陳丹梅 袁 玲,* 黃建國 冀建華 侯紅乾 劉益仁,*
?
長期施肥對南方典型水稻土養(yǎng)分含量及真菌群落的影響
陳丹梅1袁 玲1,*黃建國1冀建華2侯紅乾2劉益仁2,*
1西南大學(xué)資源環(huán)境學(xué)院, 重慶 400716;2江西省農(nóng)業(yè)科學(xué)院土壤肥料與資源環(huán)境研究所, 江西南昌 330200
利用江西省農(nóng)業(yè)科學(xué)院31年的長期肥料定位試驗(yàn), 選取不施肥(對照)、單施化肥、70%化肥配施30%有機(jī)肥、50%化肥配施50%有機(jī)肥和30%化肥配施70%有機(jī)肥等5個處理, 通過常規(guī)分析和454-高通量測序技術(shù), 研究了長期不同施肥條件下, 我國南方典型水稻土養(yǎng)分含量和真菌群落結(jié)構(gòu)的變化。結(jié)果表明, 在酸性水稻土上, 長期單施化肥顯著降低土壤pH值, 但隨著有機(jī)肥配施比例的提高pH明顯上升; 有機(jī)和無機(jī)肥配施顯著提高土壤有機(jī)質(zhì)、有效氮磷含量以及微生物碳氮量。單施化肥土壤真菌18S rDNA序列數(shù)比配施有機(jī)肥的多1倍, 但真菌種(屬)數(shù)減少了11~40種; 前20種優(yōu)勢真菌的豐富度占真菌總量的78.82%~91.51%, 以子囊菌最多(7~13種), 所占比例最大(23.13%~75.09%); 與對照相比, 配施有機(jī)肥的土壤中有14~15種優(yōu)勢真菌與之相同, 而單施化肥的土壤中僅有10種一致; 主成分分析結(jié)果表明單施化肥處理的真菌群落組成與其他各處理存在顯著差異。因此, 單施化肥造成土壤酸化加劇, 真菌數(shù)量成倍增加, 但種類顯著減少, 其豐富度和多樣性明顯降低, 并改變優(yōu)勢真菌種群, 相應(yīng)提高了土壤病原真菌過度繁殖的風(fēng)險(xiǎn)。而有機(jī)和無機(jī)肥配施有利于維持水稻土壤健康生態(tài)環(huán)境和真菌種群多樣性。
長期施肥; 水稻; 土壤養(yǎng)分; 真菌
在水稻種植過程中, 施肥對產(chǎn)量和品質(zhì)的貢獻(xiàn)僅次于品種[1]。肥料不僅供給植物營養(yǎng), 而且直接影響土壤理化及生物學(xué)性質(zhì), 如pH、有機(jī)質(zhì)、有效養(yǎng)分和微生物種群結(jié)構(gòu)等。
土壤有機(jī)質(zhì)、養(yǎng)分和微生物與作物產(chǎn)量和病害密切相關(guān)[2]。目前, 國內(nèi)外已進(jìn)行了大量的中短期肥料試驗(yàn), 發(fā)現(xiàn)施肥對土壤的影響十分復(fù)雜, 因土壤類型、生態(tài)條件和施肥技術(shù)等不同而異[3-6]。在單施化肥的土壤中, 有機(jī)質(zhì)含量通常降低, 養(yǎng)分失調(diào), 作物病害加重[7]; 相反, 有機(jī)無機(jī)配施則提高土壤有機(jī)質(zhì)和有效養(yǎng)分含量, 增加作物產(chǎn)量, 改善作物品質(zhì)[8]。但長期施肥對土壤的影響不同于中短期肥料試驗(yàn), 需要多年和多點(diǎn)的系統(tǒng)研究。真菌是土壤微生物的重要組成, 直接影響土壤有機(jī)質(zhì)循環(huán)、養(yǎng)分轉(zhuǎn)化、毒物降解和作物病害發(fā)生等[9-11], 是土壤肥力和健康的重要指標(biāo)之一[12]。研究表明, 長期施用有機(jī)肥提高潮土中微生物生物量, 改變細(xì)菌、真菌和放線菌之間的比例關(guān)系[13]; 秸稈還田和施用EM菌(Effective Microorganisms)堆肥提高土壤真菌的Shannon-Winner多樣性指數(shù), 大量施用化肥則相反[14]。在種植烤煙的土壤中, 真菌種類包括子囊菌門(Ascomycota)、擔(dān)子菌門(Basidiomycota)、接合菌門(Zygomycota)、壺菌門(Chytridiomycota)和未知類型的真菌; 單施化肥提高擔(dān)子菌門、接合菌門和壺菌門等真菌的豐富度; 在有機(jī)無機(jī)配施的土壤中, 子囊菌的增幅顯著高于單施化肥[7]。