽的研究鮮有報(bào)道,而畜禽疾病與人類疾病的發(fā)生具有相似性,所以對于廣大從事畜禽營養(yǎng)和疾病的研究者來說,可以從以下方面入手來關(guān)注FGF23:借鑒已有的研究成果,驗(yàn)證血液FGF23含量與有關(guān)骨疾病的相關(guān)性,研究其能否作為獨(dú)立的預(yù)測因子;在分子水平對FGF23受體及其作用機(jī)制進(jìn)行深入的理論研究,為準(zhǔn)確確定飼糧中鈣、磷和鐵等礦物質(zhì)元素和維生素D等維生素的添加量以及治療骨礦物質(zhì)代謝障礙疾病提供參考依據(jù)。
[1] SUGIMOTO H,SHINKYO R,HAYASHI K,et al.Crystal structure of CYP105A1 (P450SU-1) in complex with 1α,25-dihydroxyvitamin D3[J].Biochemistry,2008,47(13):4017-4027.
[2] TOXQUI L,VAQUERO M P.Chronic iron deficiency as an emerging risk factor for osteoporosis:a hypothesis[J].Nutrients,2015,7(4):2324-2344.
[3] ITO M,SAKAI Y,FURUMOTO M,et al.Vitamin D and phosphate regulate fibroblast growth factor-23 in K-562 cells[J].American Journal of Physiology-Endocrinology and Metabolism,2005,288(6):E1101-E1109.
[4] MEIR T,DURLACHER K,PAN Z,et al.Parathyroid hormone activates the orphan nuclear receptor Nurr1 to induce FGF23 transcription[J].Kidney International,2014,86(6):1106-1115.
[5] LAVI-MOSHAYOFF V,WASSERMAN G,MEIR T,et al.PTH increasesFGF23 gene expression and mediates the high-FGF23 levels of experimental kidney failure:a bone parathyroid feedback loop[J].American Journal of Physiology.Renal Physiology,2010,299(4):F882-F889.
[6] BACIC D,LEHIR M,BIBER J,et al.The renal Na+/phosphate cotransporter NaPi-Ⅱa is internalized via the receptor-mediated endocytic route in response to parathyroid hormone[J].Kidney International,2006,69(3):495-503.
[7] SHIMADA T,HASEGAWA H,YAMAZAKI Y,et al.FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis[J].Journal of Bone and Mineral Research,2004,19(3):429-435.
[8] SHIMADA T,MIZUTANI S,MUTO T,et al.Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia[J].Proceedings of the National Academy of Sciences of the United States of America,2001,98(11):6500-6505.
[9] DAVID V,DAI B,MARTIN A,et al.Calcium regulatesFGF-23 expression in bone[J].Endocrinology,2013,154(12):4469-4482.
[10] RODRIGUEZ-ORTIZ M E,LOPEZ I,MUOZ-CASTAEDA J R,et al.Calcium deficiency reduces circulating levels of FGF23[J].Journal of the American Society of Nephrology,2012,23(7):1190-1197.
[11] ECONS M J,MCENERY P T.Autosomal dominant hypophosphatemic rickets/osteomalacia:clinical characterization of a novel renal phosphate-wasting disorder[J].The Journal of Clinical Endocrinology & Metabolism,1997,82(2):674-681.
[12] IMEL E A,PEACOCK M,GRAY A K,et al.Iron modifies plasma FGF23 differently in autosomal dominant hypophosphatemic rickets and healthy humans[J].The Journal of Clinical Endocrinology & Metabolism,2011,96(11):3541-3549.
[13] IMEL E A,GRAY A K,PADGETT L R,et al.Iron and fibroblast growth factor 23 in X-linked hypophosphatemia[J].Bone,2014,60:87-92.
[14] XIAO Z S,HUANG J S,CAO L,et al.Osteocyte-specific deletion ofFgfr1 suppresses FGF23[J].PLoS One,2014,9(8):e104154.
[15] WU A L,FENG B,CHEN M Z,et al.Antibody-mediated activation of FGFR1 induces FGF23 production and hypophosphatemia[J].PLoS One,2013,8(2):e57322.
[16] XIAO L P,ESLIGER A,HURLEY M M.Nuclear fibroblast growth factor 2 (FGF2) isoforms inhibit bone marrow stromal cell mineralization through FGF23/FGFR/MAPK in vitro[J].Journal of Bone and Mineral Research,2013,28(1):35-45.
