徐龍?jiān)疲?張英杰, 董 鵬, 孫 鑫, 勾 凱, 孟 奇, 李 彬
1.昆明理工大學(xué)材料科學(xué)與工程學(xué)院, 云南 昆明 650032 2.昆明理工大學(xué)冶金與能源工程學(xué)院, 云南 昆明 650032 3.昆明理工大學(xué)環(huán)境科學(xué)與工程學(xué)院學(xué)院, 云南 昆明 650032 4.鋰離子電池及材料制備技術(shù)國家地方聯(lián)合工程實(shí)驗(yàn)室, 云南 昆明 650032
陰極電解液對Cd污染紅壤電動修復(fù)的影響
徐龍?jiān)?,4, 張英杰1,2,4*, 董 鵬2,4, 孫 鑫3,4, 勾 凱1,4, 孟 奇2,4, 李 彬3,4
1.昆明理工大學(xué)材料科學(xué)與工程學(xué)院, 云南 昆明 650032 2.昆明理工大學(xué)冶金與能源工程學(xué)院, 云南 昆明 650032 3.昆明理工大學(xué)環(huán)境科學(xué)與工程學(xué)院學(xué)院, 云南 昆明 650032 4.鋰離子電池及材料制備技術(shù)國家地方聯(lián)合工程實(shí)驗(yàn)室, 云南 昆明 650032
針對土壤重金屬電動修復(fù)過程中陰極電解室pH升高會對重金屬的去除產(chǎn)生不利影響的問題,利用Fe3+Fe2+、Cu2+Cu標(biāo)準(zhǔn)電極電位較高的優(yōu)勢,以人工模擬Cd污染紅壤為研究對象,對不同陰極電解液〔Fe(NO3)3、CuSO4、檸檬酸〕的電動修復(fù)效果進(jìn)行系統(tǒng)分析.結(jié)果表明:分別將Fe(NO3)3、CuSO4、檸檬酸加入陰極電解室中,pH均控制在2~3,電動修復(fù)10 d后發(fā)現(xiàn),將Fe(NO3)3溶液、CuSO4溶液和檸檬酸作為陰極電解液均可以有效控制陰極室的pH,CuSO4溶液、檸檬酸的加入對土壤中Cd的去除效果較差,而且Cu2+的加入增加了土壤重金屬二次污染的風(fēng)險(xiǎn).相對于CuSO4、檸檬酸試驗(yàn)組,F(xiàn)e(NO3)3試驗(yàn)組土壤中Cd的去除率較高(大于87.27%),F(xiàn)e(NO3)3試驗(yàn)組對土壤中Cd的修復(fù)效果也最為明顯,土壤中w(Cd)由陰極附近的75.95 mgkg降至陽極附近的9.13 mgkg.分析電動修復(fù)后各試驗(yàn)組中不同形態(tài)Cd在Cd總量中所占比例的分析,結(jié)果顯示,w(弱酸提取態(tài)Cd)所占比例由初始的74.57%最高可達(dá)到92.69%〔Fe(NO3)3試驗(yàn)組〕,表明Fe(NO3)3的加入有助于促進(jìn)土壤中Cd的遷移.研究顯示,相比于CuSO4溶液、檸檬酸,F(xiàn)e(NO3)3溶液作為陰極電解液在控制陰極電解室pH升高的前提下,顯著促進(jìn)了土壤中Cd的解吸和遷移,并達(dá)到最佳修復(fù)效果.
土壤; Cd; 電動修復(fù); 陰極電解液
Cd是土壤重金屬污染的重要元素之一,含Cd污染物進(jìn)入土壤會對土壤產(chǎn)生持久性污染,并對人類健康產(chǎn)生巨大危害[1- 2].我國每年受重金屬污染的糧食產(chǎn)量達(dá)1.2×107t,直接經(jīng)濟(jì)損失達(dá)200×108元,受Cd污染的耕地面積超過13×104hm2[3- 5],因此土壤Cd污染問題亟待解決[6].
