亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        基于文獻計量的Cr污染土壤修復(fù)發(fā)展歷程剖析(2001—2015年)

        2017-03-16 08:45:22朱宇恩張倩茹張維榮姜凱欽侯賀斌李鈴李華
        關(guān)鍵詞:生物污染文獻

        朱宇恩,張倩茹,張維榮,姜凱欽,侯賀斌,李鈴,李華*

        (1.山西大學(xué)環(huán)境與資源學(xué)院,太原 030006;2.四川省資陽中學(xué),四川 資陽 641300)

        基于文獻計量的Cr污染土壤修復(fù)發(fā)展歷程剖析(2001—2015年)

        朱宇恩1,張倩茹1,張維榮1,姜凱欽1,侯賀斌1,李鈴2,李華1*

        (1.山西大學(xué)環(huán)境與資源學(xué)院,太原 030006;2.四川省資陽中學(xué),四川 資陽 641300)

        借助Web of Science,利用文獻計量學(xué)方法定量分析了2001—2015年15年間發(fā)表的與Cr污染土壤修復(fù)相關(guān)的文獻,研究了Cr污染土壤修復(fù)在不同時期(2001—2005、2006—2010、2011—2015年)的發(fā)展與演變,對比了不同階段Cr污染土壤修復(fù)技術(shù)發(fā)展的異同點。文獻計量分析顯示,Cr污染土壤修復(fù)歷程由早期的以電動力修復(fù)、生物修復(fù)主導(dǎo)的應(yīng)用可行性研究,逐漸轉(zhuǎn)向土壤淋洗修復(fù)、鈍化還原修復(fù)以及以篩選修復(fù)菌種與修復(fù)植物為核心的生物修復(fù)技術(shù)研究時期,進而向多技術(shù)聯(lián)合修復(fù)、新技術(shù)和新材料的探索研究階段發(fā)展,學(xué)科交叉融合不斷增強。Cr污染土壤修復(fù)技術(shù)3個階段的研究內(nèi)容由少至多,由淺入深,材料功能優(yōu)化和環(huán)境友好化日益成為研究的驅(qū)動力。歷經(jīng)數(shù)十年發(fā)展后,以負載和納米化為特征的新型修復(fù)材料制備及應(yīng)用將成為下一階段的研究重點,而修復(fù)技術(shù)的深度融合與地域化適應(yīng)將是修復(fù)技術(shù)實際應(yīng)用中需要突破的瓶頸。

        文獻計量學(xué);Cr;污染土壤修復(fù);發(fā)展演變

        土壤既是人類賴以生存的立地條件,又是重要的環(huán)境要素。土壤的污染必將導(dǎo)致生態(tài)破壞并威脅人類生存[1]。由于污灌、含Cr工業(yè)生產(chǎn)等過程中Cr的排放,使農(nóng)田與場地Cr污染在世界各地均有一定的積存。據(jù)2014年《全國土壤污染狀況調(diào)查公報》,我國土壤重金屬污染的耕地面積點位超標(biāo)率為19.4%,Cr污染耕地超標(biāo)面積148.68萬hm2。每年堆存的未經(jīng)無害化處置的數(shù)萬噸鉻渣也會導(dǎo)致場地土壤污染[2],這使得以工業(yè)遺留場地為特征的Cr污染場地逐漸增多,并引起廣泛關(guān)注。

        Cr污染土壤的修復(fù)作為降低生態(tài)風(fēng)險、保障公眾健康的重要手段,在數(shù)十年的發(fā)展中涵蓋了物理、化學(xué)、生物、農(nóng)業(yè)生態(tài)、電動力學(xué)諸多方面[3],不斷引入新的研究思路、方法和手段,修復(fù)技術(shù)體系不斷完善;而且多學(xué)科的交叉、新材料的引入也推動著Cr污染土壤修復(fù)技術(shù)的快速前進。在快速推進的背景下,有必要認真梳理Cr污染土壤修復(fù)的發(fā)展脈絡(luò),聚焦Cr污染土壤修復(fù)中的“關(guān)鍵過程”與“需要突破的瓶頸”,探究Cr污染土壤修復(fù)新材料的演化規(guī)律,進而增強Cr污染土壤修復(fù)研究與技術(shù)發(fā)展的源動力。

        為了系統(tǒng)、全面地了解Cr污染土壤修復(fù)的研究進展,本文利用文獻計量法對2001—2015年與Cr污染土壤修復(fù)相關(guān)的文獻進行計量分析,總結(jié)21世紀(jì)以來Cr污染土壤修復(fù)的發(fā)展歷程和研究進展,以期為科研工作者提供研究方向及熱點參考。

        1 數(shù)據(jù)來源與統(tǒng)計方法

        1.1 數(shù)據(jù)來源

        本文在Web of ScienceTM核心合集數(shù)據(jù)庫中以“Chromium”和“Contaminated soil”為關(guān)鍵詞進行主題檢索作為文獻分析的數(shù)據(jù)來源。根據(jù)Cr污染土壤文獻歷年的發(fā)文量(圖1),本文最終選定的分析時間跨度為2001.01.01—2015.12.31。所有文獻檢索日期為2016年5月29日。

        1.2 統(tǒng)計方法

        利用引文網(wǎng)絡(luò)分析工具CiteSpaceⅢ進行文獻數(shù)據(jù)挖掘和可視化分析[4]。

        在進行關(guān)鍵詞共現(xiàn)分析之前,對關(guān)鍵詞進行聚類,使用LLR算法提取研究前沿術(shù)語,再對聚類詞進行Timeline分析,根據(jù)生成的TimeLine圖譜,結(jié)合該圖譜與共被引關(guān)鍵詞的中心性和相關(guān)性進行時間分配,將研究時間劃分成三個階段,分別是2001—2005、2006—2010年和2010—2015年。

        而后進行關(guān)鍵詞共現(xiàn)分析。時間劃分(Timing Slicing)設(shè)置為2001—2015年,時間節(jié)點(Years Per Slice)設(shè)為5年,術(shù)語來源(Term Source)勾選為標(biāo)題(Title)、摘要(Abstract)、著者(DE)、關(guān)鍵字(ID),閾值設(shè)置為top=30[5]。得出關(guān)鍵詞的頻次并生成Cr污染土壤修復(fù)的可視化知識圖譜。

