項楠, 楊婷寒, 程華民, 周海龍, 趙洪偉, 刁曉平,*
1. 南海海洋資源利用國家重點實驗室, 海口 570228 2. 海南大學(xué)熱帶農(nóng)林學(xué)院, ???570228
珊瑚礁生態(tài)系統(tǒng)是海洋中資源生產(chǎn)力和生物多樣性最高的生態(tài)系統(tǒng)之一[1]。珊瑚礁生態(tài)系統(tǒng)可以通過參與海洋生物地球化學(xué)循環(huán),優(yōu)化海洋環(huán)境,維持生態(tài)平衡[2];還可以緩沖海岸波浪運動和侵蝕作用,保護熱帶和亞熱帶的海岸帶生態(tài)系統(tǒng)。珊瑚礁主要由石(硬)珊瑚和內(nèi)共生的甲藻屬鞭毛藻類(蟲黃藻)鈣化形成。蟲黃藻寄居在造礁石珊瑚體內(nèi),與珊瑚蟲互利共生,珊瑚宿主水螅蟲組織為共生藻提供無機養(yǎng)分和庇護所;與此同時,珊瑚宿主通過藻類的光合作用獲得營養(yǎng)產(chǎn)物,并從周圍的環(huán)境中吸收碳酸鈣進一步分泌成為骨骼[3-4],海底鈣化的珊瑚直接為大量的海洋生物提供產(chǎn)卵、繁殖、棲息和避難場所,維持海洋食物網(wǎng),并使與之相關(guān)的生態(tài)系統(tǒng)(如海草床和紅樹林等)得以形成并持續(xù);具有極其豐富的生態(tài)價值。此外,珊瑚骨骼可以為島嶼居民提供建筑材料[5],珊瑚礁生態(tài)系統(tǒng)對當?shù)芈糜螛I(yè)的發(fā)展更是有極大的促進作用,具有可觀的人文和經(jīng)濟價值。珊瑚礁生態(tài)系統(tǒng)中的生物大多經(jīng)歷了幾百萬年的進化,具有一定的抵御環(huán)境擾動的能力。但是近年來,全球環(huán)境變化和人類活動的頻繁導(dǎo)致珊瑚礁生態(tài)系統(tǒng)長期處于化學(xué)污染物的聯(lián)合脅迫下,珊瑚的健康受到了巨大的威脅。全球珊瑚礁大面積的退化和死亡也說明環(huán)境因子已經(jīng)超過了珊瑚礁生態(tài)系統(tǒng)的承受閾值[6-8]。重金屬、多環(huán)芳烴(PAHs)和農(nóng)藥殘留現(xiàn)已成為影響全球珊瑚礁生態(tài)系統(tǒng)健康的3大類主要化學(xué)污染物。珊瑚礁生態(tài)系統(tǒng)中化學(xué)污染物的輸入方式很多,它們在珊瑚體內(nèi)不斷富集,從而影響珊瑚的生長和繁殖。農(nóng)業(yè)徑流、城市及工業(yè)化活動是重金屬進入珊瑚礁生態(tài)系統(tǒng)的主要途徑。多環(huán)芳烴是一類環(huán)境中常見的有機污染物,具有致畸、致癌和致突變性。海洋環(huán)境中PAHs的主要來自石油烴類的燃燒和海上溢油。農(nóng)藥殘留主要集中在河谷和沿海平原,從陸地延伸到溪流和河流中,最終匯入河口和海洋,進而影響珊瑚礁生態(tài)系統(tǒng)的健康[9-10]。
根據(jù)國際資料統(tǒng)計,我國珊瑚礁占全球珊瑚礁總面積的2.57%,位居世界第八,珊瑚礁資源多樣且豐富。開展化學(xué)污染物對珊瑚礁生態(tài)系統(tǒng)影響的研究具有重要意義,不僅可以評估化學(xué)污染物對珊瑚健康狀況的影響,為珊瑚礁的保護提供基礎(chǔ)信息;還可以通過敏感生物標志物的篩選開展珊瑚礁區(qū)的生態(tài)監(jiān)測。本文綜述了國內(nèi)外有關(guān)化學(xué)污染物對珊瑚礁生態(tài)系統(tǒng)影響研究的主要進展,并對未來相關(guān)的研究方向進行了展望。
海洋生態(tài)系統(tǒng)是一個多元化、多層次的復(fù)雜系統(tǒng),它在養(yǎng)育各種海洋生物的同時也承納了各式各樣的污染物[10]。PAHs廣泛分布于海水、海洋沉積物和生物體中。Witt等[11]研究表明,吸附是PAHs在海洋環(huán)境中遷移、轉(zhuǎn)化及歸宿的重要途徑。Ko等[12]在2010至2014年間研究了臺灣墾丁珊瑚礁區(qū)海水、沉積物和珊瑚中的PAHs分布情況,結(jié)果發(fā)現(xiàn),表層海水中45種PAHs的質(zhì)量濃度為2.2~34.4 ng·L-1,珊瑚體內(nèi)的PAHs的質(zhì)量濃度(143~1 715 ng·g-1)比周圍沉積物(2~59 ng·g-1)高很多[13]。Sabourin等[14]對墨西哥灣珊瑚體內(nèi)的PAHs調(diào)查結(jié)果發(fā)現(xiàn),珊瑚體內(nèi)PAHs總質(zhì)量濃度為243~2 121 ng·g-1,珊瑚骨骼中PAHs的平均質(zhì)量濃度(521.87 ng·g-1)比珊瑚組織中(288.85 ng·g-1)要高。彭加喜等[15]對西沙永興島珊瑚體內(nèi)的重金屬水平進行研究,結(jié)果顯示,鋅在4種珊瑚體內(nèi)的平均濃度最高,鎘最低,鋅在珊瑚體內(nèi)有明顯的富集作用。除此之外,同種重金屬在珊瑚體內(nèi)的富集能力有明顯的種間差異,指狀薔薇珊瑚(Montipora digitata)富集鋅的能力比帛琉蜂巢珊瑚(Favia palauensis)更強[15]。Mokhtar等[16]的研究報道,馬來西亞沙巴海域小角刺柄珊瑚(Hydnophora microconos)體內(nèi)的重金屬質(zhì)量濃度為鎳(23.80 ng·g-1)> 錳(9.2 ng·g-1)> 銅(7.71 ng·g-1)> 鋅(3.74 ng·g-1)> 鎘(1.84 ng·g-1)。
