張小燕,李志艷,唐海林,傅念
(1.南華大學(xué)附屬南華醫(yī)院消化內(nèi)科,湖南 衡陽 421002;2.中山大學(xué)腫瘤防治中心乳腺科,廣東 廣州 510060)
AMPK參與腫瘤能量代謝研究進(jìn)展
張小燕1,李志艷1,唐海林2,傅念1
(1.南華大學(xué)附屬南華醫(yī)院消化內(nèi)科,湖南 衡陽 421002;2.中山大學(xué)腫瘤防治中心乳腺科,廣東 廣州 510060)
腫瘤細(xì)胞具有獨特的能量代謝方式—Warburg現(xiàn)象,而腫瘤的發(fā)生發(fā)展、轉(zhuǎn)移與能量代謝密切相關(guān)。腺苷酸活化的蛋白激酶(AMPK)是細(xì)胞中重要的能量感受器,主要參與維持代謝應(yīng)激下能量平衡和氧化還原穩(wěn)態(tài),與腫瘤能量代謝異常密切相關(guān)。活化的AMPK可以增強分解代謝、抑制合成代謝、上調(diào)ATP水平,也參與調(diào)節(jié)糖代謝、膽固醇代謝、脂肪酸及蛋白質(zhì)代謝等過程,為細(xì)胞的生長過程提供能量儲備,應(yīng)對能量不足;同時活化的AMPK還與腫瘤新生血管形成、轉(zhuǎn)移、炎癥等病理過程息息相關(guān)。本文主要對AMPK的結(jié)構(gòu)、活化機制、參與物質(zhì)能量代謝以及與腫瘤形成的關(guān)聯(lián)做一綜述。
AMPK;能量代謝;腫瘤形成
目前腫瘤在全球的發(fā)病率及死亡率逐年上升,腫瘤危害之大且難以攻克,是由于腫瘤本身具有六大獨特生物學(xué)功能,即保持生長信號的自足性,逃避生長抑制信號,抵抗細(xì)胞凋亡,無限增殖能力,誘導(dǎo)血管生成,組織浸潤和轉(zhuǎn)移能力,這些特征與腫瘤微環(huán)境形成密切相關(guān)。另外腫瘤細(xì)胞還具有獨特的能量代謝方式-有氧糖酵解是腫瘤的最重要特征之一,它為腫瘤細(xì)胞生存提供了有利條件[1-2]。
Warburg等[3]研究發(fā)現(xiàn)腫瘤細(xì)胞葡萄糖攝取率及糖酵解能力明顯增高,即使在氧氣充足的條件下,腫瘤細(xì)胞仍然通過糖酵解代謝攝取能量,這一現(xiàn)象被稱之為“有氧糖酵解”,亦稱Warburg Effect。目前發(fā)現(xiàn)這種代謝方式在癌細(xì)胞普遍存在,如腎癌、肺癌、乳腺癌、結(jié)腸癌、肝癌中等[4-8]。腺苷酸活化的蛋白激酶(AMP activated protein kinase,AMPK)是與能量代謝密切相關(guān)的絲氨酸/蘇氨酸蛋白激酶,在促進(jìn)細(xì)胞糖酵解中發(fā)揮了重要作用[9-10]。目前已有研究證實AMPK能磷酸化激活6-磷酸果糖激酶2(iPFK-2),后者參與合成糖酵解關(guān)鍵酶2,6-2磷酸果糖(PFK-2),激活的AMPK能增加iPFK-2的活性使PFK-2生成增多,從而促進(jìn)糖酵解[11]。因此AMPK在參與腫瘤能量代謝中起了重要作用。此外,由于腫瘤還具有無限增殖的能力,使得腫瘤組織的血液及營養(yǎng)供應(yīng)相對不足,常導(dǎo)致腫瘤周圍缺血、缺氧及酸中毒,這也是腫瘤細(xì)胞微環(huán)境的三個基本特征[12]。腫瘤細(xì)胞在面對這種惡劣的環(huán)境時,通過復(fù)雜的機制來調(diào)節(jié)局部代謝從而促進(jìn)細(xì)胞存活,因此本文就AMPK的分子生物學(xué)及其在腫瘤能量代謝調(diào)節(jié)中的作用做一淺要綜述。