在土壤真菌的研究中, 常規(guī)培養(yǎng)法僅能獲得0.7%左右的可培養(yǎng)真菌[15], 磷脂脂肪酸法通常只能檢測出18:1w9c和18:3w6c (6,9,12)[16], PCR-DGGE法也難于甄別單個真菌的基因序列[17]。然而, 在自然環(huán)境中棲息著350~510萬種真菌[18-19], 目前人類僅認(rèn)識其中的5%~10%[20], 更缺乏對土壤真菌的深入了解。高通量測序技術(shù)針對真菌18S rDNA的保守性, 先提取、擴(kuò)增、純化、定量和均一化真菌DNA序列, 再經(jīng)測序、過濾、優(yōu)化、聚類, 對比基因庫中的已知序列, 從而鑒別真菌種(屬)類, 是傳統(tǒng)培養(yǎng)方法所獲得微生物數(shù)量的數(shù)十倍甚至數(shù)百倍, 能準(zhǔn)確靈敏地檢測土壤真菌[21]。
國內(nèi)外關(guān)于在長期施肥條件下水稻土真菌群落結(jié)構(gòu)的研究甚少[22-23]。本文利用常規(guī)分析和454-高通量測序技術(shù), 研究長期施肥對我國南方典型水稻土養(yǎng)分和真菌種群結(jié)構(gòu)的影響, 旨在了解其演變規(guī)律, 為水稻高產(chǎn)優(yōu)質(zhì)及構(gòu)建良好的土壤生態(tài)環(huán)境提供理論依據(jù)。
1.1 試驗(yàn)地概況
江西省南昌縣江西省農(nóng)業(yè)科學(xué)院的試驗(yàn)農(nóng)場, 地處東經(jīng)115°94′, 北緯28°57′, 海拔25 m。年均氣溫17.5℃, ≥10℃積溫5400℃, 年降雨量1600 mm, 年蒸發(fā)量1800 mm, 無霜期280 d。供試土壤為第四紀(jì)亞紅黏土母質(zhì)發(fā)育的典型、具有代表性的中潴黃泥田, 肥力中等, 0~20 cm耕層土壤的初始pH 6.50, 含有機(jī)質(zhì)25.61 g kg–1、堿解氮81.6 mg kg–1、有效磷20.8 mg kg–1、速效鉀35.0 mg kg–1。
1.2 試驗(yàn)設(shè)計(jì)
采用早稻-晚稻-休閑種植制度, 1984年春設(shè)不施肥(CK); 單施氮磷鉀化肥(NPK); 70%化肥配合30%有機(jī)肥(70F+30M); 50%化肥配合50%有機(jī)肥(50F+50M); 30%化肥配合70%有機(jī)肥(30F+70M)等5種施肥模式。小區(qū)面積33.3 m2, 用水泥田埂(深0.7 m, 寬0.5 m)分隔, 獨(dú)立排灌。早、晚稻栽培的窩距×行距分別為13.3 cm × 23.3 cm和16.7 cm × 26.7 cm, 選用當(dāng)?shù)刂魍破贩N, 一般3~5年更換一次。早稻施純N 150 kg hm–2、P2O560 kg hm–2、K2O 150 kg hm–2; 晚稻施純N 180 kg hm–2、P2O560 kg hm–2、K2O 150 kg hm–2。分別由尿素(含N 46%)、過磷酸鈣(含P2O512%)、氯化鉀(含K2O 60%)和有機(jī)肥提供。早稻和晚稻的有機(jī)肥分別為紫云英(鮮草養(yǎng)分含量按照N 0.30%、P2O50.08%、K2O 0.23%計(jì))和豬糞(養(yǎng)分含量按照N 0.45%、P2O50.19%、K2O 0.60%計(jì))。全部磷肥、有機(jī)肥和50%的氮肥做基肥, 剩余的氮肥分2次均施于分蘗期和幼穗分化期, 并同時各施50%的鉀肥。設(shè)3次重復(fù), 隨機(jī)區(qū)組排列, 田間管理同當(dāng)?shù)卮筇锷a(chǎn)。
1.3 樣品采集與測定