目前,在治理土壤Cd污染過程中,電動修復(fù)技術(shù)得到了國內(nèi)外研究人員的高度重視,該技術(shù)主要通過電遷移、電滲流方式將土壤中重金屬遷移出來[7- 9].土壤pH是影響電動修復(fù)效果的最主要因素[10- 11].在不控制陰極電解室pH的情況下,由于電解液中水電離產(chǎn)生的H+在陰極放電導(dǎo)致OH-濃度上升,大量的OH-形成可移動的堿性帶向土壤中遷移,促使土壤pH升高[12].土壤pH升高促使Cd形成Cd(OH)2、CdCO3等重金屬沉淀[13- 14],降低土壤Cd的去除效率[15- 17],而且所產(chǎn)生的重金屬沉淀還會堵塞土壤微孔,使土壤電導(dǎo)率降低[18- 20].Almeira等[21]在利用電動修復(fù)技術(shù)對人工Cd污染高嶺土進(jìn)行電動修復(fù)時(shí)發(fā)現(xiàn),發(fā)現(xiàn)當(dāng)利用0.06 molL的HNO3對陰極電解室pH進(jìn)行控制時(shí),高嶺土中98%的Cd得到去除.Lee等[22]采用微生物-電動修復(fù)技術(shù)對尾礦中重金屬進(jìn)行去除,通過向尾礦中加入硫氧菌來氧化尾礦中的硫,產(chǎn)物H2SO4能夠降低尾礦中pH,使Cd的去除率達(dá)到33.9%,而沒有添加硫氧菌的對照組中Cd的去除率僅為17.3%.LIU等[23]研究Cd污染廢棄工業(yè)場地時(shí),采用對換電極的方式控制土壤pH為5~7,Cd的去除率最高可達(dá)到94%.可見,在分析土壤Cd污染電動修復(fù)過程中,土壤pH升高問題是電動修復(fù)技術(shù)領(lǐng)域的研究熱點(diǎn).
Fe3+Fe2+、Cu2+Cu具有較高的標(biāo)準(zhǔn)電極電位(Eθ),在陰極惰性電極附近陽離子放電順序?yàn)镕e3+>Cu2+>水中電離H+.該研究以云南紅壤為研究對象,針對陰極電解室水電離產(chǎn)生的H+放電現(xiàn)象,向陰極電解室加入含F(xiàn)e3+、Cu2+的鹽溶液,研究該類溶液作為陰極電解液對紅壤中重金屬Cd電動修復(fù)效果的影響,以期為Cd污染土壤的電動修復(fù)提供技術(shù)參考.
1.1 試驗(yàn)土壤
所用土壤樣取自昆明理工大學(xué)校園內(nèi)的紅壤(0~20 cm),經(jīng)風(fēng)干搗碎,去除雜質(zhì),研磨并過20目(約0.841 mm)篩.將土壤樣品與Cd(NO3)2·4H2O在塑料桶中混勻后加水培養(yǎng),在室溫下培養(yǎng)2 a.根據(jù)土壤基本理化性質(zhì)測試方法[24],測試結(jié)果如表1所示.
表1 土壤基本理化性質(zhì)
1.2 試驗(yàn)裝置
電動修復(fù)所用的試驗(yàn)裝置為自行設(shè)計(jì),利用有機(jī)玻璃加工而成,外形呈矩形,主要分為三部分,即中間的土壤室以及兩邊的陰陽電極室(見圖1).土壤室內(nèi)部尺寸(長×寬×高)為20 cm×5 cm×5 cm,陰陽電極室為6 cm×5 cm×5 cm.試驗(yàn)裝置還包括直流穩(wěn)壓電源、石墨電極以及pH自動控制系統(tǒng).隨著試驗(yàn)的進(jìn)行,電解液也隨之消耗,將pH電極放置在陰極電解室的石墨電極旁來檢測陰極室pH,并通過控制系統(tǒng)向陰極室添加對應(yīng)的電解液來控制pH.
注: 1—直流穩(wěn)壓電源;2—pH監(jiān)控器;3—蠕動泵;4—陰極電解液;5—陽極電解室;6—陰極電解室;7—土壤;8—陽極;9—陰極;10—pH檢測電極;11—溢流孔;12—電流表;13—電壓表. P1~P4為采樣區(qū)域編號.圖1 電動修復(fù)裝置Fig.1 Electrokinetic remediation device
1.3 試驗(yàn)方法
試驗(yàn)共設(shè)置4組電動修復(fù)試驗(yàn)(見表2).試驗(yàn)前,將處理好的污染土壤樣品裝入土壤室,用去離子水飽和土壤12 h,按各試驗(yàn)設(shè)計(jì)方案加入電解液后連接電源,電壓梯度設(shè)置為1.5 Vcm.試驗(yàn)過程中采用115C萬用表測定電流變化.試驗(yàn)結(jié)束時(shí),將土壤從陰極到陽極平分為四部分,長度均為5 cm,分別編號為P1、P2、P3、P4.將各部分土壤取出放入鋁盒,在真空干燥箱中80 ℃下干燥24 h,過100目(0.147 mm)篩并充分混勻,對土壤重金屬進(jìn)行形態(tài)提取并測定其含量,另外測定土壤中w(Cd)、pH、電導(dǎo)率等指標(biāo).