AMPK是由三種亞基α、β、γ組成的異源三聚體蛋白,每個亞單位由不同的亞型組成,且每個亞型由不同的基因編碼[13]。其中α催化亞基能決定蛋白激酶復(fù)合物的活性,其主要通過影響AMPK代謝途徑相關(guān)的酶及基因表達(dá)水平。α亞單位的N末端還含有激酶結(jié)構(gòu)域(KD),其結(jié)構(gòu)域中包含有能引起AMPK活化的位點(蘇氨酸172、蘇氨酸183等)[10]。β亞基由兩個特殊的結(jié)構(gòu)域組成:糖原結(jié)構(gòu)域及參與結(jié)合α、β亞單位的結(jié)構(gòu)域,其中糖原結(jié)構(gòu)域直接與胞質(zhì)中的糖原結(jié)合,而AMPKβ亞基的C末端結(jié)構(gòu)域形成β-折疊參與結(jié)合α和γ亞基[14]。γ亞基包含4個進(jìn)化保守的CBS基因序列,組成2個Bateman結(jié)構(gòu)域,此序列的主要作用是調(diào)控細(xì)胞內(nèi)的能量代謝,并且參與結(jié)合腺嘌呤核苷酸(ADP、AMP)[15]。AMPK各亞基除了功能不同外,其在組織及染色體上分布也各異,見表1。
表1 AMPK各亞基在組織及染色體上的分布
2.1 通過AMP/ATP比值調(diào)節(jié) 通常情況下,活化的AMPK可以促進(jìn)細(xì)胞內(nèi)的ATP生成及儲存,主要通過抑制消耗ATP的合成代謝(如蛋白質(zhì)、脂質(zhì)、核糖體等的合成),并啟動產(chǎn)生ATP的分解代謝途徑(如脂肪酸氧化、糖酵解等)來維持機體的能量平衡,故將AMPK稱之為“細(xì)胞能量調(diào)節(jié)器”[16-17]。目前體內(nèi)許多因素如葡萄糖缺乏、缺氧、缺血和高滲環(huán)境等均能使AMPK活化,且AMPK在ATP減少,AMP:ATP比值增高時活性明顯增強[18-19]。當(dāng)AMP/ATP比值顯著增高時,AMPK會與γ亞基Bateman結(jié)構(gòu)域連接,通過抑制α亞單位上Thr172去磷酸化及變構(gòu)激活A(yù)MPK,使ATP生成增多,消耗降低,為細(xì)胞的生長提供了重要條件[20]。眾所周知,ATP在蛋白質(zhì)、脂肪、和DNA合成中發(fā)揮了重要作用。此外,腫瘤的存活、增殖及轉(zhuǎn)移需要大量的ATP,Oronsky等[21]和Zhou等[22]研究證實在耐藥的腫瘤細(xì)胞中減少ATP產(chǎn)生能增強腫瘤細(xì)胞對化療藥物的敏感性。這說明AMPK能通過調(diào)控ATP的合成影響腫瘤細(xì)胞的生長。
2.2 通過上游激酶調(diào)節(jié) 肝激酶B1(LKB)是一種絲氨酸/蘇氨酸蛋白激酶,主要在細(xì)胞生長及能量代謝方面發(fā)揮重要作用。LKB1作為AMPK的上游激酶,最早發(fā)現(xiàn)于Peutz-Jegher綜合征的患者中。該病主要由于LKB1突變導(dǎo)致患者出現(xiàn)特異的皮膚黏膜色素沉著,錯構(gòu)性息肉(胃腸道為主),甚至是腫瘤的形成。通過磷酸化AMPK上游激酶LKB1能使AMPK激活[23]。AMPK還能被另外一種鈣調(diào)蛋白依賴性蛋白激酶-β (CaMKK-β)激活,其激活并非依賴LKB1,而是能過增加細(xì)胞內(nèi)Ca2+從而激活A(yù)MPK[24]。因此,許多LKB1激酶缺乏的腫瘤表型并不會引起AMPK信號通路中斷。AMPK和LKB1盡管密切聯(lián)系,但可能在腫瘤形成過程相關(guān)信號通路中發(fā)揮不同的作用[25]。
腫瘤細(xì)胞由于具有六大生長特性,常導(dǎo)致腫瘤的微環(huán)境缺血、缺氧、營養(yǎng)匱乏等,而腫瘤細(xì)胞代謝適應(yīng)在腫瘤的微環(huán)境發(fā)揮了重要作用,主要通過對代謝相關(guān)的酶或生化途徑進(jìn)行調(diào)控來幫助腫瘤細(xì)胞度過代謝應(yīng)激階段。關(guān)于AMPK與腫瘤細(xì)胞能量代謝的關(guān)系見圖1。