隨著經(jīng)濟發(fā)展、人口增長和城市工業(yè)化的不斷推進,我國海洋環(huán)境中各類化學(xué)污染物的濃度將會不斷增加,過量的污染物進入珊瑚體內(nèi),通常會對生物機體產(chǎn)生毒害作用,對珊瑚礁的健康產(chǎn)生威脅甚至導(dǎo)致珊瑚白化。迄今為止,海洋酸化和全球氣候變暖一直是珊瑚礁白化研究的重點,最新的研究報告顯示,源自人類活動的化學(xué)污染物給珊瑚生長帶來的不利影響也不容小覷[23-25]。重金屬、殺蟲劑以及多環(huán)芳烴類污染物是海洋環(huán)境中常見的有毒有害污染物,它們廣泛的存在于世界各地的珊瑚礁區(qū)中[26]。重金屬(尤其是銅)的質(zhì)量濃度通常接近或超過珊瑚的承受閾值,威脅珊瑚的正常生長[26]。目前,有關(guān)化學(xué)污染物對珊瑚個體生長發(fā)育、組織細胞水平及關(guān)鍵功能基因影響的研究還比較少,本文擬從個體、細胞及分子水平系統(tǒng)地分析珊瑚在環(huán)境中常見化學(xué)污染物脅迫下的生態(tài)響應(yīng),并對化學(xué)污染物對珊瑚的毒性效應(yīng)進行歸納和總結(jié)。
在毒理學(xué)實驗中,半數(shù)致死濃度LC50,最低有影響濃度LOEC和半數(shù)有效濃度EC50等常用作研究化學(xué)污染物對生物體生長發(fā)育影響的重要指標[27]。Negri等[28]開展了敵草隆暴露對不同種類珊瑚的毒性作用。結(jié)果表明,300 μg·L-1敵草隆暴露24 h后,多孔鹿角珊瑚(Acropora millepora)幼蟲的生長受到顯著抑制;然而,1 000 μg·L-1敵草隆暴露24 h后,多孔鹿角珊瑚(Acropora millepora)和表孔珊瑚(Montipora aequituberculata)的卵母細胞可以正常生長,鹿角杯形珊瑚(Pocillopora damicornis)的幼蟲仍然可以變態(tài)發(fā)育。PAHs容易在珊瑚體內(nèi)富集,影響珊瑚個體的正常生長發(fā)育,嚴重的更會導(dǎo)致珊瑚的白化[29]。Romero等[30]研究發(fā)現(xiàn),PAHs能降低細手指珊瑚(Porites divaricate)的光合作用效率;當珊瑚暴露在熒蒽(60 μg·L-1)或紫外輻射條件下,珊瑚頂端的白化或死亡率達到78%;熒蒽與紫外光從共同脅迫導(dǎo)致珊瑚的死亡率高達11/12;然而,珊瑚底部的珊瑚蟲因為免遭紫外輻射,11/12的珊瑚樣本能健康完整的存活下來。Dam等[27]比較研究了敵草隆、銅、PAHs和毒死蜱暴露下的鹿角珊瑚(Acropora sp.),結(jié)果發(fā)現(xiàn),鹿角珊瑚(Acropora sp.)對銅脅迫的耐受性是最強的,LOEC高達10~100 μg·L-1。Laetitia等[31]比較了不同溫度下急性銅暴露的鹿角杯形珊瑚(Pocillopora damicornis)幼體和成體的耐受性大小,結(jié)果顯示,珊瑚成體和幼體在高溫時的耐受性(LC50分別為175 μg·L-1和129 μg·L-1)比低溫時(LC50分別為251 μg·L-1和67 μg·L-1)更弱,升高溫度可以降低珊瑚應(yīng)答銅脅迫的耐受性。Berry等[32](2017)開展了煤炭污染物對柔枝軸孔珊瑚(Acropora tenuis)生命周期影響的研究,結(jié)果顯示,珊瑚胚胎的存活率隨著煤炭濃度和暴露時間的增加而顯著降低(P < 0.05)。
表1 珊瑚體內(nèi)不同化學(xué)污染物的平均濃度Table 1 The mean concentration of different chemical pollutants in corals
環(huán)境壓力(溫度、鹽度、光輻射、細菌感染和化學(xué)污染物等)是誘導(dǎo)珊瑚產(chǎn)生活性氧(reactive oxygen species, ROS)的主要原因。眾多研究表明,ROS是導(dǎo)致珊瑚白化的主要因素之一[38-40]。Glynn等[42]的對巴拿馬海灣珊瑚礁的研究顯示,除草劑2,4-D和2,4,5-T會造成珊瑚的氧化損傷從而導(dǎo)致珊瑚礁大面積的死亡。Gassman等[42]的研究報道,蜂巢珊瑚(Favia fragum)、鐵星珊瑚(Siderastrea sidereal)和山形星珊瑚(Montastraea faveolata)3種造礁石珊瑚的混合功能氧化酶(mixed-function oxidase, MFO)在PAHs脅迫下會發(fā)生顯著的變化。Seonock等[43]的研究顯示,PAHs脅迫會導(dǎo)致軟珊瑚體內(nèi)ROS的產(chǎn)生,珊瑚體內(nèi)的ROS具有調(diào)節(jié)脂質(zhì)過氧化水平,降解蛋白質(zhì),抑制DNA損傷和細胞凋亡的作用。Ramos等[44]對PAHs典型代表苯并芘(BaP)短期暴露下山形星珊瑚(Montastraea faveolata)的研究發(fā)現(xiàn),珊瑚宿主和水螅蟲中的過氧化氫酶(CAT)和超氧化物歧化酶(SOD)以及珊瑚宿主的谷胱甘肽轉(zhuǎn)移酶(GST)活性在0.1 mg·L-1的苯并芘(BaP)脅迫72 h后顯著增加(P < 0.01),苯并芘(BaP)能夠在短時間內(nèi)激活山形星珊瑚(Montastraea faveolata)體內(nèi)的混合功能加氧酶和抗氧化酶系統(tǒng),珊瑚受到外界壓力的脅迫時,能夠迅速在體內(nèi)轉(zhuǎn)化氧自由基,降低環(huán)境壓力對其的損傷作用。Schwarz等[45]的研究報道,30 μg·L-1銅暴露48 h后的星珊瑚(Montastraea franksi),DNA遭到明顯的損傷;此外,抗氧化酶基因的表達量也顯著被誘導(dǎo),這些現(xiàn)象都表明珊瑚在金屬銅暴露后產(chǎn)生了活性氧ROS。Kteifan等[46]研究發(fā)現(xiàn),500 mg·L-1原油暴露會對萼柱珊瑚(Stylophora pistillata)的DNA造成嚴重損傷。這些都為珊瑚自身抵御外界污染物的機制研究和尋找珊瑚在污染物脅迫下的生物標志物提供了重要依據(jù)。