        圖1 1990—2015年Cr污染土壤修復(fù)相關(guān)文獻歷年發(fā)文量Figure 1 The number of published literatures on chromiumcontaminated soil remediation during 1990—2015

        2 結(jié)果與討論

        2.1 近15年Cr污染土壤修復(fù)歷程分析

        近15年與Cr污染土壤修復(fù)相關(guān)文獻共檢索到1189篇。從文獻計量網(wǎng)絡(luò)圖譜(圖2至圖4)看出,3個階段的研究節(jié)點逐漸增多,各聚類圈間的交叉融合顯著增強,表明Cr污染土壤修復(fù)的相關(guān)研究逐漸擴展和深入。2001—2015年間,在修復(fù)機理上,Cr污染土壤修復(fù)從Cr污染生物效應(yīng)研究轉(zhuǎn)向遷移轉(zhuǎn)化基礎(chǔ)上的毒理評價,進而向探索修復(fù)閾值的合理性和風(fēng)險評價方向發(fā)展。在修復(fù)歷程上,Cr污染土壤修復(fù)從以生物修復(fù)和電動力修復(fù)為中心的應(yīng)用可行性研究階段,發(fā)展為生物修復(fù)、電動力修復(fù)、土壤淋洗、鈍化還原等修復(fù)技術(shù)的多元化階段,進而向以技術(shù)改進和材料創(chuàng)新為導(dǎo)向的強化修復(fù)和聯(lián)合修復(fù)技術(shù)方向發(fā)展,且環(huán)境友好型修復(fù)材料和因地制宜的規(guī)模化應(yīng)用成為關(guān)注焦點。表1為近15年Cr污染土壤修復(fù)領(lǐng)域前15位高頻關(guān)鍵詞。

        2.1.1 以傳統(tǒng)修復(fù)技術(shù)為核心的應(yīng)用可行性研究時期(2001—2005年)

        文獻計量網(wǎng)絡(luò)圖譜(圖2)顯示,該時期Cr污染土壤修復(fù)研究主要集中于電動力修復(fù)和生物修復(fù),同時在Cr污染生物效應(yīng)方面也有一定程度的研究。“Speciation”、“Toxicity”、“Behavior”、“Bioavailability”等高頻關(guān)鍵詞表明,在該時期內(nèi),Cr的生物效應(yīng)以及遷移轉(zhuǎn)化特性作為修復(fù)技術(shù)的理論基礎(chǔ),成為研究重點[6]。生物修復(fù)研究以植物提取修復(fù)和微生物鈍化還原修復(fù)為研究重點。植物提取修復(fù)中,除了對超積累植物進行篩選外,還通過使用螯合劑(EDTA等)提高植物修復(fù)效率,增強植物修復(fù)的應(yīng)用可行性[7]。在微生物還原鈍化修復(fù)聚類圈中,“Bacteria”、“Enterobacter-cloacae”、“Pseudomonas-putida”等多次出現(xiàn),說明該時期以探究具有Cr污染土壤修復(fù)功能的微生物種類及其修復(fù)機理為研究重點[8]。生物修復(fù)技術(shù)作為該時期的研究熱點之一,受到修復(fù)植株矮小、菌群適應(yīng)性差等限制[8],應(yīng)用進展緩慢,但對于修復(fù)部分低濃度Cr污染土壤仍具有一定的可行性[9]。電動力修復(fù)技術(shù)以利用直流電清除酸洗土壤中重金屬為研究重點,但由于不適用于滲透性較高、傳導(dǎo)性較差的砂性土壤[10-11],其應(yīng)用范圍受到一定的限制,有關(guān)該修復(fù)技術(shù)的完善仍在繼續(xù)。

        表1 2001—2015年不同時期Cr污染土壤修復(fù)領(lǐng)域前15位高頻關(guān)鍵詞Table 1 Top 15 high frequency keywords on chromium-contaminated soil remediation field in different periods of 2001 to 2015

        2.1.2 以生物修復(fù)技術(shù)為重點,聯(lián)合修復(fù)初現(xiàn)端倪的研究時期(2006—2010年)

        文獻計量網(wǎng)絡(luò)圖譜(圖3)顯示,該時期Cr污染土壤修復(fù)的研究重點從Cr在土壤中遷移轉(zhuǎn)化規(guī)律的探索逐漸向修復(fù)技術(shù)研究轉(zhuǎn)變。關(guān)鍵詞“Toxicity”高頻(43次)出現(xiàn),表明該階段Cr的生理毒理效應(yīng)與生態(tài)危害仍是研究重點,主要通過研究Cr脅迫植物的生理表征進行毒理評價[12-14]?!癈hromate reduction”出現(xiàn)頻次的大幅增加表明科研人員更加重視Cr還原研究,“Zero valent iron”的出現(xiàn)意味著Fe賦存形態(tài)對修復(fù)效率的影響受到關(guān)注。在修復(fù)技術(shù)上,主要集中于“生物修復(fù)”、“電動力修復(fù)”和“化學(xué)修復(fù)”三方面。生物修復(fù)聚類圈中(圖3),植物和微生物的一體化交融表明植物-微生物聯(lián)合修復(fù)技術(shù)受到廣泛關(guān)注,該階段在通過盆栽實驗研究Cr生物積累、轉(zhuǎn)化和降解規(guī)律的同時,開始擴大耐性修復(fù)細菌的篩選范圍并注重生物異位修復(fù)的應(yīng)用可行性研究[15-16]。電動力修復(fù)除電解液的優(yōu)化與逼近陽極等新型電極技術(shù)的應(yīng)用外,以電動-可滲透反應(yīng)墻為代表的聯(lián)用技術(shù)開始出現(xiàn)并迅速發(fā)展?;瘜W(xué)修復(fù)技術(shù)主要研究兩方面:一是淋洗技術(shù),著重于天然螯合劑的選擇和淋洗技術(shù)與設(shè)備的改進;二是氧化還原修復(fù),其中以納米零價鐵和FeSO4應(yīng)用為重點的鐵基修復(fù)劑研究備受關(guān)注。隨著研究的不斷深入,修復(fù)劑的種類和數(shù)量愈加豐富,修復(fù)技術(shù)之間的聯(lián)用開始出現(xiàn)。