3.1 AMPK與糖代謝 腫瘤細(xì)胞攝取葡萄糖比正常細(xì)胞高,AMPK可通過兩種機制增加葡萄糖攝取,胰島素非依賴機制可能與以下方式有關(guān):促進(jìn)葡萄糖轉(zhuǎn)運體(GLUT)轉(zhuǎn)位或增加葡萄糖轉(zhuǎn)運基因表達(dá)。在腫瘤細(xì)胞中,AMPK激活后能增加GLUT1和GLUT4的轉(zhuǎn)位,使葡萄糖的攝取增加[26]。另一條重要通路是胰島素信號通路,它能引起胰島素受體(IR)酪氨酸激酶活化,從而導(dǎo)致胰島素受體下游底物蛋白(IRS)磷酸化,進(jìn)一步磷酸化激活A(yù)kt,最終完成GLUT4在胞膜上的定位,導(dǎo)致葡萄糖的攝取增加。同時發(fā)現(xiàn)AMPK能磷酸化抑制糖原合酶(GS)ser位點,抑制糖原合成。在體外實驗中,給鼠骨骼肌細(xì)胞灌注AMPK激活劑5-氨基-4-甲酰胺咪唑核糖核苷酸(AICAR)后,會引起GS的活性能顯著下降。且AMPK α2敲除能阻止GS活性的喪失[27]。這些研究表明AMPK能通過促進(jìn)葡萄糖攝取并抑制糖原的合成從而維持腫瘤細(xì)胞的能量代謝。
糖酵解增加是腫瘤生長及存活的必要條件,且大量代謝產(chǎn)物乳酸生成造成腫瘤周圍的酸性環(huán)境有利于腫瘤細(xì)胞的轉(zhuǎn)移?;罨腁MPK除了能增加葡萄糖攝取外還能促進(jìn)葡萄糖向糖酵解方向轉(zhuǎn)化[28]。此外,Tennakoon等[29]研究發(fā)現(xiàn)AR-CAMKK2-AMPK信號通路能增加前列腺癌有氧糖酵解水平及通過介導(dǎo)過氧化物酶體增殖物受體輔助激活因子1α(PGC1α)使線粒體合成代謝增加。在低葡萄糖情況下,AMPK能量感受器還能維持體內(nèi)ATP及NADPH的平衡,為腫瘤細(xì)胞保存能量以等待促增殖條件的再次出現(xiàn)[30]。
圖1 AMPK在能量代謝中的作用
3.2 AMPK與蛋白質(zhì)代謝 雷帕霉素靶蛋白(mTOR)參與細(xì)胞蛋白合成的代謝過程,與腫瘤的形成、免疫及細(xì)胞凋亡密切相關(guān)。AMPK能磷酸化激活腫瘤抑制因子結(jié)節(jié)性硬化復(fù)合物1/2(TSC1/TSC2),TSC1/TSC2復(fù)合物通過使GTPase活化蛋白Rheb失活,從而抑制mTOR。研究發(fā)現(xiàn),當(dāng)細(xì)胞處于應(yīng)激狀態(tài)(如營養(yǎng)缺乏、ROS產(chǎn)生等)下,通過抑制mTOR能保證腫瘤細(xì)胞的能量供應(yīng)[31]。此外,AMPK還能激活真核生物轉(zhuǎn)錄延伸因子2(eEF2)激酶,從而阻止蛋白的翻譯及延長,為腫瘤細(xì)胞提供能量儲備。eEF2激酶的表達(dá)與人類髓母細(xì)胞瘤和膠質(zhì)母細(xì)胞瘤總生存率密切相關(guān),并且通過激活A(yù)MPK-eEF2K信號通路能促進(jìn)腫瘤細(xì)胞適應(yīng)能量缺乏及代謝應(yīng)激[32]。
3.3 AMPK與脂肪代謝 AMPK信號通路在調(diào)節(jié)脂質(zhì)代謝過程中發(fā)揮了雙重作用,它一方面抑制乙酰輔酶A羧化酶(ACC)及羥甲基戊二酸單酰輔酶A (HMG-COA)還原酶使脂肪酸和膽固醇合成減少,另一方面促進(jìn)脂肪酸氧化及維持能量代謝平衡。脂肪酸氧化是腫瘤的生長及存活的重要燃料,腫瘤細(xì)胞由于生長過快處于代謝應(yīng)激狀態(tài)時,導(dǎo)致產(chǎn)生NADPH的磷酸戊糖途徑削弱,AMPK通過磷酸化ACC1和ACC2,抑制消耗NADPH的脂肪酸合成(FAS)途徑,同時通過作用于肉堿脂酰轉(zhuǎn)移酶-1(CPT-1)促進(jìn)脂酸氧化(FAO)使NADPH生成增加,從而保護(hù)細(xì)胞免受氧化損傷并促進(jìn)腫瘤形成[30]。CPT-1是脂酸氧化的限速酶,CPT-1過表達(dá)能激活脂肪酸氧化從而促進(jìn)實體瘤的生長[30]。相關(guān)研究還表明,運用CPT-1抑制劑etomoxir抑制脂肪酸β氧化能使細(xì)胞內(nèi)ATP的水平及活性下降,活性氧(ROS)產(chǎn)生增多,最終誘導(dǎo)細(xì)胞死亡,這些說明FAO在維持細(xì)胞內(nèi)ROS及NADPH平衡中發(fā)揮了重要作用[33]。