表2 珊瑚在重金屬暴露下的半數(shù)有效濃度、半數(shù)無影響濃度和最低有影響濃度Table 2 Concentrations for 50% of maximal effect (EC50), no observed effect concentrations (NOEC) and the lowest observed effect (LOEC) concentrations of heavy metals on corals
對外界環(huán)境脅迫后的生物進行轉(zhuǎn)錄組水平的研究是發(fā)現(xiàn)敏感生物標志物的途徑之一,環(huán)境壓力對珊瑚的影響可以通過功能基因的相對表達水平來反映,如DD—PCR(差異基因顯示技術(shù))[47]。Tom等[48]通過珊瑚的污染物暴露實驗證實了萼柱珊瑚(Stylophora pistilllata)體內(nèi)Hsp70(Heat shock protein 70)基因應(yīng)答外界污染物脅迫的化學(xué)防御功能,與此同時,他們在星珊瑚(Montastraea franksi)等珊瑚中進行了Hsp70蛋白水平的研究[49-51],得到了一致的結(jié)論。Venn等[52]對暴露于化學(xué)污染物中的山形星珊瑚(Montastraea faveolata)進行研究,結(jié)果發(fā)現(xiàn),山形星珊瑚(Montastraea faveolata)在30 μg·L-1和100 μg·L-1的銅暴露8 h后,P-gp,Hsp70和Hsp90 這3種基因的表達量顯著增加。與此同時,他們比較研究了不同濃度的油污分散劑CorexitTM9527暴露4 h和8 h的山形星珊瑚(Montastraea faveolata),結(jié)果發(fā)現(xiàn),Hsp90基因的表達量沒有明顯的差異。然而,油污分散劑CorexitTM9527暴露8 h的山形星珊瑚(Montastraea faveolata)體內(nèi)P-gp和Hsp70 2個基因的表達量顯著被誘導(dǎo);山形星珊瑚(Montastraea faveolata)在化學(xué)污染物暴露下,體內(nèi)的熱休克Hsp基因(如Hsp70)和ABC蛋白家族基因(如P-glycoprotein, P-gp)會進行毒物代謝,通過能量侍從過程排除體內(nèi)的污染物[52]。Woo等[53]對PAHs脅迫下的硬棘軟珊瑚(Scleronephthya gracillimum)進行了轉(zhuǎn)錄組學(xué)水平的研究,通過構(gòu)建cDNA文庫確定了25個與轉(zhuǎn)錄、翻譯、蛋白質(zhì)代謝、氧化防御系統(tǒng)等細胞功能有關(guān)的功能基因。Louis等[54]的研究證實基因表達標記物GEBs(gene expression biomarkers)是研究造礁石珊瑚所承受環(huán)境壓力大小的有效工具之一。
表3 化學(xué)污染物暴露下珊瑚的關(guān)鍵功能基因Table 3 Functional genes of corals under the exposure of chemical pollutants
珊瑚礁是熱帶和亞熱帶海域典型的生態(tài)系統(tǒng)之一,它們在海洋環(huán)境中所占的面積不到1%,但是生物多樣性卻是亞馬遜熱帶雨林的二十倍,被譽為“海底熱帶雨林”。然而,它們的生存卻受到了諸多因素的威脅,其中,海洋化學(xué)污染已經(jīng)成為導(dǎo)致珊瑚礁生態(tài)系統(tǒng)衰退的不容忽視的重要因素[29]。Harrison等[55]早期的研究報道,珊瑚排卵除了受到溫度鹽度的影響,還會受到化學(xué)污染物的影響。環(huán)境中的氰化物會影響珊瑚共生蟲黃藻的光合作用,潤滑油中加入的香豆素極易導(dǎo)致珊瑚成體的白化死亡[56]。此外,珊瑚的碳酸鈣骨骼因其特殊的性質(zhì)極易富集海洋環(huán)境中的化學(xué)污染物,可為當?shù)睾S虻奈廴厩闆r提供歷史資料[57]。迄今,國內(nèi)外有關(guān)化學(xué)污染物對珊瑚礁生態(tài)系統(tǒng)影響的研究鮮有報道,我國對珊瑚礁的研究仍處于探索階段。隨著全世界范圍內(nèi)珊瑚白化死亡現(xiàn)象的加重,通過環(huán)境監(jiān)測和分子生物學(xué)手段加強該領(lǐng)域的相關(guān)研究,保護珊瑚礁生態(tài)系統(tǒng)迫在眉睫。結(jié)合我國珊瑚礁生態(tài)系統(tǒng)的現(xiàn)狀,現(xiàn)有必要加強以下幾個方面的研究:
(1)建立珊瑚礁生態(tài)系統(tǒng)長期的的生態(tài)監(jiān)測站,對珊瑚礁海域的水質(zhì)進行實時監(jiān)測,根據(jù)珊瑚的生長情況和海水水質(zhì)的國家標準制定珊瑚礁生態(tài)系統(tǒng)的水質(zhì)標準;定期測定有關(guān)珊瑚健康狀況的指標(蟲黃藻密度、葉綠素含量、有絲分裂指數(shù)等)。