在2014年10月初, 采集晚稻灌漿期0~20 cm的耕層土壤, 濾掉多余水分, 揀去雜物, 立即用液氮冷凍部分土壤。用氯仿熏蒸, 0.5 mol L–1K2SO4提取微生物量碳氮, K2Cr2O7氧化法測碳和腚酚藍(lán)比色法測氮[24]。另取部分鮮土樣, 用OMEGA公司的E.Z.N.A Soil DNA試劑盒提取真菌18S rDNA, 以817F (5¢-TTAGCATGGAATAATRRAATAGGA-3¢)和1196R (5¢-TCTGGACCTGGTGAGTTTCC-3¢)為引物,用ABI GeneAmp 9700型PCR儀擴(kuò)增V5~V7區(qū), 再參照454-高通量測序方法, 純化、定量和均一化真菌18S rDNA。然后, 送上海美吉生物科技有限公司利用Roche Genome Sequencer FLX測序平臺進(jìn)行454-高通量測序[25]。測序結(jié)束后, 對有效序列進(jìn)行去雜、修剪、去除嵌合體序列等過濾處理, 得到優(yōu)化序列, 經(jīng)聚類分析形成操作分類單元(operational taxonomic units, OTUs), 用BLAST程序?qū)Ρ菺enBank (http://ncbi.nlm.nih.gov/)中的已知序列, 根據(jù)97%的相似度確定18S rDNA基因序列對應(yīng)的真菌屬(種)。將另一部分土壤晾干、制樣后按常規(guī)測土壤pH、有機(jī)質(zhì)、堿解氮、有效磷和速效鉀含量[26]。
1.4 數(shù)據(jù)處理
用Microsoft Excel對試驗(yàn)數(shù)據(jù)進(jìn)行基本計(jì)算及統(tǒng)計(jì)分析, 采用SPSS16.0軟件分析PCA, 差異顯著性水平為< 0.05。
2.1 水稻產(chǎn)量
由表1可見, 施肥對早稻、晚稻和早稻+晚稻產(chǎn)量的影響趨勢相同。31年來, 水稻(早稻+晚稻)產(chǎn)量總體表現(xiàn)為30F+70M ≥ 70F+30M ≥ 50F+50M > CF > CK, 平均值依次為12 505、12 258、12 080、11 469和6941 kg hm–2。
2.2 土壤有機(jī)質(zhì)和有效養(yǎng)分
由表2可見, 經(jīng)31年的水稻種植后, 土壤pH值變化于5.32~5.98, 相比原始土壤都有所降低, 表現(xiàn)為30F+70M > 50F+50M > CK、70F+30M > NPK。在有機(jī)無機(jī)配施的土壤中, 有機(jī)質(zhì)和堿解氮含量最高, NPK和原始土壤次之, CK最低; 有效磷含量30F+70M > 50F+50M > 70F+30M > NPK > 原始土壤 > CK; 土壤速效鉀含量NPK > 50F+50M、70F+30M > 30F+70M > CK > 原始土壤。
2.3 土壤微生物碳氮量
由圖1可見, 土壤微生物碳含量30F+70M (496.2 mg kg–1) > 70F+30M (464.6 mg kg–1)、50F+ 50M (459.2 mg kg–1) > NPK (338.8 mg kg–1) > CK (292.5 mg kg–1); 微生物氮含量的變化與微生物碳含量類似; 微生物碳氮比變化于20.14~43.40。
2.4 土壤真菌
2.4.1 土壤真菌稀釋曲線 隨機(jī)抽取測序樣品中的18S rDNA序列數(shù)(reads), 以真菌分類單元數(shù)(OTUs)為縱坐標(biāo), 18S rDNA讀數(shù)為橫坐標(biāo), 獲得稀釋曲線(圖2)[27]。結(jié)果表明, 抽樣reads大約在5000以下時, OTUs數(shù)隨reads提高而迅速增加; reads在5000~10 000之間, OTUs數(shù)隨reads提高而緩慢增加; reads超過10 000之后, OTUs數(shù)的增長逐漸趨于平緩, 說明測序量達(dá)到飽和, 測序結(jié)果可以準(zhǔn)確反映土壤生態(tài)系統(tǒng)中的真菌組成。此外, 真菌種(屬)數(shù)以CK最多, NPK最少, 有機(jī)無機(jī)配施處理的居中。