表2 電動修復(fù)試驗(yàn)設(shè)計(jì)方案
土壤重金屬Cd形態(tài)分析參照歐洲參考交流局(European Community Bureau of Reference)提出的BCR提取法[25].操作步驟:①w(弱酸提取態(tài)Cd)測定.準(zhǔn)確稱取土壤樣品1.0 g置于100 mL離心管中,加入40 mL 0.1 molL乙酸,在室溫下連續(xù)振蕩16 h,3 000 rmin下離心20 min,取上清液,利用ICE 3300原子吸收光譜儀(美國賽默飛世爾科技公司)測得w(弱酸提取態(tài)Cd).往殘余物中加入20 mL去離子水并振蕩15 min后在3 000 rmin下離心20 min,倒掉上清液完成清洗步驟.②w(可還原態(tài)Cd)測定.向第①步剩余土壤中加入40 mL 0.5 molL NH4OH·HCl,其余步驟同①.③w(可氧化態(tài)Cd)測定.向第②步剩余土壤中加入10 mL H2O2,并將pH調(diào)至2~3,在室溫下靜置1 h后再加入10 mL H2O2,將其轉(zhuǎn)移至恒溫水浴鍋中85 ℃下保持1 h,加入50 mL 1 molL NH4OAc,其余步驟同①.④w(殘?jiān)鼞B(tài)Cd)測定.將第③步剩余土壤在HF-HClO4-HNO3體系中進(jìn)行消解,取消解液即可測得w(殘?jiān)鼞B(tài)Cd).采用HF-HClO4-HNO3方法對土壤進(jìn)行消解,測定消解液中的w(Cd).
土壤pH采用PHS- 29A型數(shù)字酸度計(jì)(上海大普儀器有限公司)測定;電導(dǎo)率采用MH-WSY土壤三參儀(北京博倫經(jīng)緯科技發(fā)展有限公司)測定,水土比為2.5∶1;陽離子交換容量采用乙酸銨提取法測定;土壤粒徑分布采用Mastersizer 2000激光粒度儀(英國馬爾文儀器有限公司)測定;將土壤置于600 ℃馬弗爐中,根據(jù)重量分析方法測定其有機(jī)質(zhì)含量;土壤含水率采用環(huán)刀法測得[26].
各土壤樣品均平行測定3次并取其平均值,土壤中Cd的去除率以及不同形態(tài)Cd質(zhì)量分?jǐn)?shù)所占比例均在平均值基礎(chǔ)上計(jì)算得到.
2.1 電動修復(fù)過程中電流變化
電動修復(fù)過程中不同陰極電解液試驗(yàn)組的電流隨時(shí)間的變化情況如圖2所示.由圖2可見,對于EK1,0~10 h內(nèi)電流由最初的2 mA增至最大值(4 mA),并在128 h后穩(wěn)定在2 mA左右;EK2最初電流為3 mA,修復(fù)至第23小時(shí)達(dá)到最大值(8 mA),125 h后穩(wěn)定在7 mA左右;EK4最初電流為4 mA,修復(fù)至第2小時(shí)達(dá)到最大值(5 mA),128 h后穩(wěn)定在2 mA左右.可見,EK1、EK2、EK4的電流變化趨勢基本一致,先增后減并趨于穩(wěn)定,該變化過程比較平緩,這是由于電動修復(fù)初期土壤中可移動離子較多,陽極水電解產(chǎn)生的H+以較快的速度在孔隙液中向陰極遷移會溶解、解吸產(chǎn)生更多可移動離子,使孔隙液中離子濃度增加.電流增大[27].LI等[28]研究表明,當(dāng)土壤pH降低時(shí),孔隙液中的離子濃度會通過沉淀溶解、土壤顆粒表面解吸的方式增加.對比分析顯示,EK4電流的峰值稍高于EK2,這是因?yàn)闄幟仕岬膒H為2.4,其酸性值高于CuSO4(pH為2.7).與EK2、EK3、EK4相比,EK1陰極電解室的pH最高,其電流最低.修復(fù)一段時(shí)間后,土壤中大部分可移動離子在電遷移等作用下遷移出土壤,電流隨之降低.當(dāng)從土壤中遷移出的可移動離子與土壤中后期溶解、解吸出的可移動離子處于平衡狀態(tài)時(shí),電流會穩(wěn)定在一定范圍內(nèi).EK3修復(fù)初期電流也在緩慢增加,中后期電流迅速增至最大值(740 mA),之后開始降低,最小值(41 mA)出現(xiàn)在第190小時(shí).EK3的電流始終大于其余3組,這是由于Fe3+在陰極電極附近的放電能力較強(qiáng),電解液中Fe3+消耗速度會相應(yīng)增加,需要加入更多Fe(NO3)3溶液來控制陰極室pH,致使電動體系中可移動離子的濃度增加.