(2)利用液相色譜-質(zhì)譜聯(lián)用儀(Liquid Chromatograph - Mass Spectrometer, LC-MS)、高效氣相色譜—質(zhì)譜法(Gas Chromatography - Mass Spectrometer, GC-MS)和電感耦合等離子體質(zhì)譜儀(Inductively Coupled Plasma - Mass Spectrometry, ICP-MS)對珊瑚礁生態(tài)系統(tǒng)的水、沉積物以及珊瑚體內(nèi)的典型化學(xué)污染物(農(nóng)藥、多環(huán)芳烴、重金屬等)含量進行檢測,評價當?shù)厣汉鹘干鷳B(tài)系統(tǒng)可能存在的環(huán)境風險,為當?shù)厣汉鞯慕】瞪L提供生態(tài)預(yù)警。
(3)開展化學(xué)污染物暴露對珊瑚幼蟲和成體生長發(fā)育的細胞免疫毒性研究,確定污染物濃度與珊瑚應(yīng)激程度之間的時間-效應(yīng)和劑量-效應(yīng)關(guān)系。
(4)運用轉(zhuǎn)錄組學(xué)技術(shù)和數(shù)字基因差異表達譜挖掘珊瑚幼蟲和成體響應(yīng)化學(xué)污染物脅迫的關(guān)鍵基因,通過蛋白質(zhì)組學(xué)技術(shù)揭示珊瑚幼蟲和成體應(yīng)答化學(xué)污染物脅迫的分子機制,篩選出敏感的生物標志物,為評估珊瑚礁生態(tài)系統(tǒng)的健康狀況提供科學(xué)依據(jù)。
(5)開展自然環(huán)境因子和化學(xué)污染物對珊瑚健康狀況影響的耦合研究,綜合評價全球環(huán)境變化對珊瑚礁生態(tài)系統(tǒng)的影響,更全面地預(yù)測珊瑚礁生態(tài)系統(tǒng)未來的發(fā)展趨勢,為海洋生態(tài)環(huán)境保護、藍色海洋產(chǎn)業(yè)可持續(xù)發(fā)展提供理論依據(jù)和決策參考。
致謝:感謝海南大學(xué)熱帶農(nóng)林學(xué)院韓謙教授在英文摘要修改中給予的幫助。
[1] Connell J H. Diversity in tropical rain forests and coral reefs [J]. Science, 1978, 199(4335): 1302-1310
[2] Hoegh-Guldberg O. Climate change, coral bleaching and the future of the world's coral reefs [J]. Marine and Freshwater Research, 1999, 50(8): 839-866
[3] Muscatine L. The role of symbiotic algae in carbon and energy flux in reef corals [J]. Coral Reefs, 1990, 25: 75-87
[4] Hallock P. Coral Reefs, Carbonate Sediments, Nutrients, and Global Change [M] //Jr. Stanley G D. The History and Sedimentology of Ancient Reef Systems. New York: Kluwer Academic/Plenum Publishers, 2011: 387-427
[5] Jameson S C, Mcmanus J W, Spalding M D. State of the reefs: Regional and global perspectives [J]. Anatomischer Anzeiger, 1995, 121(3): 294-312
[6] 黃暉, 李秀保. 南海珊瑚生物學(xué)與珊瑚礁生態(tài)學(xué)[J]. 科學(xué)通報, 2013, 58(17): 1573
Huang H, Li X B. The ecology and biology of coral reefs in South China Sea [J]. Scientific Report, 2013, 58(17): 1573 (in Chinese)
[7] Van Dam J W, Negri A P, Mueller J F, et al. Symbiont-specific responses in foraminifera to the herbicide diuron [J]. Marine Pollution Bulletin, 2012, 65(4-9): 373-383
[8] Filipkowska A, Lubecki L, Kowalewska G. Polycyclic aromatic hydrocarbon analysis in different matrices of the marine environment [J]. Analytica Chimica Acta, 2005, 547(2): 243-254
[9] Lewis S E, Brodie J E, Bainbridge Z T, et al. Herbicides: A new threat to the Great Barrier Reef [J]. Environmental Pollution, 2009, 157(8-9): 2470-2484