[17] HOMER-BOUTHIETTE C,DOETSCHMAN T,XIAO L P,et al.Knockout of nuclear high molecular weight FGF2 isoforms in mice modulates bone and phosphate homeostasis[J].Journal of Biological Chemistry,2014,289(52):36303-36314.
[18] BERGWITZ C,BANERJEE S,ABU-ZAHRA H,et al.Defective O-glycosylation due to a novel homozygous S129P mutation is associated with lack of fibroblast growth factor 23 secretion and tumoral calcinosis[J].The Journal of Clinical Endocrinology & Metabolism,2009,94(11):4267-4274.
[19] KATO K,JEANNEAU C,TARP M A,et al.Polypeptide GalNAc-transferase T3 and familial tumoral calcinosis.Secretion of fibroblast growth factor 23 requires O-glycosylation[J].The Journal of Biological Chemistry,2006,281(27):18370-18377.
[20] TAGLIABRACCI V S,ENGEL J L,WILEY S E,et al.Dynamic regulation of FGF23 by Fam20C phosphorylation,GalNAc-T3 glycosylation,and furin proteolysis[J].Proceedings of the National Academy of Sciences of the United States of America,2014,111(15):5520-5525.
[21] CUI J X,XIAO J Y,TAGLIABRACCI V S,et al.A secretory kinase complex regulates extracellular protein phosphorylation[J].Elife,2015,4:e06120.
[22] RYAN E A,REISS E.Oncogenous osteomalacia.Review of the world literature of 42 cases and report of two new cases[J].American Journal of Medicine,1984,77(3):501-512.
[23] CARPENTER T O,IMEL E A,RUPPE M D,et al.Randomized trial of the anti-FGF23 antibody KRN23 in X-linked hypophosphatemia[J].Journal of Clinical Investigation,2014,124(4):1587-1597.
[24] IMEL E A,ZHANG X P,RUPPE M D,et al.Prolonged correction of serum phosphorus in adults with x-linked hypophosphatemia using monthly doses of KRN23[J].The Journal of Clinical Endocrinology & Metabolism,2015,100(7):2565-2573.
[25] KAPELARI K,K?HLE J,KOTZOT D,et al.Iron supplementation associated with loss of phenotype in autosomal dominant hypophosphatemic rickets[J].The Journal of Clinical Endocrinology & Metabolism,2015,100(9):3388-3392.
(責(zé)任編輯 王智航)
Abstract: fibroblast growth factor-23 (FGF23) as a bone-derived hormone plays an important role in bone mineral metabolism by mediating the negative feedback loops formed by parathyroid gland, kidney, bone and vitamin D to constructing a bone-kidney-parathyroid gland endocrine axis. The secretion, activity and intracellular processes of FGF23 are regulated by calcium, phosphate, iron, vitamin D, parathyroid hormone (PTH), fibroblast growth factor receptor (FGFR)/FGF and posttranslational modifications. With the increase of study on FGF23, the researchers have explored new therapeutic interventions on bone mineral metabolism disorder. In order to provide reference for relevant research, functions and regulation mechanism of FGF23 in bone mineral metabolism were reviewed in this paper.[ChineseJournalofAnimalNutrition,2017,29(10):3467-3471]
Keywords: fibroblast growth factor-23; bone mineral metabolism; calcium; phosphate; iron
FibroblastGrowthFactor-23:FunctionsinBoneMineralMetabolismandRegulationMechanism
DONG Zhongliang1REN Xiaoman1BU Shuyang1SHAN Aiting1WANG Yuting2YANG Jiancheng1*
(1.CollegeofVeterinaryandAnimalScience,ShenyangAgriculturalUniversity,Shenyang110866,China;2.Shenyang204Hospital,Shenyang110043,China)
S852.2
A
1006-267X(2017)10-3467-05
10.3969/j.issn.1006-267x.2017.10.006
2017-03-12
國家自然科學(xué)基金(31672510)
董中亮(1983—),男,河南鄭州人,碩士研究生,從事動(dòng)物生理學(xué)與生殖內(nèi)分泌學(xué)研究。E-mail: 57694996@qq.com.cn
*通信作者:楊建成,副教授,碩士生導(dǎo)師,E-mail: syauyjc@126.com
*Corresponding author, associate professor, E-mail: syauyjc@126.com