圖2 電動修復(fù)過程中電流變化Fig.2 Current changes in the process of electrokinetic remediation
2.2 電動修復(fù)后土壤pH分布
電動修復(fù)后土壤不同部位pH的變化情況如圖3所示.由于水的電解作用導(dǎo)致EK1土壤中靠近陽極室P4處的pH低于初始值,但P2、P3以及靠近陰極室P1的pH均高于初始值.有的研究[29]也發(fā)現(xiàn)了此類現(xiàn)象.EK4以檸檬酸作為陰極電解液,可以中和陰極產(chǎn)生的OH-[30],從而控制陰極電解室pH(2~3).由于Eθ(Fe3+Fe2+)>Eθ(Cu2+Cu)>Eθ(H2OH2),所以陰極電解液中Fe3+或Cu2+率先被還原[31],阻止了水中H+在陰極附近的放電過程,從而達(dá)到控制陰極電解室pH的目的(EK2陰極電極室石墨電極表面有Cu析出,EK3陰極電解液中含有可以使K3[Fe(CN)6]變?yōu)樯钏{(lán)色沉淀的Fe2+).陰極電解室pH控制在2~3,并且陽極電解室水電解產(chǎn)生的H+通過土壤向陰極遷移,使得EK2、EK3土壤pH在整體上都明顯低于初始值,表明Fe(NO3)3、CuSO4溶液作為陰極電解液對陰極電解室的pH控制效果顯著.
注: P<0.05.圖3 電動修復(fù)后土壤pH分布Fig.3 Distribution of soil pH after electrokinetic remediation
2.3 土壤中w(Cd)及Cd的去除率
由圖4可見,不同處理?xiàng)l件下,位于陰極區(qū)附近P1處的w(Cd)均高于陽極區(qū)P4處.Sah等[32]在研究中性沙壤土Cd的電動修復(fù)時(shí)發(fā)現(xiàn),由于陰極電解室附近的pH較高,修復(fù)結(jié)束后在距離陰極4 cm處的土壤中w(Cd)最高.
對于EK1,在P1、P4處w(Cd)分別為474.64、306.51 mgkg,Cd去除率由P1處的2.15%升至P4處的35.74%.
對于EK2,由于控制了陰極電解室的pH,在P4處w(Cd)較EK1低,為38.01 mgkg,Cd去除率為93.5%;在P3處w(Cd)達(dá)到1 308.62 mgkg,說明該區(qū)域發(fā)生了Cd的聚集[33].從土壤Cd的去除效果來看,EK2由于Cd聚集現(xiàn)象的產(chǎn)生,沒有提高電動修復(fù)效果.
EK4中w(Cd)表現(xiàn)為近電極室部位較低、土壤中間部位較高,P1、P2、P3、P4處w(Cd)分別為301.79、476.99、471.06、51.02 mgkg.Cd去除率的最高值出現(xiàn)在P4處,為88.98%.Cd主要集聚在土壤中間部位,這是由于加入檸檬酸作為陰極電解液,并控制陰極電解室pH在2~3,這種條件下檸檬酸通常以H2L-、HL2-、H3L的形式存在并與Cd形成帶有負(fù)電荷的絡(luò)合物,該絡(luò)合物通過電遷移向陽極進(jìn)行移動,而Cd2+通過電遷移向陰極移動,由此導(dǎo)致Cd在土壤中間部位的聚集[34].Labanowski等[35]在檸檬酸提取農(nóng)田Cd污染土壤試驗(yàn)時(shí)發(fā)現(xiàn),檸檬酸與Cd會形成Me[citrate]-形式的絡(luò)合物.
對比EK1、EK2、EK4可以發(fā)現(xiàn),加入CuSO4和檸檬酸在修復(fù)試驗(yàn)中所用的紅壤時(shí)重金屬去除率較低.而對于EK3,P1、P2、P3、P4處w(Cd)分別為75.95、16.25、25.57、9.13 mgkg,Cd的去除率由P1處的87.27%升至P4處的98.29%.相對于EK1、EK2、EK4,EK3土壤 Cd平均去除率較高的可能原因是:①將Fe(NO3)3作為陰極電解液,控制陰極pH在2~3之間,促使土壤中Cd解吸進(jìn)入孔隙液中;②陰極電解室Fe3+濃度較高,土壤孔隙液中Fe3+濃度較低,由此導(dǎo)致Fe3+從陰極電解室向土壤孔隙液中擴(kuò)散,F(xiàn)e3+因具有較高的價(jià)態(tài)而在土壤顆粒表面上對其他離子的吸附親和力較強(qiáng),從而使很多陽離子(如Cd2+)解吸進(jìn)入孔隙液中;③由于Fe3+吸附在土壤顆粒表面,導(dǎo)致土壤顆粒擴(kuò)散雙電子層厚度減小,進(jìn)而降低土壤顆粒之間的排斥力,范德華力增加,同時(shí)產(chǎn)生絮凝現(xiàn)象,絮凝結(jié)構(gòu)會增加土壤顆??紫?,這樣就增加了離子在孔隙液中的移動速度,解吸出來的重金屬離子就會得到有效遷移,同時(shí)土壤中的電導(dǎo)率系數(shù)增加,電流隨之提高,這也是圖2中EK3的電流較其他3組試驗(yàn)偏高的另一個(gè)重要原因[36- 37].
注: P<0.05.圖4 土壤截面各采樣區(qū)域的w(Cd)及Cd的去除率Fig.4 The concentration and removal rate of Cd in each section of soil
2.4 土壤中重金屬Cd的形態(tài)變化
由圖5可見,原始土壤中,弱酸提取態(tài)、可還原態(tài)、可氧化態(tài)、殘?jiān)鼞B(tài)Cd的質(zhì)量分?jǐn)?shù)所占比例分別為74.57%、18.87%、6.55%、0.002%,電動修復(fù)后土壤截面各采樣區(qū)域內(nèi)4種形態(tài)Cd的質(zhì)量分?jǐn)?shù)所占比例均存在差異.Kim等[38]在研究尾礦重金屬電動修復(fù)時(shí)發(fā)現(xiàn),土壤中重金屬形態(tài)對其電動修復(fù)效果有重要的影響.
圖5 土壤截面各采樣區(qū)域不同形態(tài)Cd質(zhì)量分?jǐn)?shù)所占比例Fig.5 The proportion Cd fractions in each section of soil
對于弱酸提取態(tài)Cd,經(jīng)電動修復(fù)后,4組試驗(yàn)中w(弱酸提取態(tài)Cd)所占比例均有所增加(除EK1中P1處為73.38%),而EK3中相應(yīng)值較w(弱酸提取態(tài)Cd)初始值的增幅最大,其P1、P2、P3、P4處w(弱酸提取態(tài)Cd)分別為79.97%、92.69%、91.29%、90.60%.彭桂群等[39]在研究電動修復(fù)增強(qiáng)技術(shù)去除電鍍污泥重金屬的過程中發(fā)現(xiàn),經(jīng)電動修復(fù)處理后污泥中各形態(tài)重金屬含量所占比例變化是由穩(wěn)定態(tài)向不穩(wěn)定態(tài)的弱酸提取態(tài)的轉(zhuǎn)變.對于EK1,由于在試驗(yàn)過程中沒有調(diào)節(jié)陰極電解室pH,P1處土壤pH較高,致使P1處w(弱酸提取態(tài)Cd)所占比例較w(弱酸提取態(tài)Cd)的初始值低,說明pH的升高不利于土壤中其他形態(tài)Cd向弱酸提取態(tài)Cd的轉(zhuǎn)變.元素的化學(xué)形態(tài)與其生物毒性、遷移性密切相關(guān)[40].吳新民等[41]在研究土壤中Cd、Pb、Cu等元素含量及其形態(tài)特征時(shí)發(fā)現(xiàn),由于弱酸提取態(tài)重金屬與土壤顆粒表面結(jié)合較弱,在自然環(huán)境中更易被釋放出來,因此具有可移動性強(qiáng)、生物危害性大的特點(diǎn).
4組試驗(yàn)中,電動修復(fù)后土壤中w(可還原態(tài)Cd)所占比例均有所降低.Sah等[42]發(fā)現(xiàn),電動修復(fù)過程可以有效降低土壤中可還原態(tài)重金屬含量.由于P4位置靠近陽極電解室,該處土壤pH較低,修復(fù)后土壤中w(可還原態(tài)Cd)所占比例較其他部位更低,在EK1、EK2、EK3、EK4中P4處w(可還原態(tài)Cd)分別為8.35%、10.43%、1.09%、3.31%.說明pH降低有助于可還原態(tài)Cd在土壤顆粒表面的解吸.
電動修復(fù)后各試驗(yàn)組土壤中w(可氧化態(tài)Cd)所占比例均有所增加,可能是因?yàn)樵陔妱有迯?fù)過程中,土壤中部分重金屬離子解吸進(jìn)入孔隙液后又以絡(luò)合物的形式重新吸附在土壤顆粒表面,進(jìn)而形成可氧化態(tài)Cd.
2.5 能耗及陰極電解液消耗
各組試驗(yàn)中能量消耗與陰極電解液消耗量如表3所示.由表3可見,陰極電解液消耗越多,能耗越大.EK2的能耗為179.92 kJ(為EK1能耗的2.13倍),陰極電解液消耗量為625 mL,另外由于在P3處存在Cd的聚集現(xiàn)象,使得修復(fù)后土壤中平均w(Cd)大于修復(fù)前,CuSO4溶液的使用也增加了重金屬對修復(fù)土壤二次污染的可能性.EK3的能耗為2 088.61 kJ(分別為EK1能耗的24.73倍、EK4能耗的13.39倍),陰極電解液消耗量2 000 mL(為EK4消耗量的3.77倍),但其修復(fù)效果最好,Cd的去除率分別為EK1的8.14倍、EK4的2.89倍.
表3 電動修復(fù)試驗(yàn)中能耗與電解質(zhì)的消耗
a) 由于Fe3+Fe2+、Cu2+Cu具有較高的標(biāo)準(zhǔn)電極電位,F(xiàn)e(NO3)3溶液、CuSO4溶液和檸檬酸作為陰極電解液時(shí)可以有效控制陰極室的pH.
b) Fe(NO3)3溶液加入陰極電解室提高了土壤中Cd的解吸和遷移,并達(dá)到最佳修復(fù)效果,土壤中w(Cd)由陰極附近的75.95 mgkg降至陽極附近的9.13 mgkg,Cd的去除率均大于87.27%;同時(shí),w(弱酸提取態(tài)Cd)所占比例由初始值的74.57%最高可達(dá)到92.69%,從而對土壤中Cd的遷移起到促進(jìn)作用.
c) CuSO4、檸檬酸溶液加入陰極電解室對土壤中Cd的去除效果較差,這是由于Cd在土壤中部會產(chǎn)生聚集(最高分別為1 308.62和476.99 mgkg),致使土壤中Cd的去除率較低,而且Cu2+的加入增加了土壤重金屬二次污染的風(fēng)險(xiǎn).
[1] REDDY K R,CHINTHAMREDDY S.Enhanced electrokinetic remediation of heavy metals in glacial till soils using different electrolyte solutions[J].Journal of Environmental Engineering,2004,130(4):442- 455.
[2] GANESN V.Rhizoremediation of cadmium soil using a cadmium-resistant plant growth-promoting rhizo pseudom-onad[J].Current Microbiology,2008,56(4):403- 407.
[3] ACAR Y B,GALE R J,ALSHAWABKEH A N,etal.Electrokinetic remediation:basics and technology status[J].Journal of Hazardous Materials,1995,40(2):117- 137.
[4] HUANG Deqian,XU Quan,CHENG Jiongjia,etal.Electrokinetic remediation and its combined technologies for removal of organic pollutants from contaminated soils[J].International Journal of Electrochemical Science,2012,7(5):4528- 4544.
[5] YEUNG A T.Milestone developments,myths,and future directions of electrokinetic remediation[J].Separation and Purification Technology,2011,79(2):124- 132.
[6] 陳玉娟,溫琰茂,柴世偉.珠江三角洲農(nóng)業(yè)土壤重金屬含量特征研究[J].環(huán)境科學(xué)研究,2005,18(3):75- 77. CHEN Yujuan,WEN Yanmao,CHAI Shiwei.The heavy metal content character of agricultural soil in the Pearl River Delta[J].Research of Environmental Sciences,2005,18(3):75- 77.
[7] REN Dajun,ZHOU Sisi,LI Qian,etal.Enhanced electrokinetic remediation of quinoline-contaminated soils[J].Toxicological & Environmental Chemistry,2016,98(5):585- 600.
[8] KIM S O,MOON S H,WONG M H.Removal of heavy metals from soils using enhanced electrokinetic soil processing[J].Water, Air, and Soil Pollution,2001,125(1):259- 272.
[9] SUZUKI T,MORIBE M,OKABE Y,etal.A mechanistic study of arsenate removal from artificially contaminated clay soils by electrokinetic remediation[J].Journal of Hazardous Materials,2013, 254255:310- 317.
[10] VANE L M,ZANG G M.Effect of aqueous phase properties on clay particle zeta potential and electro-osmotic permeability:implications for electro-kinetic soil remediation processes[J].Journal of Hazardous Materials,1997,55(123):1- 22.
[11] GILL R T,HARBOTTLE M J,SMITH J W N,etal.Electrokinetic-enhanced bioremediation of organic contaminants:a review of processes and environmental applications[J].Chemosphere,2014,107:31- 42.
[12] 李欣.電動修復(fù)技術(shù)機(jī)理及去除污泥和尾砂中重金屬的研究[D].長沙:湖南大學(xué),2007:55- 100.
[13] LI Gang,GUO Shuhai,LI Shucai,etal.Comparison of approaching and fixed anodes for avoiding the ′focusing′ effect during electrokinetic remediation of chromium-contaminated soil[J].Chemical Engineering Journal,2012,203(1):231- 238.
[14] NG Y S,GUPTA B S,HASHIM M A.Remediation of PbCr co-contaminated soil using electrokinetic process and approaching electrode technique[J].Environmental Science and Pollution Research,2016,23(1):546- 555.
[15] ZHOU Dongmei,DENG Changfen,CANG Long,etal.Electrokinetic remediation of a Cu-Zn contaminated red soil by controlling the voltage and conditioning catholyte pH[J].Chemosphere,2005,61(4):519- 527.
[16] CAI Zongping,DOREN J V,F(xiàn)ANG Zhanqiang,etal.Improvement in electrokinetic remediation of Pb-contaminated soil near lead acid battery factory[J].Transactions of Nonferrous Metals Society of China,2015,25(9):3088- 3095.
[17] AHMED O A,DERRICHE Z,KAMECHE M,etal.Electro-remediation of lead contaminated kaolinite:an electro-kinetic treatment[J].Chemical Engineering & Processing Process Intensification,2016,100:37- 48.
[18] LANNELLI R,MASI M,CECCARINI A,etal.Electrokinetic remediation of metal-polluted marine sediments:experimental investigation for plant design[J].Electrochimica Acta,2015,181(1):146- 159.
[19] MASCIA M,VACCA A,PALMAS S.Effect of surface equilibria on the electrokinetic behaviour of Pb and Cd ions in kaolinite[J].Journal of Chemical Technology and Biotechnology,2015,90(7):1290- 1298.
[20] REDDY K R,CHINTHAMREDDY S.Sequentially enhanced electrokinetic remediation of heavy metals in low buffering clayey soils[J].Journal of Geotechnical & Geoenvironmental Engineering,2003,129(3):263- 277.
[21] ALMEIRA J,PENG Changsheng,ABOU-SHADY A.Simultaneous removal of cadmium from kaolin and catholyte during soil electrokinetic remediation[J].Desalination,2012,300(17):1- 11.
[22] LEE K Y,KIM H A,LEE B T,etal.A feasibility study on bioelectrokinetics for the removal of heavy metals from tailing soil[J].Environmental Geochemistry and Health,2011,33(1):3- 11.
[23] LIU Ping,F(xiàn)ENG Qiyan,MENG Qingjun,etal.Electrokinetic remediation of chromium-and cadmium-contaminated soil from abandoned industrial site[J].Separation and Purification Technology,2012,98(19):216- 220.
[24] 魯如坤.土壤農(nóng)業(yè)化學(xué)分析方法[M].北京:中國農(nóng)業(yè)科技出版社,2000:12- 109.
[25] RAURET G,LOPEZ-SANCHEZ J F,SAHUQUILLO A,etal.Application of a modified BCR sequential extraction(three-step)procedure for the determination of extractable trace metal contents in a sewage sludge amended soil reference material(CRM 483),complemented by a three-year stability study of acetic acid and EDTA extractable metal content[J].Journal of Environmental Monitoring,2000,2(3):228- 233.
[26] 史瑞和,鮑士旦,秦懷英.土壤農(nóng)化分析[M].北京:農(nóng)業(yè)出版社,1996:14- 373.
[27] YUAN Ching,WENG Chihuang.Remediating ethylbenzene-contaminated clayey soil by a surfactant-aided electrokinetic (SAEK) process[J].Chemosphere,2004,57(3):225- 232.
[28] LI Zhongming,YU Jiwei,NERETNIEKS I.Removal of Pb(Ⅱ),Cd(Ⅱ)and Cr(Ⅲ)from sand by electromigration[J].Journal of Hazardous Materials,1997,55(123):295- 304.
[29] NARASIMHAN B,RANJAN R S.Electrokinetic barrier to prevent subsurface contaminant migration:theoretical model development and validation[J].Journal of Contaminant Hydrology,2000,42(1):1- 17.
[30] COLETTA T F,BRUELL C J,RYAN D K,etal.Cation-enhanced removal of lead from kaolinite by electrokinetics[J].Journal of Environmental Engineering,1997,123(12):1227- 1233.
[31] ACAR Y B,ALSHAWABKEH A N.Principles of electrokinetic remediation[J].Environmental Science & Technology,1993,27(13):2638- 2647.
[32] SAH J G,CHEN J Y.Study of the electrokinetic process on Cd and Pb spiked soils[J].Journal of Hazardous Materials,1998,58(123):301- 315.
[33] 樊廣萍,朱海燕,郝秀珍,等.不同的增強(qiáng)試劑對重金屬污染場地土壤的電動修復(fù)影響[J].中國環(huán)境科學(xué),2015,35(5):1458- 1465. FAN Guangping,ZHU Haiyan,HE Xiuzhen,etal.Electrokinetic remediation of an electroplating contaminated soil with different enhancing electrolytes[J].China Environmental Science,2015,35(5):1458- 1465.
[34] 吳嬋.鎘污染土壤的電動力學(xué)修復(fù)研究[D].武漢,華中科技大學(xué),2007:32- 37.
[35] LABANOWSKI J,MONNA F,BERMOND A,etal.Kinetic extractions to assess mobilization of Zn,Pb,Cu,and Cd in a metal-contaminated soil:EDTAvs.citrate[J].Environmental Pollution,2008,152(3):693- 701.
[36] CAMESELLE C,CHIRAKKARA R A,REDDY K R.Electrokinetic-enhanced phytoremediation of soils:status and opportunities[J].Chemosphere,2013,93(4):626- 636.
[37] YEUNG A T,GU Yingying.A review on techniques to enhance electrochemical remediation of contaminated soils[J].Journal of Hazardous Materials,2011,195:11- 29.
[38] KIM S O,KIM K W,STUBEN D.Evaluation of electrokinetic removal of heavy metals from tailing soils[J].Journal of Environmental Engineering,2002,128(8):705- 715.
[39] 彭桂群,田光明.采用電動修復(fù)增強(qiáng)技術(shù)去除電鍍污泥中重金屬[J].中國環(huán)境科學(xué),2010,30(3):349- 356. PENG Guiqun,TIAN Guangming.Removal of heavy metals from electroplating sludge by electrokinetic enhancement technology[J].China Environmental Science,2010,30(3):349- 356.
[40] 韓春梅,王林山,鞏宗強(qiáng),等.土壤中重金屬形態(tài)分析及其環(huán)境學(xué)意義[J].生態(tài)學(xué)雜志,2005,24(12):1499- 1502. HAN Chunmei,WANG Linshan,GONG Zongqiang,etal.Chemical forms of soil heavy metals and their environmental significance[J].Chinese Journal of Ecology,2005,24(12):1499- 1502.
[41] 吳新民,李戀卿,潘根興,等.南京市不同功能城區(qū)土壤中重金屬Cu,Zn,Pb和Cd的污染特征[J].環(huán)境科學(xué),2003,24(3):105- 111. WU Xinmin,LI Lianqing,PAN Genxing,etal.Soil pollution of Cu,Zn,Pb and Cd in different city zones of Nanjing[J].Environmental Science,2003,24(3):105- 111.
[42] SAH J G,LIN L Y.Electrokinetic study on copper contaminated soils[J].Journal of Environmental Science & Health Part A,2000,35(7):1117- 1139.
Effects of Cathode Electrolyte on Electrokinetic Remediation of Cadmium-Contaminated Red Soil
XU Longyun1,4, ZHANG Yingjie1,2,4*, DONG Peng2,4, SUN Xin3,4, GOU Kai1,4, MENG Qi2,4, LI Bin3,4
1.Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650032, China 2.Faculty of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650032, China 3.Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650032, China 4.National and Local Jocal Joint Engineering Laboratory for Lithium-Ion Batteries and Materials Preparation Technology, Kunming 650032, China
Increasing pH in the cathode electrolysis room during electrokinetic remediation has a detrimental effect on the removal of heavy metals. To resolve this problem, the effects of different cathode electrolytes (ferric nitrate, copper sulfate and citric acid) were systematically studied on the electrokinetic remediation of Cd-contaminated red soil based on the higher standard electrode potentials of Fe3+Fe2+and Cu2+Cu. The experimental results indicated that after ten days of electrokinetic remediation with ferric nitrate, copper sulfate and citric acid, whose pH were all kept at 2-3, the removal efficiency of Cd in soil was above 87.27% by adding ferric nitrate into the cathode. In addition,w(Cd) in soil decreased from 75.95 mgkg around the cathode to 9.13 mgkg around the anode. The removal efficiencies of Cd in soil decreased when adding copper sulfate and citric acid into the cathode. The addition of Cu2+increased the risk of heavy metal pollution in the soil. In addition, the proportion of weak acid extractable Cd in the soil increased to a maximum of 92.69% from the initial value of 74.57% by adding ferric nitrate, which promoted the migration of Cd in the soil. The research suggests that when adding the ferric nitrate solution as the cathode, the pH of the cathode electrolysis chamber was controlled, and the desorption and migration of Cd in soil was significantly promoted. Eventually, the removal efficiency of Cd in soil was more significant.
soil; Cd; electrokinetic remediation; cathode electrolyte
2016- 05- 22
2016- 10- 10
云南省環(huán)境保護(hù)專項(xiàng)資金
徐龍?jiān)?1990-),男,山東巨野人,1095703453@qq.com.
*責(zé)任作者,張英杰(1963-),女,黑龍江雙鴨山人,教授,博士,博導(dǎo),主要從事環(huán)境電化學(xué)研究,yingjie@kmust.edu.cn
X53
1001- 6929(2017)02- 0267- 08
A
10.13198j.issn.1001- 6929.2017.01.29
徐龍?jiān)?,張英杰,董鵬,等.陰極電解液對Cd污染紅壤電動修復(fù)的影響[J].環(huán)境科學(xué)研究,2017,30(2):267- 274.
XU Longyun,ZHANG Yingjie,DONG Peng,etal.Effects of cathode electrolyte on electrokinetic remediation of cadmium-contaminated red soil[J].Research of Environmental Sciences,2017,30(2):257- 274.