[10] Müller J F, Duquesne S, Ng J, et al. Pesticides in sediments from Queensland irrigation channels and drains [J]. Marine Pollution Bulletin, 2000, 41(7): 294-301
[11] Witt G. Polycyclic aromatic hydrocarbons in water and sediment of the Baltic Sea [J]. Marine Pollution Bulletin, 1995, 31: 237-248
[12] Cheng J O, Cheng Y M, Chen T H, et al. A preliminary assessment of polycyclic aromatic hydrocarbon distribution in the kenting coral reef waters of southern Taiwan [J]. Archives of Environmental Contamination and Toxicology, 2009, 58(3): 489-498
[13] Ko F C, Chang C W, Cheng J O. Comparative study of polycyclic aromatic hydrocarbons in coral tissues and the ambient sediments from Kenting National Park, Taiwan [J]. Environmental Pollution, 2014, 185(4): 35-43
[14] Sabourin D T, Silliman J E, Strychar K B. Polycyclic aromatic hydrocarbon contents of coral and surface sediments off the South Texas Coast of the Gulf of Mexico [J]. International Journal of Biology, 2012, 5(1): 1-17
[15] 彭加喜, 劉金鈴, 徐向榮, 等. 西沙永興島珊瑚重金屬水平及其富集效應(yīng)[J]. 海洋環(huán)境科學(xué), 2014, 33(6): 848-853
Peng J X, Liu J L, Xu X R, et al. The levels and enrichment of heavy metals in corals of Yongxing Island [J]. Marine Environmental Science, 2014, 33(6): 848-853 (in Chinese)
[16] Mokhtar M B, Praveena S M, Aris A Z, et al. Trace metal (Cd, Cu, Fe, Mn, Ni and Zn) accumulation in Scleractinian corals: A record for Sabah, Borneo [J]. Marine Pollution Bulletin, 2012, 64(11): 2556-2563
[17] Al-Rousan S, Al-Shloul R, Al-Horani F, et al. Heavy metals signature of human activities recorded in coral skeletons along the Jordanian coast of the Gulf of Aqaba, Red Sea [J]. Environmental Earth Sciences, 2012, 67(7): 2003-2013
[18] Jayaraju N, Reddy B C S R, Reddy K R. Metal pollution in coarse sediments of Tuticorin coast, Southeast coast of India [J]. Environmental Geology, 2009, 56(6): 1205-1209
[19] El N A, El-Sikaily A, Khaled A, et al. Chlorinated pesticides and polychlorinated biphenyls in the coral reef skeleton of the Egyptian Red Sea coast [J]. Bulletin of Environmental Contamination & Toxicology, 2004, 72(6): 1195-1202
[20] Mokhtar M, Saleh T S, Basahel S N. Mg-Al hydrotalcites as efficient catalysts for aza-Michael addition reaction: A green protocol [J]. Journal of Molecular Catalysis A Chemical, 2012, 353(4): 122-131
[21] El-Sikaily A, Khaled A, El Nemr A, et al. Polycyclic aromatic hydrocarbons and aliphatics in the coral reef skeleton of the Egyptian Red Sea Coast [J]. Bulletin of Environmental Contamination and Toxicology, 2003, 71(6): 1252-1259
[22] Sabdono A, Kang S, Hur H G, et al. Organophosphate pesticide concentrations in coral tissues of Indonesian coastal waters [J]. Pakistan Journal of Biological Sciences, 2007, 10(11): 1926-1929
[23] Brown B E, Dunne R P, Goodson M S, et al. Bleaching patterns in reef corals [J]. Nature, 2000, 404: 142-143
[24] Owen R, Mitchelmore C, Woodley C, et al. A common sense approach for confronting coral reef decline associated with human activities [J]. Marine Pollution Bulletin, 2005, 51(5-7): 481-485
[25] Schiedek D, Sundelin B, Readman J W, et al. Interactions between climate change and contaminants [J]. Marine Pollution Bulletin, 2007, 54(12): 1845-1856
[26] Dam J W V, Negri A P, Uthicke S, et al. Chemical pollution on coral reefs: Exposure and ecological effects [M]//Sachez-Bayo F, van den Brink P J, Mann R M. Ecological Impacts of Toxic Chemicals. Bentham Science Publishers Ltd, 2011: 187-211
[27] Jovanovic B. Review of titanium dioxide nanoparticle phototoxicity: Developing a phototoxicity ratio to correct the endpoint values of toxicity tests [J]. Environmental Toxicology and Chemistry, 2015, 34(5): 1070-1077
[28] Negri A, Vollhardt C, Humphrey C, et al. Effects of the herbicide diuron on the early life history stages of coral [J]. Marine Pollution Bulletin, 2005, 51(1-4): 370-383
[29] Poulsen A, Burns K, Lough J, et al. Trace analysis of hydrocarbons in coral cores from Saudi Arabia [J]. Organic Geochemistry, 2006, 37(12): 1913-1930
[30] Martínez M C, Romero P R, Banaszak A T. Photoinduced toxicity of the polycyclic aromatic hydrocarbon, fluoranthene, on the coral, Porites divaricata [J]. Journal of Environmental Science and Health Part A Toxic/Hazardous Substances and Environmental Engineering, 2007, 42(10): 1495-1502
[31] Hédouin L S, Wolf R E, Phillips J, et al. Improving the ecological relevance of toxicity tests on scleractinian corals: Influence of season, life stage, and seawater temperature [J]. Environmental Pollution, 2016, 213: 240-253
[32] Berry K L E, Hoogenboom M O, Brinkman D L, et al. Effects of coal contamination on early life history processes of a reef-building coral, Acropora tenuis [J]. Marine Pollution Bulletin, 2017, 114(1): 505-514
[33] Puisay A, Pilon R, Hédouin L. High resistance of Acropora coral gametes facing copper exposure [J]. Chemosphere, 2015, 120: 563-567
[34] Reichelt-Brushett A J, Harrison P L. The effect of selected trace metals on the fertilization success of several scleractinian coral species [J]. Coral Reefs, 2005, 24(4): 524-534
[35] Negri A P, Heyward A J. Inhibition of coral fertilisation and larval metamorphosis by tributyltin and copper [J]. Marine Environmental Research, 2001, 51(1): 17-27
[36] Victor S, Richmond R H. Effect of copper on fertilization success in the reef coral Acropora surculosa [J]. Marine Pollution Bulletin, 2005, 50(11): 1448-1451
[37] Heyward A J, Negri A P. Natural inducers for coral larval metamorphosis [J]. Coral Reefs, 1999, 18(3): 273-279
[38] Munksgaard N C, Parry D L. Trace metals, arsenic and lead isotopes in dissolved and particulate phases of North Australian coastal and estuarine seawater [J]. Marine Chemistry, 2001, 75(3): 165-184
[39] Desalvo M K, Voolstra C R, Sunagawa S, et al. Differential gene expression during thermal stress and bleaching in the Caribbean coral Montastraea faveolata [J]. Molecular Ecology, 2008, 17: 3952-3971
[40] Higuchi T, Yuyama I, Nakamura T. The combined effects of nitrate with high temperature and high light intensity on coral bleaching and antioxidant enzyme activities [J]. Regional Studies in Marine Science, 2015, 2: 27-31
[41] Glynn P W, Howard L S, Corcoran E, et al. The occurrence and toxicity of herbicides in reef building corals [J]. Marine Pollution Bulletin, 1984, 15(10): 370-374
[42] Gassman N J, Kennedy C J. Cytochrome P-450 content and xenobiotic metabolizing enzyme activities in the scleractinian coral, Favia fragum (Esper) [J]. Bulletin of Marine Science-Miami, 1992, 50(2): 320-330
[43] Woo S, Hong S P, Oh R, et al. Identification of differentially expressed genes from a soft coral Scleronephthya gracillimum for environmental stresses [C]. Biotechnology Academic Conference in Korea, 2004: 456
[44] Ramos R, Garcia E. Induction of mixed-function oxygenase system and antioxidant enzymes in the coral Montastraea faveolata on acute exposure to benzo (a) pyrene [J]. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology, 2007, 144(4): 348-355
[45] Schwarz J A, Mitchelmore C L, Jones R, et al. Exposure to copper induces oxidative and stress responses and DNA damage in the coral Montastraea franksi [J]. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology, 2013, 157(3): 272-279
[46] Kteifan M, Wahsha M, Al-Horani F A. Assessing stress response of Stylophora pistillata towards oil and phosphate pollution in the Gulf of Aqaba, using molecular and biochemical markers [J]. Chemistry and Ecology, 2017, 33(4): 281-294
[47] Liang P, Pardee A B. Differential display of eucaryotic messenger RNA by means of the polymerase chain reaction [J]. Science, 1992, 257(5072): 967-971
[48] Tom M, Douek J, Yankelevich I, et al. Molecular characterization of the first heat shock protein 70 from a reef coral [J]. Biochemical and Biophysical Research Communications, 1999, 262(1): 103-108
[49] Downs C A, Mueller E, Phillips S, et al. A molecular biomarker system for assessing the health of coral (Montastraea faveolata) during heat stress [J]. Marine Biotechnology, 2000, 2(6): 533-544
[50] Gates R D, Edmunds P J. The physiological mechanisms of acclimatization in tropical coral reefs [J]. American Zoologist, 1999, 39(1): 30-43
[51] Sharp V A, Brown B E, Miller D. Heat shock protein (hsp70) expression in the tropical reef coral Goniopora djiboutiensis [J]. Journal of Thermal Biology, 1997, 22(1): 11-19
[52] Venn A A, Quinn J, Jones R, et al. P-glycoprotein (multi-xenobiotic resistance) and heat shock protein gene expression in the reef coral Montastraea franksi in response to environmental toxicants [J]. Aquatic Toxicology, 2009, 93(4): 188-195
[53] Woo S, Lee A, Denis V, et al. Transcript response of soft coral (Scleronephthya gracillimum) on exposure to polycyclic aromatic hydrocarbons [J]. Environmental Science and Pollution Research, 2014, 21(2): 901-910
[54] Louis Y D, Bhagooli R, Kenkel C D, et al. Gene expression biomarkers of heat stress in scleractinian corals: Promises and limitations [J]. Comparative Biochemistry and Physiology Part C Toxicology and Pharmacology, 2016, 191: 63-77
[55] Harrison P L, Wallace C C. Reproduction, Dispersal and Recruitment of Scleractinian Corals Ecosystems of the World. 25: Coral Reefs [M]// Dubinsky Z. Ecosystems of the World. Amsterdam: Elsevier, 1990: 133-207
[56] Jones R J, Hoegh-Guldberg O. Effects of cyanide on coral photosynthesis: Implications for identifying the cause of coral bleaching and for assessing the environmental effects of cyanide fishing [J]. Marine Ecology Progress, 1999, 177(3): 83-91
[57] Readman J W, Tolosa I, Law A T, et al. Discrete bands of petroleum hydrocarbons and molecular organic markers identified within massive coral skeletons [J]. Marine Pollution Bulletin, 1996, 32(5): 437-443