2.4.2 土壤真菌門類組成及OTUs數(shù)量 在CK、NPK、70F+30M、50F+50M和30F+70M處理的土壤中, 真菌18S rDNA序列數(shù)依次為14 205、21 241、17 630、10 595和11 725, 分別代表133、93、126、125和104種真菌(OTUs), 歸屬于子囊菌門(Ascomycota)、壺菌門(Chytridiomycota)、擔(dān)子菌門(Basidiomycota)、接合菌門(Zygomycota)、芽枝霉門(Blastocladiomycota)、球囊菌門(Glomeromycota)、其他類型(Others)和未知類型(Unclassified)(圖3)。六門主要真菌的OTUs數(shù)量依次占OTUs總量的16.54%~23.08%、8.00%~11.83%、8.80%~14.42%、3.20%~4.51%、1.08%~2.40%和0~3.00%。在CK和NPK處理中, 球囊菌門真菌分別有4種和1種, 但在70F+30M、50F+50M和30F+70M處理土壤中均沒有出現(xiàn)球囊菌門真菌; 在各處理的土壤中, 芽枝霉門真菌均少于3種; 在不施肥的土壤中, 子囊菌門真菌OTUs數(shù)量占總OTUs數(shù)量的16.54%, 低于施肥土壤(17.46%~23.08%)。
2.4.3 土壤真菌的優(yōu)勢菌株 由表3可知, 在供試土壤中, 前20種優(yōu)勢真菌的豐富度合計(jì)占真菌總量的78.82%~91.51%, 包括子囊菌、接合菌、壺菌、擔(dān)子菌和球囊菌等, 均以子囊菌最多(7~13種), 所占比例最大(23.13%~75.09%)。此外, 優(yōu)勢真菌的豐富度因真菌種類和施肥處理不同而異。
在前20種優(yōu)勢真菌中, 子囊菌-1 (-1)、子囊菌-2 (-2)、子囊菌-3 (-3)、子囊菌-4 (-4)、子囊菌-6 (-6)和擔(dān)子菌-1 (-1)等6種普遍存在于各種處理的土壤中。除此之外, 在CK和NPK處理的土壤中, 還有子囊菌-10 (-10)、接合菌-1 (-1)、壺菌-1 (-1)和擔(dān)子菌-2 (-2) 4種(屬)真菌相同; 在CK和70F+30M處理的土壤中, 相同的真菌還有子囊菌-5 (-5)、子囊菌-7 (-7)、子囊菌-8 (-8)、接合菌-2 (-2)、接合菌-3 (-3)、壺菌-1 (-1)、擔(dān)子菌-2 (-2)、未知真菌-1 (Unclassified-1)和未知真菌-2 (Unclassified-2) 9種(屬); 在CK和50F+50M處理的土壤中, 相同的真菌還包括子囊菌-5 (-5)、子囊菌-7 (-7)、子囊菌-8 (-8)、子囊菌-9 (-9)、接合菌-1 (-1)、接合菌-3 (-3)、壺菌-1 (-1)、未知真菌-1 (Unclassified-1)和未知真菌-2 (Unclassified-2) 9種(屬); 在CK和30F+70M處理的土壤中, 也還有8種(屬)真菌相同, 即子囊菌-5 (-5)、子囊菌-7 (-7)、子囊菌-8 (8)、子囊菌-9 (9)、接合菌-2 (2)、接合菌-3 (3)、擔(dān)子菌-2 (-2)和未知真菌-1 (Unclassified-1)等。
表1 長期不同施肥條件下水稻的產(chǎn)量變化(早稻+晚稻)
CK: 不施肥; NPK: 單施氮磷鉀化肥; 70F+30M: 70%化肥配合30%有機(jī)肥; 50F+50M: 50%化肥配合50%有機(jī)肥; 30F+70M: 30%化肥配合70%有機(jī)肥。在同一行中, 有不同小寫字母者表示差異顯著,< 0.05。
CK: without fertilizer; NPK: sole chemical fertilizer; 70F+30M: 70% chemical fertilizer in combination with 30% organic fertilizer; 50F+50M: 50% chemical fertilizer in combination with 50% organic fertilizer; 30F+70M: 30% chemical fertilizer in combination with 70% organic fertilizer. In each line, means followed by different small letters are significantly different at< 0.05.