實體腫瘤由于生長過快,正常的血液供給慢慢不能滿足其需求,常導(dǎo)致腫瘤內(nèi)部缺氧,研究表明在正常組織中含氧量為7%,而在腫瘤組織中含氧量僅為1.5%[34]。腫瘤為了適應(yīng)缺氧主要通過增加血管的生成,缺氧還能增加缺氧誘導(dǎo)因子l(hypoxia-inducible factor 1,HIF-1)表達(dá)及活性。研究表明,HIF-1是一種能激活編碼葡萄糖轉(zhuǎn)運蛋白,糖酵解酶及血管內(nèi)皮生長因子(VEGF)的轉(zhuǎn)錄因子。HIF在多種腫瘤中廣泛表達(dá),如結(jié)腸癌、胃癌、肺癌、前列腺癌、乳腺癌等,與腫瘤的侵襲、轉(zhuǎn)移、耐藥性等密切相關(guān)[34-35]。Lee等[36]研究發(fā)現(xiàn),在缺氧時,AMPK作為能量感受器能快速啟動代謝適應(yīng),主要通過激活A(yù)MPK從而促進(jìn)HIF-1表達(dá)。用藥物或者分子途徑抑制AMPK活性能降低缺氧誘導(dǎo)反應(yīng),包括HIF-1靶基因的表達(dá)、VEGF的分泌和葡萄糖攝取等,這表明AMPK在HIF-1轉(zhuǎn)錄活性及靶基因的表達(dá)中發(fā)揮了重要作用。綜上所述,AMPK激活能增加腫瘤的血管生成能力、提高腫瘤細(xì)胞能量供應(yīng)及增加細(xì)胞耐藥性。
AMPK激活能減少環(huán)磷酸腺苷(cAMP)介導(dǎo)的上皮細(xì)胞的氯離子外排,減少細(xì)胞的慢性炎癥反應(yīng)[37]。研究證實一氧化氮合酶(iNOS)能引起內(nèi)毒素休克和慢性炎癥,激活A(yù)MPK能減少iNOS的表達(dá)及減少NO產(chǎn)生。這表明AMPK可作為一種新型的抗炎信號通路。另外AMPK在腫瘤的局部炎癥反應(yīng)中發(fā)揮了重要作用,炎癥細(xì)胞利用能量代謝進(jìn)行運動及化學(xué)趨化作用,當(dāng)腫瘤細(xì)胞能量不足時,AMPK通過降低炎癥細(xì)胞的能量消耗,從而使腫瘤細(xì)胞的存活能力加強[38-39]。
研究發(fā)現(xiàn)AMPK與腫瘤的發(fā)生密切相關(guān),Zhao等[40]發(fā)現(xiàn),利用RNA干擾沉默AMPKα1能抑制胰腺癌細(xì)胞的生長、誘導(dǎo)細(xì)胞凋亡和促進(jìn)細(xì)胞周期停滯,并且通過miR-148b靶向作用于AMPKα1抑制細(xì)胞增殖、侵襲以及增加腫瘤細(xì)胞的對藥物的敏感性。近期研究發(fā)現(xiàn)AMPKα1及AMPKβ1亞基是兩個重要的促癌基因,AMPKα1通過調(diào)節(jié)小眼畸形相關(guān)轉(zhuǎn)錄因子(MITF)維持細(xì)胞活力,而MITF與黑色素瘤的形成密切相關(guān)。而AMPKβ1亞單位表達(dá)是促進(jìn)前列腺癌細(xì)胞的生存及轉(zhuǎn)移必不可少的[41-42]。另外AMPK信號通路的活化也促進(jìn)腫瘤形成,如通過PKCa-LKB1信號通路激活A(yù)MPK能使原癌基因SRC活化,SRC激活和過表達(dá)在人類許多腫瘤中,包括肺癌、皮膚癌、結(jié)腸癌、乳腺癌、卵巢癌[43]。激活A(yù)MPK還能促進(jìn)原癌基因MYC和H-RasV12在卵巢癌及神經(jīng)膠質(zhì)細(xì)胞瘤中表達(dá),但其機制尚不明確[44-45]。除了活化原癌基因外,也有文獻(xiàn)報道,活化的AMPK能使卵泡刺激激素(FLCN)抑癌基因缺失,從而導(dǎo)致BHD綜合征(Birt-Hogg-Dube′syndrome),后者與腫瘤的發(fā)生密切相關(guān)[46]。