        圖2 2001—2005年Cr污染土壤修復(fù)文獻計量網(wǎng)絡(luò)圖譜Figure 2 The bibliometric network map on chromium-contaminated soil remediation during 2001—2005

        2.1.3 新技術(shù)、新材料的探索以及聯(lián)合修復(fù)技術(shù)多元化的研究時期(2011—2015年)

        文獻計量網(wǎng)絡(luò)圖譜(圖4)顯示,該時期研究節(jié)點增多,研究內(nèi)容具有“單一修復(fù)技術(shù)創(chuàng)新化,聯(lián)合修復(fù)技術(shù)多元化”的特點。植物修復(fù)聚類圈中,“Helianthus annuus”、“Indian mustard”等以節(jié)點形式出現(xiàn),表明對新型修復(fù)植物的篩選和傳統(tǒng)修復(fù)植物的研究仍在繼續(xù),也更加注重解決超富集植物生長緩慢、生物量小以及難以大規(guī)模推廣等問題[17],同時將重點轉(zhuǎn)移到通過輔助增效助劑提高植物的修復(fù)效率上。微生物修復(fù)領(lǐng)域,研究人員為解決微生物變異、吸附量有限、環(huán)境適應(yīng)性差等問題[18],探究了不同菌種的修復(fù)能力差異,并嘗試與基因工程、多孔吸附材料以及植物修復(fù)等技術(shù)聯(lián)合修復(fù)。文獻計量圖譜(圖4)中微生物修復(fù)聚類圈和植物修復(fù)聚類圈的交叉重疊也印證了這一點。在電動力修復(fù)方面,研究重點轉(zhuǎn)移到通過電學(xué)參數(shù)調(diào)節(jié)、修復(fù)劑強化以及電動力與其他技術(shù)的聯(lián)合來提高修復(fù)效率[19-20]。土壤淋洗修復(fù)主要通過尋找新型淋洗劑提高萃取效率[21],而以超富集植物提取液為淋洗劑的植物-土壤淋洗聯(lián)合修復(fù)技術(shù)成為新的生長點。鈍化還原修復(fù)注重新型修復(fù)材料的探索,羧甲基纖維素、改性吸附劑、石墨烯、納米材料及負載納米材料等的研發(fā)成為Cr污染土壤修復(fù)材料的突破嘗試。同時,這一時期也更加注重生態(tài)與健康風(fēng)險評價,并對合理確定修復(fù)閾值展開研究。

        圖3 2006—2010年Cr污染土壤修復(fù)文獻計量網(wǎng)絡(luò)圖譜Figure 3 The bibliometric network map on chromium-contaminated soil remediation during 2006—2010

        2.2 近15年Cr污染土壤修復(fù)技術(shù)分析

        表2為近15年Cr污染土壤7種修復(fù)技術(shù)關(guān)鍵詞匯列表。如表2所示,Cr污染土壤修復(fù)技術(shù)發(fā)展的階段性特征顯著,表現(xiàn)在修復(fù)方法遞進式的精細化、多元化,新材料、新工藝、新技術(shù)的跨領(lǐng)域引進與融合爆發(fā)式發(fā)展,而技術(shù)的針對性地域化適應(yīng)、材料的功能優(yōu)化、環(huán)境友好化成為技術(shù)發(fā)展的突破核心。

        Cr污染土壤植物、微生物修復(fù)技術(shù)中,修復(fù)植物的篩選經(jīng)歷了超積累植物-耐性植物-地域性鄉(xiāng)土植物的階段,修復(fù)中更加注重植物生態(tài)功能的實現(xiàn)、景觀效應(yīng)的體現(xiàn)和經(jīng)濟實用性,能源植物與觀賞植物的出現(xiàn)尤為引人關(guān)注。微生物修復(fù)技術(shù)菌種篩選從以桿菌屬為主的還原細菌階段,到放線菌、固化真菌與耐Cr還原細菌(桿菌、單胞菌為主)多種并存的多元化篩選階段,再到基因工程菌為核心的生物遺傳工程、菌種地域化適應(yīng)及微生物參與的多種聯(lián)合修復(fù)階段,篩選范圍逐步擴大、應(yīng)用針對性逐步增強。

        土壤淋洗修復(fù)技術(shù)中,淋洗液從單一的無機化學(xué)洗液向無機、有機(表面活性劑)、生物(還原菌、生物表面活性劑、酶類)多元化方向發(fā)展。

        電動力修復(fù)技術(shù)最初研究以電解液的篩選調(diào)節(jié)為主,隨后發(fā)展為電解液優(yōu)化、電極設(shè)置優(yōu)化與技術(shù)更新、電壓調(diào)節(jié)(疊加電場)、助劑強化等方面,近五年更加注重電流電壓控制、新能源的應(yīng)用以及與其他修復(fù)技術(shù)的聯(lián)用,預(yù)計下一階段將向低能耗、高效能的方向發(fā)展。

        鈍化還原修復(fù)技術(shù)中,鈍化修復(fù)材料從傳統(tǒng)的石灰、水泥、堆肥、磷酸鹽逐漸轉(zhuǎn)變?yōu)榛钚蕴俊⑸锾?、羥基磷灰石并向改性材料發(fā)展,還原修復(fù)材料從硫酸亞鐵、零價鐵向納米零價鐵、納米TiO2等納米材料轉(zhuǎn)變,進而再向由殼聚糖、羥甲基纖維素、金屬有機骨架材料等有機材料負載的納米材料,甚至到雙金屬納米材料發(fā)展。新型修復(fù)材料的發(fā)現(xiàn)以及多種修復(fù)材料的改性將成為接下來研究的重點和熱點,同時環(huán)境友好型材料將被更多關(guān)注。

        在聯(lián)合修復(fù)技術(shù)方面,2001—2005年間對聯(lián)合修復(fù)的研究較少,2006—2010年間出現(xiàn)了植物-微生物以及電動力-可滲透反應(yīng)墻等少數(shù)聯(lián)合修復(fù)技術(shù)及案例,近5年聯(lián)合修復(fù)隨著新技術(shù)的引入和已有修復(fù)技術(shù)的成熟而快速發(fā)展,聯(lián)合修復(fù)趨向多樣化和復(fù)雜化。修復(fù)技術(shù)也出現(xiàn)了微波/超聲修復(fù)技術(shù)以及光催化技術(shù)等利用光能量進行修復(fù)的案例。

        總之,近15年Cr污染土壤修復(fù)技術(shù)在修復(fù)材料的篩選研發(fā)和修復(fù)技術(shù)的創(chuàng)新上呈簇狀發(fā)展模式,并呈現(xiàn)“低成本、低能耗、低環(huán)境污染、高利用價值”的“三低一高”發(fā)展態(tài)勢。

        3 結(jié)論

        (1)文獻計量分析表明,2001—2015年間Cr污染土壤修復(fù)歷程由早期的以電動力修復(fù)、生物修復(fù)主導(dǎo)的應(yīng)用可行性研究,逐漸轉(zhuǎn)向土壤淋洗修復(fù)、鈍化

        還原修復(fù)以及以篩選修復(fù)菌種與修復(fù)植物為核心的生物修復(fù)技術(shù)研究時期,進而向多技術(shù)聯(lián)合修復(fù)、新技術(shù)和新材料的探索研究階段發(fā)展,學(xué)科交叉融合不斷增強。

        表2 2001—2015年不同時期Cr污染土壤修復(fù)技術(shù)匯總Table 2 A summary of chromium-contaminated soil remediation technologies in different periods of 2001 to 2015

        (2)Cr污染土壤修復(fù)技術(shù)的研究主要聚焦于4個維度:生物修復(fù)技術(shù)(植物和微生物修復(fù)技術(shù))、電動力修復(fù)技術(shù)、土壤淋洗修復(fù)技術(shù)和鈍化還原修復(fù)技術(shù)。從總體來看,4種技術(shù)都以修復(fù)效率的提高為目標(biāo),進行了修復(fù)材料、修復(fù)參數(shù)、修復(fù)生理生態(tài)影響、地域化適應(yīng)的多領(lǐng)域研究,研究思路從單一修復(fù)技術(shù)向聯(lián)合修復(fù)技術(shù)方向發(fā)展,研究理念從單一修復(fù)能力與效率研究向低能耗、低污染方面轉(zhuǎn)變。

        (3)隨著修復(fù)機理研究的深入,基于遷移轉(zhuǎn)化與生態(tài)毒理的污染生物效應(yīng)評估逐步展開,生態(tài)和健康風(fēng)險評價成為合理確定修復(fù)閾值的重要依據(jù)。

        (4)新材料研發(fā)、多技術(shù)聯(lián)合與地域化適用將成為下一階段的研究重點,修復(fù)材料的納米化制備、有機改性、負載強化與環(huán)境友好將成為技術(shù)突破點,而修復(fù)技術(shù)的深度融合與地域化適應(yīng)是實際應(yīng)用階段需突破的瓶頸。

        [1]串麗敏,鄭懷國,趙同科,等.基于Web of Science數(shù)據(jù)庫的土壤污染修復(fù)領(lǐng)域發(fā)展態(tài)勢分析[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報,2016,35(1):12-20.

        CHUAN Li-min,ZHENG Huai-guo,ZHAO Tong-ke,et al.Trends in research on contaminated soil remediation based on Web of Science database[J].Journal of Agro-Environmental Science,2016,35(1):12-20.

        [2]孟凡生.中國鉻渣污染場地土壤污染特征[J].環(huán)境污染與防治, 2016,38(6):50-53.

        MENG Fan-sheng.Pollution charateristics of soils polluted by chromium slag in China[J].Environmental Pollution and Control,2016,38(6):50-53.

        [3]王鑫.鉻污染土壤的修復(fù)技術(shù)研究綜述[J].環(huán)境工程,2015,33(增刊):847-849.

        WANG Xin.Review on remediation technologies on chromium contaminated soil[J].Environmental Engineering,2015,33(Suppl):847-849.

        [4]干文芝,胡宗達,任永寬,等.基于文獻計量學(xué)的國際土壤呼吸研究態(tài)勢分析[J].西南農(nóng)業(yè)學(xué)報,2013,26(3):1105-1111.

        GAN Wen-zhi,HU Zong-da,REN Yong-kuan,et al.Bibliometrical analysis of soil respiration based on bibliometric[J].Southwest China Journal of Agricultural Sciences,2013,26(3):1105-1111.

        [5]樊一陽,許京京.基于CiteSpace文獻計量法的石墨烯研究文獻可視化圖譜分析[J].現(xiàn)代情報,2015,35(8):81-91.

        FAN Yi-yang,XU Jing-jing.Visualization map analysis of literatures on graphene research based on bibliometrics of CiteSpace[J].ModernInformation,2015,35(8):81-91.

        [6]李晶晶,彭恩澤.綜述鉻在土壤和植物中的賦存形式及遷移規(guī)律[J].工業(yè)安全與環(huán)保,2005,31(3):31-33.

        LI Jing-jing,PENG En-ze.Summarization on the existing form and transferring rules of chromium in soil[J].Industrial Safety and Environmental Protection,2005,31(3):31-33.

        [7]Turgut C,Katie P M,Cutright T J.The effect of EDTA and citric acid on phytoremediation of Cd,Cr,and Ni from soil usingHelianthus annuus[J].Environmental Pollution,2004,131(1):147-154.

        [8]Jeyasingh J,Philip L.Bioremediation of chromium contaminated soil:Optimization of operating parameters under laboratory conditions[J].Journal of Hazardous Materials,2005,118(1):113-120.

        [9]Mulligan C N,Yong R N,Gibbs B F.Remediation technologies for metal-contaminated soils and groundwater:An evaluation[J].Geoenvironmental Engineering,2001,60(1/2/3/4):193-207.

        [10]周東美,鄧昌芬.重金屬污染土壤的電動修復(fù)技術(shù)研究進展[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報,2003,22(4):505-508.

        ZHOU Dong-mei,DENG Chang-fen.Review:Electrokinetic remediation of heavy metal contaminated soil[J].Journal of Agro-Environmental Science,2003,22(4):505-508.

        [11]羅啟仕,張錫輝,王慧,等.非均勻電動力學(xué)修復(fù)技術(shù)對土壤性質(zhì)的影響[J].環(huán)境污染治理技術(shù)與設(shè)備,2004,5(4):40-45.

        LUO Qi-shi,ZHANG Xi-hui,WANG Hui,et al.Influence of non-uniform electrokinetic remediation technology on soil properties[J].TechniquesandEquipmentforEnvironmentalPollutionControl,2004,5(4):40-45.

        [12]Akinci I E,Akinci S.Effect of chromium toxicity on germination and early seedling growth in melon(Cucumis melo L.)[J].African Journal of Biotechnology,2010,929(29):4589-4594.

        [13]Maisto G,Manzo S,De N F.Assessment of the effects of Cr,Cu,Ni and Pb soil contamination by ecotoxicological tests[J].Journal of Environmental Monitoring Jem,2011,13(11):3049-3056.

        [14]Lone M I,He Z L,Stoffella P J,et al.Phytoremediation of heavy metal polluted soils and water:Progresses and perspectives[J].Journal of Zhejiang University ScienceB,2008,9(3):210-220.

        [15]趙光輝.六價鉻還原菌劑載體研究及初步應(yīng)用實驗[J].環(huán)境保護科學(xué),2011,37(2):41-43.

        ZHAO Guang-hui.Research on the carriers of chromium(Ⅵ)reduction agent and its initial application experiments[J].Environmental Protection Science,2011,37(2):41-43.

        [16]Lebeau T,Braud A,Jézéquel K.Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils:A review[J].Environmental Pollution,2008,153(3):497-522.

        [17]Krzciuk K,Ga?uszka A.Prospecting for hyperaccumulators of trace elements:A review[J].Critical Reviews in Biotechnology,2014,35(4):1-11.

        [18]Dhal B,Thatoi H N,Das N N,et al.Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste:A review[J].Journal of Hazardous Materials,2013, s250/251(2):272-291.

        [19]Meng F S,Wang Y Y,Leng L L,et al.Effect of applied voltage on theelectrokinetic removal of chromium from soils[J].Advanced Materials Research,2011,414:144-149.

        [20]Li D,Niu Y Y,Fan M,et al.Focusing phenomenon caused by soil conductance heterogeneity in the electrokinetic remediation of chromium(Ⅵ)-contaminated soil[J].Separation&Purification Technology,2013, 120:52-58.

        [21]Zhang Y K,Qi S,Chen H H.A review of remediation of chromium contaminated soil by washing with chelants[J].Advanced Materials Research,2014,838-841:2625-2629.

        [22]Bennett L E,Burkhead J L,Hale K L,et al.Analysis of transgenic Indian mustard plants for phytoremediation of metal-contaminated mine tailings[J].Journal of Environmental Quality,2003,32(2):432-440.

        [23]Aldrich M V,Gardeatorresdey J L,Peraltavidea J R,et al.Uptake and reduction of Cr(Ⅵ)to Cr(Ⅲ)by mesquite(Prosopis spp.):Chromateplant interaction in hydroponics and solid media studied using XAS[J].Environmental Science&Technology,2003,37(9):1859-1864.

        [24]張學(xué)洪,羅亞平,黃海濤,等.一種新發(fā)現(xiàn)的濕生鉻超積累植物:李氏禾(Leersia hexandra Swartz)[J].生態(tài)學(xué)報,2006,26(3):950-953. ZHANG Xue-hong,LUO Ya-ping,HUANG Hai-tao,et al.Leersia hexandra Swartz:A newly discovered hygrophyte with chromium hyperaccumulator properties[J].Acta Ecologica Sinica,2006,26(3):950-953.

        [25]鄭施雯,魏遠,顧紅波,等.鉻污染地區(qū)植物重金屬含量特征與耐性植物篩選研究[J].林業(yè)科學(xué)研究,2011,24(2):205-211.

        ZHENG Shi-wen,WEI Yuan,GU Hong-bo,et al.Characteristics of heavy metals in plants growing on Cr contaminated area and Cr-tolerant plants screening[J].Forest Research,2011,24(2):205-211.

        [26]Yadav S K,Dhote M,Kumar P,et al.Differential antioxidative enzyme responses of Jatropha curcas L.to chromium stress[J].Journal of Hazardous Materials,2010,180(1/2/3):609-615.

        [27]Buendíagonzález L,Orozcovillafuerte J,Cruzsosa F,et al.Prosopis laevigata a potential chromium(Ⅵ)and cadmium(Ⅱ)hyperaccumulator desert plant[J].Bioresource Technology,2010,101(15):5862-5867.

        [28]?ukaszewicz J P,Weso?owski R P,Cyganiuk A.Enrichment of Salix viminalis wood in metal ions by phytoextraction[J].Polish Journal of Environmental Studies,2009,18(3):507-511.

        [29]Subhashini V,Swamy A V V S.Phytoremediation of cadmium and chromium contaminated soils by Cyperus rotundus L.[J].American International Journal of Research in Science,Technology,Engineering& Mathematics,2014,6(7):97-101.

        [30]Oliveira L M D,Ma L Q,Santos J A,et al.Effects of arsenate,chromate, and sulfate on arsenic and chromium uptake and translocation by arsenic hyperaccumulator Pteris vittata L.[J].Environmental Pollution, 2014,184C(1):187-192.

        [31]Xing W,Wu H,Hao B,et al.Bioaccumulation of heavy metals by submerged macrophytes:Looking for hyperaccumulators in eutrophic lakes [J].Environmental Science&Technology,2013,47(9):4695-4703.

        [32]Madhavi V,Reddy A V B,Reddy K G,et al.An overview on research trends in remediation of chromium[J].Research Journal of Recent Sciences,2013,2(1):71-83.

        [33]Li C,Xiao B,Wang Q H,et al.Phytoremediation of Zn-and Cr-contaminated soil using two promising energy grasses[J].Water,Air,&Soil Pollution,2014,225(7):1-12.

        [34]陸小成,陳露洪,徐泉,等.污染土壤電動修復(fù)增強方法研究進展[J].環(huán)境污染治理技術(shù)與設(shè)備,2005,6(1):14-24.

        LU Xiao-cheng,CHEN Lu-hong,XU Quan,et al.Progress on enhancement methods for electrokinetic remediation of contaminated soil [J].Techniques and Equipment for Environmental Pollution Control,2005,6(1):14-24.

        [35]周東美,倉龍,鄧昌芬.過氧化氫對鉻在黃棕壤中電動過程的影響[J].土壤學(xué)報,2005,42(1):59-63.

        ZHOU Dong-mei,CANG Long,DENG Chang-fen.Electrokinetic processes of chromium in yellow brown soil as affected by hydrogen peroxide[J].Acta Pedologica Sinica,2005,42(1):59-63.

        [36]馬莉,張國慶,曾彩明.化學(xué)強化劑在電動修復(fù)技術(shù)中的應(yīng)用研究進展[J].化工進展,2008,27(1):38-44.

        MA Li,ZHANG Guo-qing,ZENG Cai-ming.Progress on electrokinetic remediation technologies of contaminated soil and perspective[J].Chemical Industry and Engineering Progress,2008,27(1):38-44.

        [37]路平,馮啟言,李向東,等.交換電極法強化電動修復(fù)鉻污染土壤[J].環(huán)境工程學(xué)報,2009,3(2):354-358.

        LU Ping,FENG Qi-yan,LI Xiang-dong,et al.Improvement in electrokinetic remediation of chromium contaminated soil with polarity exchange technique[J].Chinese Journal of Environmental Engineering, 2009,3(2):354-358.

        [38]薛浩,孟凡生,王業(yè)耀,等.酸化-電動強化修復(fù)鉻渣場地污染土壤[J].環(huán)境科學(xué)研究,2015,28(8):1317-1323.

        XUE Hao,MENG Fan-sheng,WANG Ye-yao,et al.Remediation of chromium residue-contaminated soil by preacidification electrokinetic remediation[J].Research of Environmental Sciences,2015,28(8):1317-1323.

        [39]付融冰,劉芳,馬晉,等.可滲透反應(yīng)復(fù)合電極法對鉻(Ⅵ)污染土壤的電動修復(fù)[J].環(huán)境科學(xué),2012,33(1):280-285.

        FU Rong-bing,LIU Fang,MA Jin,et al.Remediation of chromium(Ⅵ)contaminated soils using permeable reactive composite electrodes technology[J].Chinese Journal of Environmental Science,2012,33(1):280-285.

        [40]Zhang S,Zhang J,Cheng X,et al.Electrokinetic remediation of soil containing Cr(Ⅵ)by photovoltaic solar panels and a DC-DC converter [J].Journal of Chemical Technology and Biotechnology,2015,90(4):693-700.

        [41]Urvashi T,Datta M.Reducation of toxic chromium and atrial localization of chromium reductase activity in bacterial isolate DM1[J].World Journal of Microbiology&Biotechnology,2005,21(6/7):891-899.

        [42]Guha H,Jayachandran K,Maurrasse F.Kinetics of chromium(Ⅵ)reduction by a type strainShewanella algaunder different growth conditions[J].Environmental Pollution,2001,115(2):209-218.

        [43]Obraztsova A Y,Francis C A,Tebo B M.Sulfur disproportionation by the facultative anaerobe pantoea agglomerans SP1 as a mechanism for chromium(Ⅵ)reduction[J].Geomicrobiology Journal,2002,19(1):121-132.

        [44]Oves M,Khan M S,Zaidi A.Chromium reducing and plant growth pro-moting novel strain Pseudomonas aeruginosa,OSG41 enhance chickpea growth in chromium amended soils[J].European Journal of Soil Biology, 2013,56(2):72-83.

        [45]肖偉,王磊,李倬鍇,等.六價鉻還原細菌Bacillus cereus S5.4還原機理及酶學(xué)性質(zhì)研究[J].環(huán)境科學(xué),2008,29(3):751-755.

        XIAO Wei,WANG Lei,LI Zhuo-kai,et al.Mechanisms and enzymatic characters of hexavalent chromium reduction byBacillus cereusS5.4 [J].Environmental Science,2008,29(3):751-755.

        [46]Goulhen F,Gloter A,Guyot F,et al.Cr(Ⅵ)detoxification by Desulfovibrio vulgaris strain Hildenborough:Microbe-metal interactions studies[J].Applied Microbiology and Biotechnology,2006,71(6):892-897.

        [47]Rahman A,Nahar N,Nawani N N,et al.Bioremediation of hexavalent chromium(Ⅵ)by a soil-borne bacterium,Enterobacter cloacae B2-DHA[J].Journal of Environmental Science&Health Part A Toxic/hazardous Substances&Environmental Engineering,2015,50(11):1136-1147.

        [48]Wang T,Sun H,Mao H,et al.The immobilization of heavy metals in soil by bioaugmentation of a UV-mutant Bacillus subtilis 38 assisted by NovoGro biostimulation and changes of soil microbial community[J].Journal of Hazardous Materials,2014,278:483-490.

        [49]Polti M A,Aparicio J D,Benimeli C S,et al.Simultaneous bioremediation of Cr(Ⅵ)and lindane in soil by actinobacteria[J].International Biodeterioration&Biodegradation,2014,88(2):48-55.

        [50]Mistry K,Desai C,Lal S,et al.Hexavalent chromium reduction by Staphylococcus sp.isolated from Cr(Ⅵ)contaminated land fill[J].International Journal of Biotechnology&Biochemistry,2011,6(1):117-131.

        [51]Sen M,Dastidar M G,Roychoudhury P K.Hexavalent chromium reduction and its distribution in the cell and medium by chromium resistant fusarium solani[J].International Journal of Engineering&Technology Innovation,2013,3(1):1-9.

        [52]Iram S,Zaman A,Iqbal Z,et al.Heavy metal tolerance of fungus isolated from the soil contaminated with sewage and industrial wastewater[J].Polish Journal of Environmental Studies,2013,22(3):691-697.

        [53]劉磊,胡少平,陳英旭,等.淋洗法修復(fù)化工廠遺留地重金屬污染土壤的可行性[J].應(yīng)用生態(tài)學(xué)報,2010,21(6):1537-1541.

        LIU Lei,HU Shao-ping,CHEN Ying-xu,et al.Feasibility of washing as a remediation technology for the heavy metals-polluted soils left by chemical plant[J].Chinese Journal of Applied Ecology,2010,21(6):1537-1541.

        [54]趙慶輝.鉻污染土壤原位修復(fù)技術(shù)研究[D].楊凌:西北農(nóng)林科技大學(xué),2011.

        ZHAO Qing-hui.In situ treatment of soil contaminated with chromium:A case study[D].Yangling:Northwest A&F University,2011.

        [55]王鑫,梁成華,陳輝,等.低分子量有機酸對棕壤吸附Cr(Ⅵ)特性的影響研究[J].環(huán)境科學(xué)與技術(shù),2014(8):13-16.

        WANG Xin,LIANG Cheng-hua,CHEN Hui,et al.Effects of low molecular weight organic acids on brown soil adsorption characteristics of Cr(Ⅵ)[J].Environmental Science&Technology,2014(8):13-16.

        [56]曹曉雅,曹俊雅,李媛媛,等.表面活性劑和硫酸鹽還原菌去除污染土壤中的Cr[J].過程工程學(xué)報,2014,14(1):84-89.

        CAO Xiao-ya,CAO Jun-ya,LI Yuan-yuan,et al.Removal of Cr6+from contaminated soil by surfactants and sulfate-reducing bacteria[J].The Chinese Journal of Process Engineering,2014,14(1):84-89.

        [57]Kili? E,Font J,Puig R,et al.Chromium recovery from tannery sludge with saponin and oxidative remediation[J].Journal of Hazardous Materials,2011,185(1):456-462.

        [58]Ma Y,Li F,Jiang Y,et al.Remediation of Cr(Ⅵ)-contaminated soil using the acidified hydrazine hydrate[J].Bulletin of Environmental Contamination and Toxicology,2016,97(3):1-3.

        [59]Misra V,Pandey S D.Remediation of contaminated soil by amendment of nonhumus soil with humus-rich soil for better metal immobilization [J].Bulletin of Environmental Contamination and Toxicology,2004,73(3):561-567.

        [60]金漫彤,董海麗,樓敏曉.土壤聚合物固化飛灰與水泥固化的比較研究[J].硅酸鹽通報,2008,27(5):904-908.

        JIN Man-tong,DONG Hai-li,LOU Xiao-min,et al.Research into the comparison between geopolymer solidification fly ash and cement solidification fly ash[J].Bulletin of the Chinese Ceramic Society,2008,27(5):904-908.

        [61]Misra V,Chaturvedi P K.Plant uptake/bioavailability of heavy metals from the contaminated soil after treatment with humus soil and hydroxyapatite[J].Environmental Monitoring&Assessment,2007,133(1/2/ 3):169-176.

        [62]李琛.有機酸還原六價鉻反應(yīng)動力學(xué)及其影響因素研究[D].南京:南京農(nóng)業(yè)大學(xué),2006.

        LI Chen.Study on kinetics of chromium(Ⅵ)reduction by organic acids and theirs impact factors[D].Nanjing:Nanjing Agricultural University,2006.

        [63]Manning B A,Kiser J R,Kwon H,et al.Spectroscopic investigation of Cr(Ⅲ)-and Cr(Ⅵ)-treated nanoscale zerovalent iron[J].Environmental Science&Technology,2007,41(2):586-592.

        [64]李雪婷.改性粘土礦物修復(fù)重金屬污染底泥的穩(wěn)定性研究[D].合肥:安徽建筑大學(xué),2015.

        LI Xue-ting.Study on the stabilization of heavy metals for contaminated river sediment by modified clay minerals[D].Hefei:Anhui Jianzhu University,2015.

        [65]白雪,賀璐,趙樹蘭,等.改性納米碳黑隔層對絡(luò)合劑存在下草坪堆肥基質(zhì)重金屬淋溶的影響[J].天津師范大學(xué)學(xué)報(自然科學(xué)版),2016,36(4):59-63.

        BAI Xue,HE Lu,ZHAO Shu-lan,et al.Effects of modified nano-carbon black barriers on the leaching of heavy metals mobilized by chelators in turfgrass compost medium[J].Journal of Tianjin Normal University(Natural Science Edition),2016,36(4):59-63.

        [66]Su H,Fang Z,Tsang P E,et al.Stabilisation of nanoscale zero-valent iron with biochar for enhanced transport and in-situ remediation of hexavalent chromium in soil[J].Environmental Pollution,2016,214:94-100.

        [67]Jabeen H,Chandra V,Jung S,et al.Enhanced Cr(Ⅵ)removal using iron nanoparticle decorated graphene[J].Nanoscale,2011,3(9):3583-3585.

        [68]Zhu F,Li L,Ma S,et al.Effect factors,kinetics and thermodynamics of remediation in the chromium contaminated soils by nanoscale zero valent Fe/Cu bimetallic particles[J].Chemical Engineering Journal,2016, 302:663-669.

        [69]Wang Y,Fang Z,Kang Y,et al.Immobilization and phytotoxicity of chromium in contaminated soil remediated by CMC-stabilized nZVI[J].Journal of Hazardous Materials,2014,275(2):230-237.

        [70]Chrysochoou M,Johnston C P,Dahal G.A comparative evaluation of hexavalent chromium treatment in contaminated soil by calcium polysulfide and green-tea nanoscale zero-valent iron[J].Journal of Hazardous Materials,2012,201/202(1):33-42.

        [71]Brose D A,James B R.Hexavalent chromium reduction in solution and in chromite ore processing residue-enriched soil by tartaric acid with isopropyl alcohol and divalent manganese as co-reductants[J].Journal of Environmental Quality,2013,42(42):766-773.

        [72]李東,黃彥,聶楊,等.高濃度鉻污染土壤水浸泡與電動修復(fù)聯(lián)合處理實驗[J].環(huán)境工程學(xué)報,2010,4(11):2579-2584.

        LI Dong,HUANG Yan,NIE Yang,et al.Water dipping and electrokinetic joined remediation of a heavily chromium-contaminated soil[J].Chinese Journal of Environmental Engineering,2010,4(11):2579-2584.

        [73]Sung M,Lee C Y,Lee S Z.Combined mild soil washing and compostassisted phytoremediation in treatment of silt loams contaminated with copper,nickel,and chromium[J].Journal of Hazardous Materials,2011, 190(1/2/3):744-754.

        [74]王婷.高效誘變菌與生物炭復(fù)合修復(fù)重金屬污染土壤的研究[D].天津:南開大學(xué),2013.

        WANG Ting.The bioremediation of heavy metal contaminated soil by bioaugmentation of an active mutant bacterium assisted by biochar[D]. Tianjin:Nankai University,2013.

        [75]Li J S,Xue Q,Wang P,et al.Enhanced washing for Cr(Ⅵ)removal from contaminated soil using EDTA and microwave radiation[J].Environmental Earth Sciences,2015,74(3):1-6.

        [76]Cappai G,De G G,Muntoni A,et al.Combined use of a transformed red mud reactive barrier and electrokinetics for remediation of Cr/As contaminated soil[J].Chemosphere,2011,86(4):400-408.

        [77]吳風(fēng)光.微波輻射修復(fù)Cr(Ⅵ)污染土壤的研究[D].長沙:湖南大學(xué),2013.

        WU Feng-guang.Research of repairing soil contaminated hexavalent chromium using microwave[D].Changsha:Hunan University,2013.

        [78]屈學(xué)理.碳酸鈉溶液解毒鉻渣及堆肥修復(fù)鉻污染土壤的研究[D].長沙:中南大學(xué),2011.

        QU Xue-li.Study on COPR detoxification by Na2CO3solution and chromium contaminated soil remediation by compost[D].Changsha:Central South University,2011.

        Historical venation of chromium-contaminated soil remediation in the past 15 years based on the bibliometric analysis(2001—2015)

        ZHU Yu-en1,ZHANG Qian-ru1,ZHANG Wei-rong1,JIANG Kai-qin1,HOU He-bin1,LI Ling2,LI Hua1*
        (1.School of Environment and Resources,Shanxi University,Taiyuan 030006,China;2.Ziyang Middle School in Sichuan Province,Ziyang 641300,China)

        Bibliometrics was used to quantitatively analyze literatures about the remediation of chromium-contaminated soil during the last 15 years based on the Web of Science database.The development and change in the remediation technologies of chromium-contaminated soil in the different stages(years 2001—2005,2006—2010 and 2011—2015)were investigated to compare the similarities and differences in the remediation technologies in the different stages.The results indicated that the application feasibility of electrokinetic remediation and bioremediation are dominated at the initial stage,and then topics transferred to soil washing remediation,passivation or reduction remediation and bioremediation with the concentration on the screening bioremediation strain and phytoremediation.Nowadays,the remediation technologies come to combined remediation with several technologies,exploration of new techniques and materials,indicating the enhancement of interdisciplinary.The studies on the remediation of chromium-contaminated soil developed more and more thoroughly andwidespreadly,the driving force for which was the optimization of material function and environmentally-friendly materials and technologies. After decades of development,the focus in the next stage would be the application of new nano and loading-form materials.The challenge for the remediation would be the difficulties in integration and regional adaptation of remediation technologies.

        bibliometrics;Cr;remediation of contaminated soil;development and evolution

        X53

        A

        1672-2043(2017)03-0409-11

        10.11654/jaes.2016-1083

        朱宇恩,張倩茹,張維榮,等.基于文獻計量的Cr污染土壤修復(fù)發(fā)展歷程剖析(2001—2015年)[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報,2017,36(3):409-419.

        ZHU Yu-en,ZHANG Qian-ru,ZHANG Wei-rong,et al.Historical venation of chromium-contaminated soil remediation in the past 15 years based on the bibliometric analysis(2001—2015)[J].Journal of Agro-Environment Science,2017,36(3):409-419.

        2016-08-22

        朱宇恩(1976—),男,山西平遙人,講師,博士,從事土壤污染治理與修復(fù)研究。E-mail:zhuyuen@sxu.edu.cn

        *通信作者:李華E-mail:lihua@sxu.edu.cn

        國家自然科學(xué)基金項目(41301561);山西省科技重點研發(fā)(指南)項目(201603D211010);山西省科技攻關(guān)項目(20140311008-6);廣東省科技計劃項目(2014A020216026);山西省土壤環(huán)境與養(yǎng)分資源重點實驗室開放課題(2013002);山西大學(xué)本科生科研訓(xùn)練計劃項目(2016014327)

        Project supported:The National Natural Science Foundation of China(41301561);The Science and Technology Key Program of Shanxi Province(201603D211010);The Science and Technology Program of Shanxi Province(20140311008-6);The Science and Technology Plan Project of Guangdong Province(2014A020216026);The Key Laboratory of Soil Environment and Nutrient Resources of Shanxi Province(2013002);The Undergraduate Research Training Program of Shanxi University(201614327)

        猜你喜歡
        生物污染文獻
        生物多樣性
        生物多樣性
        上上生物
        Hostile takeovers in China and Japan
        速讀·下旬(2021年11期)2021-10-12 01:10:43
        第12話 完美生物
        航空世界(2020年10期)2020-01-19 14:36:20
        Cultural and Religious Context of the Two Ancient Egyptian Stelae An Opening Paragraph
        大東方(2019年12期)2019-10-20 13:12:49
        堅決打好污染防治攻堅戰(zhàn)
        堅決打好污染防治攻堅戰(zhàn)
        The Application of the Situational Teaching Method in English Classroom Teaching at Vocational Colleges
        The Role and Significant of Professional Ethics in Accounting and Auditing
        商情(2017年1期)2017-03-22 16:56:36
        人妖另类综合视频网站| 久久天天躁狠狠躁夜夜躁2014| 国产精品_国产精品_k频道 | 成人国产一区二区三区精品不卡| 亚洲日本高清一区二区| 久久天天躁夜夜躁狠狠| 女人色毛片女人色毛片18| 久久精品成人91一区二区| 久久久精品少妇—二区| 精品久久久久久无码专区| 性动态图av无码专区| 国产欧美日韩图片一区二区| 亚洲国产91高清在线| 国产日韩精品suv| 男女性高爱潮免费观看| 美女裸体无遮挡免费视频国产| 日本亚洲视频免费在线看| 亚洲妇熟xxxx妇色黄| 精品熟女少妇av免费观看| 亚洲成a人片77777kkkkk| 久久精品亚洲成在人线av| 国产精品久久久天天影视 | 真人做爰试看120秒| 天堂影院一区二区三区四区| 一本加勒比hezyo无码视频| 男人天堂亚洲一区二区| 国产日韩av在线播放| 国产日韩成人内射视频| 国产精品人人爱一区二区白浆| 一区二区三区在线日本视频| 人妻中文字幕在线网站| 亚洲欧美日韩国产精品专区 | 久久久国产精品| 国内揄拍国内精品人妻浪潮av | 国产精品女丝袜白丝袜| 久草视频这里只有精品| 女人被狂躁高潮啊的视频在线看| 日本韩国一区二区三区| 国产免费激情小视频在线观看| 蜜臀人妻精品一区二区免费| 777精品出轨人妻国产|