表2 不同施肥模式下土壤pH、有機(jī)質(zhì)及有效養(yǎng)分的變化
CK: 不施肥; NPK: 單施氮磷鉀化肥; 70F+30M: 70%化肥配合30%有機(jī)肥; 50F+50M: 50%化肥配合50%有機(jī)肥; 30F+70M: 30%化肥配合70%有機(jī)肥。表中數(shù)據(jù)為平均數(shù)±標(biāo)準(zhǔn)差; 在同一列中, 有不同小寫字母者表示差異顯著,< 0.05。
CK: without fertilizer; NPK: sole chemical fertilizer; 70F+30M: 70% chemical fertilizer in combination with 30% organic fertilizer; 50F+50M: 50% chemical fertilizer in combination with 50% organic fertilizer; 30F+70M: 30% chemical fertilizer in combination with 70% organic fertilizer. Values are expressed by means ± SD. In each column, means followed by different small letters are significantly different at< 0.05.
不同小寫字母表示差異顯著,< 0.05。
Bars superscripted by different small letters are significantly different at< 0.05.
CK: 不施肥; NPK: 單施氮磷鉀化肥; 70F+30M: 70%化肥配合30%有機(jī)肥; 50F+50M: 50%化肥配合50%有機(jī)肥; 30F+70M: 30%化肥配合70%有機(jī)肥。
CK: without fertilizer; NPK: sole chemical fertilizer; 70F+30M: 70% chemical fertilizer in combination with 30% organic fertilizer; 50F+50M: 50% chemical fertilizer in combination with 50% organic fertilizer; 30F+70M: 30% chemical fertilizer in combination with 70% organic fertilizer.
CK: 不施肥; NPK: 單施氮磷鉀化肥; 70F+30M: 70%化肥配合30%有機(jī)肥; 50F+50M: 50%化肥配合50%有機(jī)肥; 30F+70M: 30%化肥配合70%有機(jī)肥。
CK: without fertilizer; NPK: sole chemical fertilizer; 70F+30M: 70% chemical fertilizer in combination with 30% organic fertilizer; 50F+50M: 50% chemical fertilizer in combination with 50% organic fertilizer; 30F+70M: 30% chemical fertilizer in combination with 70% organic fertilizer.
在前20種優(yōu)勢真菌中, 球囊菌-1 (-1)和壺菌-2 (-2)是CK處理土壤獨(dú)有的。在NPK處理的土壤中, 獨(dú)有真菌包括壺菌-3 (-3)、壺菌-4 (-4)、壺菌-5 (-5)、壺菌-6 (-6)、擔(dān)子菌-4 (-4)、擔(dān)子菌-5 (-5)、未知真菌-3 (Unclassified-3)和未知真菌-4 (Unclassified-4)等8種。在70F+30M處理的土壤中, 獨(dú)有真菌是未知真菌-5 (Unclassified-5)和子囊菌-14 (14)。在50F+50M和30F+70M處理的土壤中, 獨(dú)有真菌分別是接合菌-4 (4)和擔(dān)子菌-6 (-6)。
2.4.4 土壤真菌群落PCA分析 圖4中, PC1和PC2分別表示不同群落間68.36%和21.42%的變異度, 真菌群落的主成分得分系數(shù)差異顯著, 位于圖4中的不同位置, 且相互之間的距離較遠(yuǎn)。其中, CK和30F+70M位于II象限, 50F+50M和70F+30M位于IV象限, 4個處理都靠近X軸或者Y軸; 而NPK則單獨(dú)位于III象限且遠(yuǎn)離坐標(biāo)軸。表明單施化肥處理與其他處理存在顯著差異。
31年以來, 盡管經(jīng)歷過多次低溫、高溫、干旱、水澇、病蟲害和品種更換等, 但水稻產(chǎn)量(早稻+晚稻)均以30F+70M處理最高, 說明有機(jī)無機(jī)適量配施可持續(xù)穩(wěn)定高產(chǎn), 進(jìn)一步探討施肥對土壤的影響很有必要。
經(jīng)過長期的水稻種植, 供試土壤pH變化于5.32~5.98, 相比初始pH 6.50顯著降低, 尤以NPK處理最為顯著, 說明單施化肥加重了土壤酸化, 與前人研究結(jié)果一致[28]。與對照相比, 各施肥處理土壤有機(jī)質(zhì)含量大幅增加, 以有機(jī)無機(jī)配施最明顯, 與林治安、張國榮和徐祖祥等的研究結(jié)果類似[29-31], 不同于單施化肥降低土壤有機(jī)質(zhì)的報(bào)道[32-33]。其原因可能是施肥促進(jìn)了水稻生長, 生物量增大[34-35], 進(jìn)入土壤的植株殘?bào)w(樁)和根系分泌物增加, 同時施用有機(jī)肥也直接補(bǔ)充了土壤有機(jī)質(zhì)。此外, 在各施肥處理的土壤中, 有效養(yǎng)分相比原始土壤顯著增加, 有機(jī)無機(jī)配施處理的堿解氮和有效磷增幅最大, 說明在水稻種植過程中, 有機(jī)無機(jī)配施不僅保持水稻高產(chǎn), 而且還增強(qiáng)土壤供肥能力。因此, 從土壤pH和養(yǎng)分肥力的角度看, 提倡有機(jī)無機(jī)配施很有必要。
土壤有機(jī)質(zhì)是土壤微生物的碳源和氮源, 促進(jìn)微生物生長繁殖[36]。施用有機(jī)肥向土壤提供種類豐富的有機(jī)質(zhì), 可滿足不同微生物的生長繁殖需要。因此, 在有機(jī)無機(jī)配施處理中, 土壤微生物碳氮含量最高, 數(shù)量最多, 類似前人研究結(jié)果[37-39]。值得注意的是, 在不同處理的土壤中, 微生物碳氮比可相差2倍以上, 意味著施肥改變了土壤微生物的組成和種群結(jié)構(gòu)。454-高通量測序表明, 在供試土壤中, 真菌18S rDNA的序列數(shù)為10 595~21 241, 分別代表93~133種真菌。而在旱地土壤中, 真菌種類一般超過250種[7,40]。此外, 前20種優(yōu)勢真菌合計(jì)占土壤真菌總量的78.82%~91.51%, 說明在淹水條件下, 不僅真菌種群數(shù)大幅度減少, 且優(yōu)勢種群突出。在NPK處理的土壤中, 真菌18S rDNA序列數(shù)最多, 比50F+50M處理高1倍, 但真菌種類最少, 與Kamaa等[41]和Alguacil等[12]的報(bào)道基本相同。眾所周知, 多種土壤微生物共存可互相抑制, 防止某些微生物尤其是病原微生物過度繁殖[42]。因此, 單施化肥使土壤中真菌數(shù)量增加但種類減少, 可能提高病原真菌大量繁殖的幾率, 加大水稻感染真菌病害的風(fēng)險(xiǎn), 由此可以解釋單施化肥加重水稻真菌病害的現(xiàn)象[43]。而在有機(jī)無機(jī)配施的處理中, 真菌組成的多樣性則有益于維持土壤多種多樣的生理、生化和生態(tài)功能。從真菌的門類看, 子囊菌種類最多, 占OTUs總量的16.54%~23.08%; 在前20種優(yōu)勢菌株中, 子囊菌占7~13種, 所占比例為23.13%~75.09%, 說明水稻土比較適合子囊菌的生長繁殖。需要指出的是, 子囊菌是自然界中最為豐富的真菌之一, 它們比擔(dān)子菌具有更快的進(jìn)化速率和更高的物種多樣性[44], 但大多數(shù)子囊菌的生物學(xué)功能尚不明確[7,44], 故很有必要進(jìn)一步研究它們在土壤肥力、生產(chǎn)力和作物病害發(fā)生中的重要作用。
CK: 不施肥; NPK: 單施氮磷鉀化肥; 70F+30M: 70%化肥配合30%有機(jī)肥; 50F+50M: 50%化肥配合50%有機(jī)肥; 30F+70M: 30%化肥配合70%有機(jī)肥。
CK: without fertilizer; NPK: sole chemical fertilizer; 70F+30M: 70% chemical fertilizer in combination with 30% organic fertilizer; 50F+50M: 50% chemical fertilizer in combination with 50% organic fertilizer; 30F+70M: 30% chemical fertilizer in combination with 70% organic fertilizer.
不同處理土壤中優(yōu)勢真菌的組成各不相同。與對照相比, 配施有機(jī)肥處理的土壤中有14~15種優(yōu)勢真菌與之相同, 而單施化肥的土壤中僅有10種一致。各處理真菌群落的主成分得分系數(shù)差異顯著, 位于圖4中不同位置, NPK單獨(dú)位于象限Ⅲ且遠(yuǎn)離坐標(biāo)軸, 說明單施化肥顯著改變了土壤真菌群落結(jié)構(gòu)。
化肥配施有機(jī)肥不同程度地提高了酸性水稻土壤pH值、有機(jī)質(zhì)、有效養(yǎng)分和微生物碳氮量。淹水嫌氣條件適合子囊菌的生長繁殖, 但真菌種群大幅度減少, 優(yōu)勢種群突出, 尤以單施化肥(NPK)最為顯著。此外, 單施化肥處理還顯著改變土壤真菌群落結(jié)構(gòu), 提高病原真菌過度繁殖的風(fēng)險(xiǎn), 而有機(jī)無機(jī)配施有利于維持水稻土壤健康生態(tài)環(huán)境和真菌種群的多樣性。
s
[1] 謝振宇, 尹明, 賀治洲. 施肥水平對雜交水稻產(chǎn)量及其構(gòu)成因素的影響. 熱帶農(nóng)業(yè)科學(xué), 2014, 34(1): 1–4 Xie Z Y, Yin M, He Z Z. Effect of different fertilizer application rates on yield and its components of hybrid rice., 2014, 34(1): 1–4 (in Chinese with English abstract)
[2] 李云, 馮躍華, 王小艷, 武彪. 基于主成分回歸的土壤養(yǎng)分與水稻產(chǎn)量的關(guān)系. 貴州農(nóng)業(yè)科學(xué), 2013, 41: 50–54 Li Y, Feng Y H, Wang X Y, Wu B. Relationship between soil nutrient and rice yield based on principal component regression., 2013, 41: 50–54 (in Chinese with English abstract)
[3] 孫建, 劉苗, 李立軍, 劉景輝. 不同施肥處理對土壤理化性質(zhì)的影響. 華北農(nóng)學(xué)報(bào), 2010, 25: 221–225 Sun J, Liu M, Li L J, Liu J H. The effect of different fertilization treatments on soil physical and chemical property., 2010, 25: 221–225 (in Chinese with English abstract)
[4] 潘福霞, 魯劍巍, 劉威, 耿明建, 李小坤, 曹衛(wèi)東. 不同種類綠肥翻壓對土壤肥力的影響. 植物營養(yǎng)與肥料學(xué)報(bào), 2011, 17: 1359–1364 Pan F X, Lu J W, Liu W, Geng M J, Li X K, Cao W D. Effect of different green manure application on soil fertility., 2011, 17: 1359–1364 (in Chinese with English abstract)
[5] Alijani K, Bahrani M J, Kazemeini S A. Short-term responses of soil and wheat yield to tillage, corn residue management and nitrogen fertilization., 2012, 124: 78–82
[6] Li C F, Yang J, Zhang C, Zhang Z S, Zheng M, Ahmad S, Cao C G. Effect of short-term tillage and fertilization on grain yields and soil properties of rice production systems in central China., 2010, 8: 577–584
[7] 陳丹梅, 段玉琪, 楊宇虹, 晉艷, 黃建國, 袁玲. 長期施肥對植煙土壤養(yǎng)分及微生物群落結(jié)構(gòu)的影響. 中國農(nóng)業(yè)科學(xué), 2014, 47: 3424–3433 Chen D M, Duan Y Q, Yang Y H, Jin Y, Huang J G, Yuan L. Effect of long-term fertilization on flue-cured tobacco soil nutrients and microorganisms community structure., 2014, 47: 3424–3433 (in Chinese with English abstract)
[8] 于昕陽, 翟丙年, 金忠宇, 李永剛, 王穎, 張昊青, 王朝輝. 有機(jī)無機(jī)肥配施對旱地冬小麥產(chǎn)量, 水肥利用效率及土壤肥力的影響. 水土保持學(xué)報(bào), 2015, 29: 320–324 Yu X Y, Zhai B N, Jin Z Y, Li Y G, Wang Y, Zhang H Q, Wang Z H. Effect of combined application of organic and inorganic ferti-lizers on winter wheat yield, water and fertilizer use efficiency and soil fertility in dryland., 2015, 29: 320–324 (in Chinese with English abstract)
[9] 張偉, 許俊杰, 張?zhí)煊? 土壤真菌研究進(jìn)展. 菌物研究, 2005, 3: 52–58 Zhang W, Xu J J, Zhang T Y. Advancement on soil fungal research., 2005, 3: 52–58 (in Chinese with English abstract)
[10] 康振生. 我國植物真菌病害的研究現(xiàn)狀及發(fā)展策略. 植物保護(hù), 2010, 36(3): 9–12 Kang Z S. Current status and development strategy for research on plant fungal diseases in China., 2010, 36(3): 9–12 (in Chinese with English abstract)
[11] Kennedy A C, Smith K L. Soil microbial diversity and the sustainability of agricultural soils., 1995, 170: 75–86
[12] Alguacil M M, Torrecillas E, Caravaca F, Fernández D A, Azcón R, Roldán A. The application of an organic amendment modifies the arbuscular mycorrhizal fungal communities colonizing native seedlings grown in a heavy-metal-polluted soil., 2011, 43: 1498–1508
[13] 張煥軍, 郁紅艷, 丁維新. 長期施用有機(jī)無機(jī)肥對潮土微生物群落的影響. 生態(tài)學(xué)報(bào), 2011, 31: 3308–3314 Zhang H J, Yu H Y, Ding W X. The influence of the long-term application of organic manure and mineral fertilizer on microbial community in calcareous fluvo-aquic soil., 2011, 31: 3308–3314 (in Chinese with English abstract)
[14] 王軼, 李季, 曹志平, 楊合法. 長期施肥對農(nóng)田土壤真菌的影響. 中國生態(tài)農(nóng)業(yè)學(xué)報(bào), 2014, 22: 1267–1273 Wang Y, Li J, Cao Z P, Yang H F. Effects of long-term fertilization on soil fungi., 2014, 22: 1267–1273 (in Chinese with English abstract)
[15] Hawksworth D L. The fungal dimension of biodiversity: magnitude, significance, and conservation., 1991, 95: 641–655
[16] 張秋芳, 劉波, 林營志, 史懷, 楊述省, 周先冶. 土壤微生物群落磷脂脂肪酸PLFA生物標(biāo)記多樣性. 生態(tài)學(xué)報(bào), 2009, 29: 4127–4137 Zhang Q F, Liu B, Lin Y Z, Shi H, Yang S S, Zhou X Y. The diversity of phospholipid fatty acid (PLFA) biomarker for the microbial community in soil., 2009, 29: 4127–4137 (in Chinese with English abstract)
[17] 吳敏娜, 張惠文, 李新宇, 蘇振成, 張成剛. 提取北方土壤真菌DNA的一種方法. 生態(tài)學(xué)雜志, 2007, 26: 611–616Wu M N, Zhang H W, Li X Y, Su Z C, Zhang C G. An extraction method of fungal DNA from soils in North China., 2007, 26: 611–616 (in Chinese with English abstract)
[18] O’Brien B L, Parrent J L, Jackson J A, Moncalvo J M, Vilgalys R. Fungal community analysis by large-scale sequencing of environmental samples., 2005, 71: 5544–5550
[19] Hawksworth D L. Global species numbers of fungi: are tropical studies and molecular approaches contributing to a more robust estimate?, 2012, 21: 2425–2433
[20] Hawksworth D L, Rossman A Y. Where are all the undescribed fungi., 1997, 87: 888–891
[21] 段曌, 肖煒, 王永霞, 賴泳紅, 崔曉龍. 454測序技術(shù)在微生物生態(tài)學(xué)研究中的應(yīng)用. 微生物學(xué)雜志, 2011, 31: 76–81 Duan Z, Xiao W, Wang Y X, