易亞科,周志波,陳光輝*
(1.湖南農(nóng)業(yè)大學(xué)農(nóng)學(xué)院,長沙 410128;2.南方糧油作物協(xié)同創(chuàng)新中心,長沙 410128)
土壤酸堿度對水稻生長及稻米鎘含量的影響
易亞科1,2,周志波1,2,陳光輝1,2*
(1.湖南農(nóng)業(yè)大學(xué)農(nóng)學(xué)院,長沙 410128;2.南方糧油作物協(xié)同創(chuàng)新中心,長沙 410128)
以5個早稻品種、4個晚稻品種為研究材料,通過盆栽試驗研究了不同酸堿度土壤水稻生長發(fā)育及稻米鎘積累規(guī)律。結(jié)果表明:品種、土壤pH值及二者交互作用對水稻農(nóng)藝性狀及產(chǎn)量的影響均達(dá)到顯著水平(P<0.05),土壤pH值影響最大;單株產(chǎn)量下降的主要原因為每穗實粒數(shù)和結(jié)實率下降。早稻品種、土壤pH值及二者交互作用對精米鎘含量的影響均達(dá)到極顯著水平(P<0.01),土壤pH值的影響最大;精米鎘含量在晚稻品種間存在極顯著差異(P<0.01),并受土壤pH值的影響,但土壤pH值和品種交互作用的影響未達(dá)到顯著水平(P>0.05)。精米鎘富集系數(shù)在水稻品種類型之間存在顯著差異(P<0.05),由高到低為超級雜交稻、常規(guī)稻、雜交稻,生育類型不存在主效應(yīng)(P>0.05)。精米鎘含量與株高、單株產(chǎn)量極顯著相關(guān)(P<0.01),相關(guān)系數(shù)分別為0.412、0.371,與穗長、每穗實粒數(shù)、千粒重和結(jié)實率相關(guān)性不顯著(P>0.05)。在土壤pH值4.0~8.0范圍內(nèi),精米鎘含量與移栽前土壤有效鎘含量極顯著相關(guān)(P<0.01),相關(guān)系數(shù)為0.710。
水稻;稻米;鎘含量;pH值;土壤;有效鎘
工業(yè)“三廢”、農(nóng)藥化肥的不合理使用等造成了重金屬鎘對生態(tài)環(huán)境的嚴(yán)重污染,危害人類健康[1-3]。鎘通過食物、大氣等進(jìn)入人體,且能在人體內(nèi)長期保持,對人體骨骼、腎臟、肝臟等產(chǎn)生毒害作用[4-6]。水稻具有富集重金屬鎘的習(xí)性,通過吸收、轉(zhuǎn)運(yùn)將鎘積累至稻米中,導(dǎo)致糧食安全問題[7-8]。眾多學(xué)者對水稻鎘污染防治進(jìn)行了研究,稻米對重金屬鎘的吸收與積累受基因和環(huán)境的綜合作用[9-10],土壤有效鎘含量、水分管理、施肥等環(huán)境因素均能影響鎘吸收,而土壤酸堿度是影響有效鎘含量和稻米鎘含量的關(guān)鍵因素[11-17]。但前人有關(guān)土壤改良劑、稻田水分管理等降低稻米中鎘含量的研究,只提出土壤pH值是影響稻米鎘含量的關(guān)鍵因素,而未對土壤酸堿度引起水稻生長發(fā)育及稻米鎘含量同步變化的相關(guān)性作深入探究。本研究以5個早稻品種、4個晚稻品種為對象,對土壤不同酸堿度條件下水稻生長發(fā)育及稻米鎘含量進(jìn)行了探究,旨在明確土壤不同酸堿度條件下稻米鎘吸收的規(guī)律,為選育穩(wěn)定的鎘低積累水稻品種、改良鎘污染稻田提供技術(shù)參考,為保障我國糧食安全提供重要的參考依據(jù)。
1.1 供試土壤
供試土壤全部采自湖南省湘潭縣,采集0~20 cm耕作層土壤,經(jīng)風(fēng)干、粉碎、混勻后用于盆栽試驗,基本理化性質(zhì)詳見表1。
1.2 供試材料
早稻供試材料5個品種,晚稻供試材料4個品種,其品種類型和生育類型詳見表2。
1.3 盆栽試驗設(shè)計
試驗地點設(shè)在湖南農(nóng)業(yè)大學(xué)水稻科學(xué)研究所遮雨網(wǎng)室,采用長×寬×高=47 cm×35 cm×17 cm的塑料盆,每盆裝取混合均勻的土樣18 kg,設(shè)置土壤pH值為4.0、5.0、6.0、7.0、8.0五個處理組,3次重復(fù)。土壤酸堿度調(diào)節(jié)于移栽前30 d開始,pH值為5.0及以下采用硫酸溶液調(diào)節(jié),pH值為6.0及以上采用氫氧化鈉溶液調(diào)節(jié),待其基本穩(wěn)定后用相對應(yīng)pH值的硫酸(或氫氧化鈉)溶液澆灌,保持土壤酸堿度的穩(wěn)定。調(diào)節(jié)酸堿度用水采用無污染自來水,鎘含量小于0.005 mg·kg-1。
表2 供試水稻品種基本概況Table 2 Basic information of the tested rice cultivars
早稻采用小拱地膜保溫濕潤育秧,2015年3月27日播種,5月6日移栽;晚稻采用濕潤育秧,2015年6月21日播種,7月21日在早稻收獲后的土壤上移栽。移栽時選擇長勢均勻一致的秧苗,每盆植4蔸,常規(guī)稻每蔸4粒谷苗,雜交稻每蔸2粒谷苗。移栽前一次性施用復(fù)合肥(N+P2O5+K2O≥35%,15-8-12)作基肥,早稻每盆施2.5 g,晚稻每盆施3 g;追肥施尿素,溶于水后澆灌,早稻每盆施0.5 g(5月18日),晚稻每盆施0.6 g(8月1日)。全生育期淹水1~4 cm處理,病蟲害管理按照常規(guī)方式進(jìn)行。
1.4 鎘含量測定
1.4.1 土壤鎘含量測定
表1 供試土壤的基本理化性質(zhì)Table 1 Basic physical and chemical properties of the tested soil
水稻移栽前、移栽后20 d、移栽后40 d、抽穗期、收獲當(dāng)日取各盆全深度土壤,同一土壤酸堿度條件下的每個品種盆栽土壤3次重復(fù)混合成一個濕樣,測定其鎘含量。土壤中的有效鎘含量采用DTPA提取、石墨爐原子吸收分光光度法(GB/T 23739—2009)測定,土壤全鎘含量采用HF-HNO3-HClO4消化、原子吸收分光光度法測定[18]。同時做空白對照。
1.4.2 精米鎘含量測定
水稻黃熟后分盆收取全部稻谷,人工脫粒、曬干,用精米機(jī)打成精米后采用萬能粉碎機(jī)將其粉碎,根據(jù)濕式消解、石墨爐原子吸收分光光度法(GB/T 5009.15—2014)測定精米中的鎘含量。同時做空白對照。
1.5 考種
植株收獲前用卷尺測定株高,以莖基部到所有有效穗向上伸展最高點的長度表示株高。收取全部盆栽植株,分盆進(jìn)行考種,考查穗長、實粒數(shù)、結(jié)實率、千粒重及單株產(chǎn)量。
1.6 數(shù)據(jù)處理與分析
數(shù)據(jù)處理和分析采用SPSS 22.0統(tǒng)計軟件。原始數(shù)據(jù)采用二因素方差分析(Two-way ANOVA)并采用新復(fù)極差法(Duncan)進(jìn)行差異顯著性檢驗。采用Pearson相關(guān)性分析確定稻米鎘含量與水稻生長發(fā)育、產(chǎn)量以及土壤有效鎘的關(guān)系。
2.1 鎘脅迫下土壤酸堿度對水稻生長發(fā)育的影響
由表3可知,品種與土壤pH值對水稻農(nóng)藝性狀及產(chǎn)量的影響均達(dá)到顯著水平(P<0.05),即均存在主效應(yīng),品種對株高、穗長、千粒重、結(jié)實率的影響大于土壤pH值(品種對株高、穗長、千粒重、結(jié)實率貢獻(xiàn)的離差平方和均大于土壤pH值),土壤pH值對每穗實粒數(shù)和單株產(chǎn)量的影響大于品種(土壤pH值對每穗實粒數(shù)和單株產(chǎn)量貢獻(xiàn)的離差平方和均大于品種)。品種與土壤pH值的交互作用對水稻農(nóng)藝性狀及產(chǎn)量的影響達(dá)到極顯著水平(P<0.01),即存在交互效應(yīng),其交互作用對株高、每穗實粒數(shù)、單株產(chǎn)量的影響介于品種和土壤pH值之間,對穗長、千粒重、結(jié)實率的影響均低于品種和土壤pH值。
在土壤pH值為4.0~8.0范圍內(nèi),土壤pH值對水稻農(nóng)藝性狀及產(chǎn)量均產(chǎn)生顯著影響(圖1);土壤pH值低于5.0或高于7.0會顯著影響水稻的株高、每穗實粒數(shù)、結(jié)實率和單株產(chǎn)量,其指標(biāo)均顯著下降。株高、每穗實粒數(shù)、千粒重、結(jié)實率、單株產(chǎn)量隨著土壤pH值的升高呈先增后減的趨勢,在pH值為6.0時達(dá)到最大值,在pH值為4.0或8.0時最??;穗長隨著pH值的升高呈線性遞減趨勢,pH值為4.0時最大,pH值為8.0時顯著減小,說明較高的土壤pH值條件下穗長較短。
表3 品種與土壤pH值對水稻農(nóng)藝性狀及產(chǎn)量的雙因素分析Table 3 Two-way ANOVA for the effects of cultivar and soil pH on agronomic characters and yield in rice
2.2 土壤酸堿度對稻米鎘含量的影響
分析早稻結(jié)果(表4)可知,品種與土壤pH值對稻米鎘含量的影響均達(dá)到極顯著水平(P<0.01),即均存在主效應(yīng),且土壤pH值對稻米鎘含量的影響大于品種(土壤pH值對稻米鎘含量貢獻(xiàn)的離差平方和為0.227,大于品種貢獻(xiàn)的離差平方和0.126)。品種與土壤pH值的交互作用對稻米鎘含量的影響達(dá)到極顯著水平(P<0.01),即存在交互效應(yīng),且其交互效應(yīng)對稻米鎘含量的影響大于品種而小于土壤pH值。
圖1 土壤酸堿度對水稻農(nóng)藝性狀及產(chǎn)量的影響Figure 1 Effects of soil pH on agronomic characters and yield in rice
晚稻結(jié)果與早稻有一定的差異(表4),品種與土壤pH值對稻米鎘含量的影響均達(dá)到極顯著水平(P<0.01),即均存在主效應(yīng);與早稻不同的是,晚稻品種對稻米鎘含量的影響大于土壤pH值,且品種與土壤pH值的交互作用對稻米鎘含量的影響未達(dá)到顯著水平(P=0.070)。
在土壤pH值為4.0~8.0范圍內(nèi),早稻稻米鎘含量呈先增后減趨勢分布(圖2A),在土壤pH值為6.0時達(dá)到最大值且超過國家安全標(biāo)準(zhǔn)線(GB2762—2012,0.2 mg·kg-1);在土壤pH值為4.0、5.0、7.0、8.0時,早稻稻米鎘含量均未超過0.2mg·kg-1,相對pH值為6.0均顯著降低,在土壤pH值為4.0時最小、8.0次之。
表4 品種與土壤pH值對稻米鎘含量影響的雙因素分析Table 4 Two-way ANOVA for the effects of cultivar and soil pH on Cd content in polished rice
圖2 土壤酸堿度對稻米鎘含量的影響Figure 2 Effects of soil pH on Cd content in polished rice
在土壤pH值為4.0~8.0范圍內(nèi),晚稻稻米鎘含量變化與早稻保持基本一致(圖2B),在pH值為6.0時最大,在pH值為4.0、5.0、8.0時稻米鎘含量相對6.0顯著降低,且在土壤pH值為8.0時最小,但晚稻稻米鎘含量均未超過0.2 mg·kg-1。
2.3 生育類型與稻型對稻米鎘富集系數(shù)的影響
水稻類型對稻米鎘富集系數(shù)的影響達(dá)到極顯著水平(表5),即存在主效應(yīng);而生育類型對稻米鎘富集系數(shù)的影響未達(dá)到顯著水平(P=0.148),即不存在主效應(yīng);水稻稻型與生育類型的交互作用對稻米鎘富集系數(shù)的影響未達(dá)到顯著水平(P=0.223)。
表5 稻型與生育類型對稻米鎘富集系數(shù)影響的雙因素分析Table 5 Two-way ANOVA for the effects of cultivar type and growth-duration type on Cd enrichment coefficient in polished rice
由圖3可知,水稻品種類型對稻米鎘富集系數(shù)的影響以超級雜交稻為最大,其次為常規(guī)稻,雜交稻最小,表明超級雜交稻稻米鎘富集能力高于常規(guī)稻和雜交稻。
圖3 稻型對稻米鎘富集系數(shù)的影響Figure 3 Effects of cultivar type on Cd enrichment coefficient in polished rice
2.4 土壤全鎘含量在水稻各生育期的動態(tài)變化
水稻生育期和土壤pH值對土壤全鎘含量的影響均具有主效應(yīng)(表6),生育期對土壤全鎘含量的影響達(dá)到極顯著水平(P<0.01),土壤pH值對全鎘含量的影響達(dá)到顯著水平(P<0.05),且生育期對土壤全鎘含量的影響大于土壤pH值。生育期與土壤pH值對土壤全鎘含量的影響存在交互效應(yīng),其交互效應(yīng)對土壤全鎘含量的影響達(dá)到極顯著水平(P<0.01),其影響大于土壤pH值而小于生育期(離差平方和為0.081)。
表6 土壤酸堿度與水稻生育期對土壤全鎘含量影響的雙因素分析Table 6 Two-way ANOVA for the effects of soil pH and rice growth stage on total Cd content in soil
隨著水稻的生長發(fā)育,土壤全鎘含量先降低后升高(圖4),分蘗期及以后土壤全鎘含量顯著下降,以孕穗期降幅為最大。分蘗期、孕穗期土壤全鎘含量顯著下降,孕穗期之后,抽穗期、成熟期土壤全鎘含量顯著上升。
圖4 不同生育期對土壤全鎘含量的影響Figure 4 Effects of growth stage on total Cd content in soil
2.5 稻米鎘含量的相關(guān)性分析
稻米鎘含量與各指標(biāo)的相關(guān)性見表7。稻米鎘含量與株高、單株產(chǎn)量極顯著相關(guān)(P<0.01),相關(guān)系數(shù)分別為0.412、0.371,表明水稻株高和單株產(chǎn)量越高其稻米鎘含量可能越高。而稻米鎘含量與穗長、每穗實粒數(shù)、千粒重和結(jié)實率相關(guān)性并不顯著,說明稻米鎘含量與其并無必然聯(lián)系。在土壤pH值為4.0~8.0條件下,稻米鎘含量與移栽前土壤有效鎘含量極顯著相關(guān)(P<0.01),相關(guān)系數(shù)為0.710,表明有效鎘含量較高的土壤上種植的水稻稻米鎘含量可能較高。
表7 稻米鎘含量與農(nóng)藝性狀、單株產(chǎn)量及有效鎘含量的相關(guān)性分析Table 7 Correlation coefficients among polished rice Cd content,agronomic characters,yield and soil available Cd content
重金屬鎘脅迫條件下,單株產(chǎn)量在梯度土壤pH值上并非呈線性變換,水稻生長發(fā)育在土壤不同酸堿度條件下差異性顯著,單株產(chǎn)量受水稻品種和土壤pH值的交互影響,且土壤pH值的貢獻(xiàn)度大于品種效應(yīng)。本研究中單株產(chǎn)量下降的主要原因為每穗實粒數(shù)和結(jié)實率下降(相關(guān)系數(shù)分別為0.842、0.583,P<0.01)。曾勇軍等[19]的盆栽試驗結(jié)果也表明雙季早、晚稻每穗粒數(shù)、結(jié)實率和千粒重隨著土壤pH值的下降表現(xiàn)出下降的趨勢;步金寶等[20]的研究表明鹽堿脅迫下水稻產(chǎn)量下降的原因是分蘗、有效穗數(shù)、成穗率、穗粒數(shù)、千粒重下降;楊福等[21]的研究表明水稻單位面積的有效穗數(shù)不是減產(chǎn)的原因,而是由于每穗實粒數(shù)減少、千粒重減輕。土壤酸堿度對水稻生長發(fā)育造成影響的根本原因是土壤酸化會影響根系生長[22-23]。
稻米鎘含量相關(guān)性分析結(jié)果表明,稻米鎘含量與移栽前土壤有效鎘含量、株高、單株產(chǎn)量極顯著相關(guān),而與土壤pH值相關(guān)性并不顯著;但在雙因素分析中,土壤酸堿度對稻米鎘含量的貢獻(xiàn)度大于品種(表4),造成結(jié)果不一致的原因為稻米鎘含量與土壤不同酸堿度并非線性關(guān)系,在調(diào)節(jié)土壤酸堿度時加入硫酸使土壤結(jié)構(gòu)被破壞[24],導(dǎo)致有效鎘含量呈不規(guī)律變化。在土壤pH值為6.0時稻米鎘含量最高,與Kabata-Pendias等[25]、潘楊等[26]結(jié)論一致。廖啟林等[27]結(jié)果也表明,通常情況下土壤pH與稻米鎘含量不存在顯著相關(guān)性,當(dāng)土壤鎘含量超過0.2 mg·kg-1且土壤有機(jī)質(zhì)含量介于2.5%~6.5%時,稻米鎘含量與土壤pH呈顯著負(fù)相關(guān)。土壤pH值低于5.0時根系活力以及根系生長指標(biāo)顯著下降[28],對水稻根系吸收及運(yùn)輸營養(yǎng)物質(zhì)和重金屬鎘均產(chǎn)生影響,從而導(dǎo)致嚴(yán)重減產(chǎn)、稻米鎘含量低。土壤pH值大于6.0,OH-的作用抑制了金屬元素Cd水解,更少的H+與Cd2+競爭吸附位點[29-30],此外還會影響土壤中的鎘形態(tài)分布[13],使能夠被水稻吸收的鎘含量減少,從而降低稻米鎘含量。
稻米鎘含量受基因、環(huán)境和二者的交互作用影響[9-10],本研究也表明稻米鎘含量(或鎘富集系數(shù))與水稻品種及環(huán)境因素(土壤pH值)相關(guān),與品種生育類型相關(guān)性不顯著,稻米鎘含量由高到低為超級雜交稻、常規(guī)稻、雜交稻,仲維功等[31]也認(rèn)為常規(guī)秈稻比雜交稻具有更強(qiáng)的鎘吸收及轉(zhuǎn)運(yùn)至籽粒的能力;而曾翔等[32]結(jié)果表明糙米含鎘量從高到低依次為特種稻、常規(guī)早秈稻、三系雜交晚稻、兩系雜交晚稻、常規(guī)晚秈稻、常規(guī)粳稻、爪洼稻;張磊等[33]發(fā)現(xiàn)常規(guī)稻鎘耐性優(yōu)于雜交稻和超級稻;而徐燕玲等[9]認(rèn)為依據(jù)品種類型評價稻米鎘的公平性有待考慮。依據(jù)本研究的結(jié)果來看,雖然稻米鎘含量在品種類型上具有一定的規(guī)律性,可以在篩選鎘低積累水稻品種時作為一個考慮因素,但不宜片面以品種類型來考慮稻米鎘的富集能力。
土壤中的總鎘含量降幅與稻米鎘含量呈完全一致趨勢,土壤中總鎘含量并非隨著水稻生長發(fā)育而一直下降,而是先大幅度下降后小幅度上升;植株中老葉最初積累了較多的鎘使得土壤中鎘含量下降,而后死亡落于土壤中被重新降解吸收使得土壤中鎘含量小幅度上升[34];也可能存在類似于AtPDR8[35]的鎘外排轉(zhuǎn)運(yùn)蛋白,使得植株中鎘含量積累到一定程度后向外排出。孕穗期土壤中全鎘含量降幅最大,平均達(dá)到30%以上,是因該時期水稻植株生長(干物質(zhì)量)達(dá)到最大[36],且原位土壤中的鎘活性高(有效鎘含量占全鎘含量的70%),使植株中鎘積累含量高,土壤中的鎘富集至植株中的積累量大,故土壤鎘含量降幅最大。水稻各關(guān)鍵生育期土壤中的鎘形態(tài)變化及植株中鎘積累量的變化值得進(jìn)一步深入探究,以確定鎘高積累水稻品種在修復(fù)重金屬鎘污染土壤時是否在孕穗期收獲取得最佳效果。
建議在治理鎘污染土壤降低稻米鎘吸收含量時,不宜片面提高土壤的pH值;在選育水稻鎘低積累品種時,宜選擇pH值為5~6的土壤。
(1)在土壤pH值4.0~8.0范圍內(nèi),品種、土壤pH值及二者交互作用對水稻農(nóng)藝性狀及產(chǎn)量的影響均達(dá)到顯著水平,單株產(chǎn)量下降的主要原因是每穗實粒數(shù)和結(jié)實率下降。
(2)在土壤pH值4.0~8.0范圍內(nèi),早稻品種、土壤pH值及二者交互作用對精米鎘含量的影響均達(dá)到極顯著水平;晚稻品種與土壤pH值對精米鎘含量的影響達(dá)到極顯著水平,但其交互作用的影響未達(dá)到顯著水平。鎘富集系數(shù)在水稻品種類型之間達(dá)到顯著水平,由高到低為超級雜交稻、常規(guī)稻、雜交稻;生育類型對精米鎘富集系數(shù)的影響未達(dá)到顯著水平。
(3)在土壤pH值4.0~8.0范圍內(nèi),精米鎘含量與株高、單株產(chǎn)量極顯著相關(guān),與穗長、每穗實粒數(shù)、千粒重和結(jié)實率相關(guān)性不顯著,與移栽前土壤有效鎘含量極顯著相關(guān)。
[1]Hao L B,Tian M,Zhao X Y,et al.Spatial distribution and sources of traceelementsinsurfacesoils,Changchun,China:Insightsfromstochastic models and geostatistical analyses[J].Geoderma,2016,273:54-63.
[2]閆湘,王旭,李秀英,等.我國水溶肥料中重金屬含量、來源及安全現(xiàn)狀[J].植物營養(yǎng)與肥料學(xué)報,2016,22(1):8-18.
YAN Xiang,WANG Xu,LI Xiu-ying,et al.Contents,source and safety status of major heavy metals in water-soluble fertilizers in China[J]. Journal of Plant Nutrition and Fertilizer,2016,22(1):8-18.
[3]宋文恩,陳世寶,唐杰偉.稻田生態(tài)系統(tǒng)中鎘污染及環(huán)境風(fēng)險管理[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報,2014,33(9):1669-1678.
SONG Wen-en,CHEN Shi-bao,TANG Jie-wei.Cadmium pollution and its environmental risk management in rice ecosystem[J].Journal of Agro-Environment Science,2014,33(9):1669-1678.
[4]Wu H Y,Liao Q L,Chillrud S N,et al.Environmental exposure to cadmium:Health risk assessment and its associations with hypertension and impaired kidney function[J].Scientific Reports,2016,6:1-9.
[5]Chen C,Xun P C,Nishijo M,et al.Cadmium exposure and risk of lung cancer:A meta-analysis of cohort and case-control studies among general and occupational populations[J].Journal of Exposure Science andEnvironmental Epidemiologyl,2016,26(5):437-444.
[6]Chaney R L,Reeves P G,Ryan J A,et al.An improved understanding of soil Cd risk to humans and low cost methods to phytoextract Cd from contaminated soils to prevent soil Cd risks[J].Biometals,2004,17(5):549-553.
[7]朱智偉,陳銘學(xué),牟仁祥,等.水稻鎘代謝與控制研究進(jìn)展[J].中國農(nóng)業(yè)科學(xué),2014,47(18):3633-3640.
ZHU Zhi-wei,CHEN Ming-xue,MOU Ren-xiang,et al.Advances in research of cadmium metabolism and control in rice plants[J].Scientia Agricultura Sinica,2014,47(18):3633-3640.
[8]Liu D Q,Zhang C H,Chen X,et al.Effects of pH,Fe,and Cd on the uptake of Fe2+and Cd2+by rice[J].Environmental Science and Pollution Research,2013,20(12):8947-8954.
[9]徐燕玲,陳能場,徐勝光,等.低鎘累積水稻品種的篩選方法研究——品種與類型[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報,2009,28(7):1346-1352.
XU Yan-ling,CHEN Neng-chang,XU Sheng-guang,et al.Breeding rice cultivars with low accumulation of cadmium:Cultivars versus types [J].Journal of Agro-Environment Science,2009,28(7):1346-1352.
[10]滕振寧,張玉燭,方寶華,等.用AMMI雙標(biāo)圖分析早稻稻米鎘含量的基因型與環(huán)境互作效應(yīng)[J].生態(tài)環(huán)境學(xué)報,2016,25(4):692-697.
TENG Zhen-ning,ZHANG Yu-zhu,FANG Bao-hua,et al.AMMI-Biplot analysis of genotypic and environmental effects on cadmium content in early rice[J].Ecology and Environmental Sciences,2016,25(4):692-697.
[11]張標(biāo)金,羅林廣,魏益華,等.不同基因型水稻鎘積累動態(tài)差異分析[J].中國農(nóng)學(xué)通報,2015,31(9):25-30.
ZHANG Biao-jin,LUO Lin-guang,WEI Yi-hua,et al.Analysis of cadmium accumulation dynamics in rice with distinct genotypes[J].Chinese Agricultural Science Bulletin,2015,31(9):25-30.
[12]曾卉,周航,邱瓊瑤,等.施用組配固化劑對盆栽土壤重金屬交換態(tài)含量及在水稻中累積分布的影響[J].環(huán)境科學(xué),2014,35(2):727-732.
ZENG Hui,ZHOU Hang,QIU Qiong-yao,et al.Effects of group matching curing agent on exchangeable Pb,Cd,Zn contents in the potted soils and their accumulation in rice plants[J].Environmental Science,2014,35(2):727-732.
[13]楊忠芳,陳岳龍,錢鑂,等.土壤pH對鎘存在形態(tài)影響的模擬實驗研究[J].地學(xué)前緣,2005,12(1):252-260.
YANG Zhong-fang,CHEN Yue-long,QIAN Xun,et al.A study of the effect of soil pH on chemical species of cadmium by simulated experiments[J].Earth Science Frontiers,2005,12(1):252-260.
[14]王美娥,彭馳,陳衛(wèi)平.水稻品種及典型土壤改良措施對稻米吸收鎘的影響[J].環(huán)境科學(xué),2015,36(11):4283-4290.
WANG Mei-e,PENG Chi,CHEN Wei-ping.Effects of rice cultivar and typical soil improvement measures on the uptake of Cd in rice grains[J].Environmental Science,2015,36(11):4283-4290.
[15]Liu J G,Qian M,Cai G L,et al.Uptake and translocation of Cd in different rice cultivars and the relation with Cd accumulation in rice grain [J].Journal of Hazardous Materials,2007,143(1/2):443-447.
[16]陳喆,張淼,葉長城,等.富硅肥料和水分管理對稻米鎘污染阻控效果研究[J].環(huán)境科學(xué)學(xué)報,2015,35(12):4003-4011.
CHEN Zhe,ZHANG Miao,YE Chang-cheng,et al.Mitigation of Cd accumulation in rice(Oryza sativa L.)with Si fertilizers and irrigation managements[J].Acta Scientiae Circumstantiae,2015,35(12):4003-4011.
[17]鄒佳玲,辜嬌峰,楊文弢,等.不同pH值灌溉水對土壤Cd生物有效性及稻米Cd含量的影響[J/OL].環(huán)境科學(xué)學(xué)報,2016[2016-10-07].http://www.cnki.net/kcms/detail/11.1843.X.20160715. 1531.003.html
ZOU Jia-ling,GU Jiao-feng,YANG Wen-tao,et al.Effects of different pH values of irrigation water on soil Cd bioavailability and Cd content in rice[J/OL].Acta Scientiae Circumstantiae,2016[2016-10-07].http://www.cnki.net/kcms/detail/11.1843.X.20160715.1531.003.html
[18]魯如坤.土壤農(nóng)業(yè)化學(xué)分析方法[M].北京:中國農(nóng)業(yè)科技出版社, 2000.
LU Ru-kun.Analytical methods of soil and agro-chemistry[M].Beijing:China Agricultural Science and Technology Press,2000.
[19]曾勇軍,周慶紅,呂偉生,等.土壤酸化對雙季早、晚稻產(chǎn)量的影響[J].作物學(xué)報,2014,40(5):899-907.
ZENG Yong-jun,ZHOU Qing-hong,Lü Wei-sheng,et al.Effects of soil acidification on the yield of double season rice[J].Acta AgronomicaSinica,2014,40(5):899-907.
[20]步金寶,趙宏偉,劉化龍,等.鹽堿脅迫對寒地粳稻產(chǎn)量形成機(jī)理的研究[J].農(nóng)業(yè)現(xiàn)代化研究,2012,33(4):485-488.
BU Jin-bao,ZHAO Hong-wei,LIU Hua-long,et al.Study on yield formation mechanism of salinity and alkalinity stress in japonica rice of cold region[J].Research of Agricultural Modernization,2012,33(4):485-488.
[21]楊福,梁正偉,王志春,等.水稻耐鹽堿品種(系)篩選試驗與省區(qū)域試驗產(chǎn)量性狀的比較[J].吉林農(nóng)業(yè)大學(xué)學(xué)報,2007,29(6):596-600.
YANG Fu,LIANG Zheng-wei,WANG Zhi-chun,et al.Comparison of yield characters between screening test of saline alkali tolerant rice varieties and regional experiment[J].Journal of Jilin Agricultural University,2007,29(6):596-600.
[22]王麗紅,孫飛,陳春梅,等.酸化土壤鋁和鎘對水稻幼苗根系生長的復(fù)合影響[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報,2013,32(12):2511-2512.
WANG Li-hong,SUN Fei,CHEN Chun-mei,et al.Combined effects of aluminum and cadmium in acidified soil on root growth in rice seedlings[J].Journal of Agro-Environment Science,2013,32(12):2511-2512.
[23]曾慶玲,黃曉華,周青.酸雨對水稻、小麥和油菜種子萌發(fā)的影響[J].環(huán)境科學(xué),2005,26(1):181-184.
ZENG Qing-ling,HUANG Xiao-hua,ZHOU Qing.Effect of acid rain on seed germination of rice,wheat and rape[J].Environmental Science,2005,26(1):181-184.
[24]單勝道,俞勁炎,于偉.酸雨與土壤生態(tài)系統(tǒng)[J].生態(tài)農(nóng)業(yè)研究, 2000,8(2):20-23.
SHAN Sheng-dao,YU Jin-yan,YU Wei.Acid rain and soil ecosystem. [J].Eco-agriculture Research,2000,8(2):20-23.
[25]Kabata-Pendias A,Pendias H.Trace elements in soils and plants[M].Third Edition.Boca Raton:CSC Press,2001.
[26]潘楊,趙玉杰,周其文,等.南方稻區(qū)土壤pH變化對稻米吸收鎘的影響[J].安徽農(nóng)業(yè)科學(xué),2015,43(16):235-238.
PAN Yang,ZHAO Yu-jie,ZHOU Qi-wen,et al.Influence of soil pH on cadmium absorption by rice in main rice production region of south China[J].Journal of Anhui Agricultural Sciences,2015,43(16):235-238.
[27]廖啟林,劉聰,王軼,等.水稻吸收Cd的地球化學(xué)控制因素研究——以蘇錫常典型區(qū)為例[J].中國地質(zhì),2015,42(5):1621-1632.
LIAO Qi-lin,LIU Cong,WANG Yi,et al.Geochemical characteristics of rice uptake of cadmium and its main controlling factors:A case study of the Suxichang(Suzhou-Wuxi-Changzhou)typical area[J].Geology in China,2015,42(5):1621-1632.
[28]吳璽,梁嬋娟.模擬酸雨對水稻根系激素含量與生長的影響[J].環(huán)境化學(xué),2016,35(3):568-574.
WU Xi,LIANG Chan-juan.Effects of simulated acid rain on hormone concentration and growth of rice roots[J].Environmental Chemistry, 2016,35(3):568-574.
[29]張會民,徐明崗,呂家瓏,等.pH對土壤及其組分吸附和解吸鎘的影響研究進(jìn)展[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報,2005,24(增刊):320-324.
ZHANG Hui-min,XU Ming-gang,Lü Jia-long,et al.A review of studies on effects of pH on cadmium sorption and desorption in soil[J].Journal of Agro-Environment Science,2005,24(Suppl):320-324.
[30]劉文菊,張西科,尹君,等.鎘在水稻根際的生物有效性[J].農(nóng)業(yè)環(huán)境保護(hù),2000,19(3):184-187.
LIU Wen-ju,ZHANG Xi-ke,YIN Jun,et al.Cadmium bioavailability in rhizosphere of paddy soil[J].Agro-Environmental Protection,2000, 19(3):184-187.
[31]仲維功,楊杰,陳志德,等.水稻品種及其器官對土壤重金屬元素Pb、Cd、Hg、As積累的差異[J].江蘇農(nóng)業(yè)學(xué)報,2006,22(4):331-338.
ZHONG Wei-gong,YANG Jie,CHEN Zhi-de,et al.Differences in accumulation and distribution of Pb,Cd,Hg and As in rice cultivars and their organs(Oryza sativa L.)[J].Jiangsu Journal of Agricultural Sciences,2006,22(4):331-338.
[32]曾翔,張玉燭,王凱榮,等.不同品種水稻糙米含鎘量差異[J].生態(tài)與農(nóng)村環(huán)境學(xué)報,2006,22(1):67-69,83.
ZENG Xiang,ZHANG Yu-zhu,WANG Kai-rong,et al.Genotype difference of brown rices in Cd content[J].Journal of Ecology and Rural Environment,2006,22(1):67-69,83.
[33]張磊,楊惟薇,張超蘭,等.不同水稻類型對鎘的耐性、累積性與轉(zhuǎn)運(yùn)性質(zhì)研究[J].西南農(nóng)業(yè)學(xué)報,2013,26(6):2185-2188.
ZHANG Lei,YANG Wei-wei,ZHANG Chao-lan,et al.Cadmium tolerance,accumulation and translocation between‘super’rice,hybrid rice and conventional rice[J].Southwest China Journal of Agricultural Sciences,2013,26(6):2185-2188.
[34]Kashiwagi T,Shindoh K,Hirotsu N,et al.Evidence for separate translocation pathways in determining cadmium accumulation in grain and aerial plant parts in rice[J].BMC Plant Biology,2009. doi:10.1186/ 1471-2229-9-8.
[35]Kim D Y,Bovet L,Maeshima M,et al.The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance[J].Plant Journal,2007,50(2):207-218.
[36]樸鐘澤,韓龍植,高熙宗,等.水稻干物質(zhì)量和氮素利用效率性狀的配合力分析[J].中國水稻科學(xué),2005,19(6):527-532.
PIAO Zhong-ze,HAN Long-zhi,KOH Hee-jeong,et al.Analysis on combining ability of dry weight and nitrogen use efficiency in rice[J].Chinese Journal of Rice Science,2005,19(6):527-532.
Effects of soil pH on growth and grain cadmium content in rice
YI Ya-ke1,2,ZHOU Zhi-bo1,2,CHEN Guang-hui1,2*
(1.Agronomy College of Hunan Agricultural University,Changsha 410128,China;2.Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China,Changsha 410128,China)
A pot experiment,with 5 early-rice cultivars and 4 late-rice cultivars,was carried out to investigate the characteristics of growth and grain cadmium(Cd)accumulation in rice under different soil pH conditions.The results showed that the main effects of cultivar and soil pH as well as their interactive effects on agronomic traits and yield were significant(P<0.05),and soil pH had the greatest effects.Yield per plant significantly decreased when soil pH was lower than 5.0 or higher than 7.0.The decrease in yield per plant related to soil pH was mainly due to reductions in number of grains per panicle and seed setting rate.Cd content in polished rice was significantly(P<0.01)affected by cultivar,soil pH and their interaction in early-rice,and the greatest effect was caused by soil pH.In late-rice,both cultivar and soil pH significantly(P<0.01)affected Cd content in polished rice,while their interaction was not significant.Significant(P<0.05)difference was observed in Cd enrichment coefficient among cultivar types.Super hybrid rice had the highest Cd enrichment coefficient,followed by conventional rice and hybrid rice.Growth duration had no significant effect on Cd enrichment coefficient.Cd content in polished rice was significantly(P<0.01)correlated with plant height and yield per plant,showing correlation coefficients of 0.412 and 0.371,respectively. There was no significant correlation between Cd content in polished rice with panicle length,number of grains per panicle,1,000-grainweight and seed setting rate.In soils with a pH range of 4.0 to 8.0,Cd content in polished rice was significantly(P<0.01)correlated with soil available Cd content before rice transplanting,with a correlation coefficient of 0.710.
rice;grain;cadmium content;pH;soil;available cadmium
S511
A
1672-2043(2017)03-0428-09
10.11654/jaes.2016-1274
易亞科,周志波,陳光輝.土壤酸堿度對水稻生長及稻米鎘含量的影響[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報,2017,36(3):428-436.
YI Ya-ke,ZHOU Zhi-bo,CHEN Guang-hui.Effects of soil pH on growth and grain cadmium content in rice[J].Journal of Agro-Environment Science,2017, 36(3):428-436.
2016-10-07
易亞科(1990—),男,湖南岳陽人,碩士研究生,研究方向為種子生理生化。E-mail:yykchn@163.com
*通信作者:陳光輝E-mail:cgh68@163.com
農(nóng)業(yè)部、財政部專項“鎘低積累水稻品種篩選”;國家重點研發(fā)計劃項目(2016YFD0300509);教育部創(chuàng)新團(tuán)隊發(fā)展計劃項目(IRT1239)
Project supported:The Special Fund of Ministry of Agriculture and Ministry of Finance of China for Screening Rice Cultivar with Low Cadmium Accumulation;The National Key Research and Development Program of China(2016YFD0300509);The Innovation Team Development Program of the Ministry of Education of China(IRT1239)