如上所述,在腫瘤微環(huán)境中,AMPK通過一系列保護(hù)機制來幫助腫瘤細(xì)胞度過應(yīng)激階段,如降低能量消耗,延緩生長,增加血管生成和抑制炎癥反應(yīng)等,這可能是腫瘤在惡劣條件下繼續(xù)存活的重要原因之一。AMPK各亞基及其信號通路的活化也與腫瘤的發(fā)生發(fā)展密切相關(guān)。但也有研究表明,抗糖尿病藥物二甲雙胍能夠活化AMPK發(fā)揮抗腫瘤的作用[47]。在未來,AMPK將可能成為抗腫瘤治療的新靶點。雖然具體機制尚未闡明,但是隨著對腫瘤細(xì)胞能量代謝的深入研究,AMPK信號通路可能為抗腫瘤治療提供新的策略。
[1]Hanahan D,Weinberg RA.Hallmarks of cancer:the next generation [J].Cell,2011,144(5):646-674.
[2]Kroemer G,Pouyssegur J.Tumor cell metabolism:cancer′s Achilles′heel[J].Cancer Cell,2008,13(6):472-482.
[3]Warburg O,Wind F,Negelein E.The metabolism of tumors in the body[J].J Gen Physiol,1927,8(6):519-530.
[4]Ricketts CJ,Shuch B,Vocke CD,et al.Succinate dehydrogenase kidney cancer:an aggressive example of the Warburg effect in cancer [J].J Urol,2012,188(6):2063-2071.
[5]Minchenko OH,Ogura T,Opentanova IL,et al.6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene family overexpression in human lung tumor[J].Ukr Biokhim Zh(1999),2005,77(6):46-50.
[6]Suhane S,Ramanujan VK.Thyroid hormone differentially modulates Warburg phenotype in breast cancer cells[J].Biochem Biophys Res Commun,2011,414(1):73-78.
[7]Shi DY,Xie FZ,Zhai C,et al.The role of cellular oxidative stress in regulating glycolysis energy metabolism in hepatoma cells[J].Mol Cancer,2009,8:32.
[8]馮青青,劉紅梅,彭秋平,等.HK-Ⅱ、TS和Ki-67在青年人結(jié)腸癌組織中的表達(dá)及其意義[J].腫瘤防治研究,2011,38(6):663-664.
[9]Bola?os JP.Bioenergetics and redox adaptations of astrocytes to neuronal activity[J].J Neurochem,2016,2016,139 Suppl 2:115-125.
[10]Sanz P.AMP-activated protein kinase:structure and regulation[J]. Curr Protein Pept Sci,2008,9(5):478-492.
[11]Marsin AS,Bouzin C,Bertrand L,et al.The stimulation of glycolysis by hypoxia in activated monocytes is mediated by AMP-activated protein kinase and inducible 6-phosphofructo-2-kinase[J].J Biol Chem,2002,277(34):30778-30783.
[12]Hanahan D,Weinberg RA.The hallmarks of cancer[J].Cell,2000, 100(1):57-70.
[13]Davies SP,Hawley SA,Woods A,et al.Purification of the AMP-activated protein kinase on ATP-gamma-sepharose and analysis of its subunit structure[J].Eur J Biochem,1994,223(2):351-357.
[14]Bieri M,Mobbs JI,Koay A,et al.AMP-activated protein kinase β-subunit requires internal motion for optimal carbohydrate binding [J].Biophys J,2012,102(2):305-314.
[15]Scott JW,Hawley SA,Green KA,et al.CBS domains form energy-sensing modules whose binding of adenosine ligands is disrupted by disease mutations[J].J Clin Invest,2004,113(2):274-284.
[16]Hardie DG,Ross FA,Hawley SA.AMPK:a nutrient and energy sen-sor that maintains energy homeostasis[J].Nat Rev Mol Cell Biol, 2012,13(4):251-262.
[17]O′Neill HM,Holloway GP,Steinberg GR.AMPK regulation of fatty acid metabolism and mitochondrial biogenesis:implications for obesity[J].Mol Cell Endocrinol,2013,366(2):135-151.
[18]Kahn BB,Alquier T,Carling D,et al.AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism[J].Cell Metab,2005,1(1):15-25.
[19]Monteverde T,Muthalagu N,Port J,et al.Evidence of cancer-promoting roles for AMPK and related kinases[J].FEBS J,2015,282(24): 4658-4671.
[20]Carling D,Thornton C,Woods A,et al.AMP-activated protein kinase:new regulation,new roles[J].Biochem J,2012,445(1):11-27.
[21]Oronsky BT,Oronsky N,Fanger GR,et al.Follow theATP:tumor energy production:a perspective[J].Anticancer Agents Med Chem, 2014,14(9):1187-1198.
[22]Zhou Y,Tozzi F,Chen J,et al.Intracellular ATP levels are a pivotal determinant of chemoresistance in colon cancer cells[J].Cancer Res, 2012,72(1):304-314.
[23]Alessi DR,Sakamoto K,Bayascas JR.LKB1-dependent signaling pathways[J].Annu Rev Biochem,2006,75:137-163.
[24]Hawley SA,Pan DA,Mustard KJ,et al.Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase[J].Cell Metab,2005,2(1):9-19.
[25]Faubert B,Vincent EE,Poffenberger MC,et al.The AMP-activated protein kinase(AMPK)and cancer:many faces of a metabolic regulator[J].Cancer Lett,2015,356(2 PtA):165-170.
[26]Huang S,Czech MP.The GLUT4 glucose transporter[J].Cell Metab, 2007,5(4):237-252.
[27]Ha J,Guan KL,Kim J.AMPK and autophagy in glucose/glycogen metabolism[J].MolAspects Med,2015,46:46-62.
[28]Halse R,Fryer LG,McCormack JG,et al.Regulation of glycogen synthase by glucose and glycogen:a possible role for AMP-activated protein kinase[J].Diabetes,2003,52(1):9-15.
[29]Tennakoon JB,Shi Y,Han JJ,et al.Androgens regulate prostate cancer cell growth via an AMPK-PGC-1α-mediated metabolic switch [J].Oncogene,2014,33(45):5251-5261.
[30]Jeon SM,Chandel NS,Hay N.AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress[J].Nature, 2012,485(7400):661-665.
[31]Huang K,Fingar DC.Growing knowledge of the mTOR signaling network[J].Semin Cell Dev Biol,2014,36:79-90.
[32]Leprivier G,Remke M,Rotblat B,et al.The eEF2 kinase confers resistance to nutrient deprivation by blocking translation elongation[J]. Cell,2013,153(5):1064-1079.
[33]Pike LS,Smift AL,Croteau NJ,et al.Inhibition of fatty acid oxidation by etomoxir impairs NADPH production and increases reactive oxygen species resulting in ATP depletion and cell death in human glioblastoma cells[J].Biochim Biophys Acta,2011,1807(6): 726-734.
[34]Kimbro KS,Simons JW.Hypoxia-inducible factor-1 in human breast and prostate cancer[J].Endocr Relat Cancer,2006,13(3):739-749.
[35]Zhong H,De Marzo AM,Laughner E,et al.Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases[J].Cancer Res,1999,59(22):5830-5835.
[36]Lee M,Hwang JT,Lee HJ,et al.AMP-activated protein kinase activity is critical for hypoxia-inducible factor-1 transcriptional activity and its target gene expression under hypoxic conditions in DU145 cells[J].J Biol Chem,2003,278(41):39653-39661.
[37]Walker J,Jijon HB,Churchill T,et al.Activation of AMP-activated protein kinase reduces cAMP-mediated epithelial chloride secretion [J].Am JPhysiolGastrointestLiverPhysiol,2003,285(5): G850-860.
[38]Pilon G,Dallaire P,Marette A.Inhibition of inducible nitric-oxide synthase by activators of AMP-activated protein kinase:a new mechanism of action of insulin-sensitizing drugs[J].J Biol Chem,2004, 279(20):20767-20774.
[39]Kanellis J,Kandane RK,Etemadmoghadam D,et al.Activators of the energy sensing kinase AMPK inhibit random cell movement and chemotaxis in U937 cells[J].Immunol Cell Biol,2006,84(1):6-12.
[40]Zhao G,Zhang JG,Liu Y,et al.miR-148b functions as a tumor suppressor in pancreatic cancer by targeting AMPKα1[J].Mol Cancer Ther,2013,12(1):83-93.
[41]Ros S,Santos CR,Moco S,et al.Functional metabolic screen identifies 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 as an important regulator of prostate cancer cell survival[J].Cancer Discov,2012,2(4):328-343.
[42]Borgdorff V,Rix U,Winter GE,et al.A chemical biology approach identifies AMPK as a modulator of melanoma oncogene MITF[J]. Oncogene,2014,33(19):2531-2539.
[43]Mizrachy-Schwartz S,Cohen N,Klein S,et al.Up-regulation of AMP-activated protein kinase in cancer cell lines is mediated through c-Src activation [J].J BiolChem,2011,286(17): 15268-15277.
[44]Ríos M,Foretz M,Viollet B,et al.AMPK activation by oncogenesis is required to maintain cancer cell proliferation in astrocytic tumors [J].Cancer Res,2013,73(8):2628-2638.
[45]Liu L,Ulbrich J,Müller J,et al.Deregulated MYC expression induces dependence upon AMPK-related kinase 5[J].Nature,2012,483 (7391):608-612.
[46]Possik E,Jalali Z,Nou?t Y,et al.Folliculin regulates ampk-dependent autophagy and metabolic stress survival[J].PLoS Genet,2014, 10(4):e1004273.
[47]Salani B,Del RA,Marini C,et al.Metformin,cancer and glucose metabolism[J].Endocr Relat Cancer,2014,21(6):R461-471.
Research progress of AMPK participation in tumor cell energy metabolism.
ZHANG Xiao-yan1,LI Zhi-yan1, TANG Hai-lin2,FU Nian1.1.Department of Gastroenterology,Affiliated Nanhua Hospital,University of South China, Hengyang 421002,Hunan,CHINA;2.Department of Galactophore,Sun Yat-Sen University Cancer Center,Guangzhou 510000,Guangdong,CHINA
Tumor cells have a unique energy metabolism way—Warburg Phenomenon.The occurrence and development of tumor is closely related to energy metabolism.AMP-activated protein kinase(AMPK)is essential cellular energy sensor,and mainly participates in maintaining the energy balance and redox homeostasis under metabolic stress. It is closely related to the abnormal energy metabolism.Activated AMPK could enhance catabolism,inhibite the synthesis,increase ATP levels,and is also involved in the regulation of glycometabolism,cholesterol metabolism,fatty acid and protein metabolism and other metabolic processes.It provides energy reserves for the growth of cells to deal with the lack of energy.Meanwhile,activated AMPK is closely related to the neovascularization,metastasis,inflammation and other pathological processes.In this paper,the structure of AMPK,the activation mechanism,the participation in the energy metabolism of the material and the association with tumor formation are reviewed.
AMP-activated protein kinase(AMPK);Energy metabolism;Tumor formation
R730
A
1003—6350(2017)01—0111—05
2016-05-08)
國家自然科學(xué)基金(編號:81472469)
傅念。E-mail:2002funian@163.com
10.3969/j.issn.1003-6350.2017.01.035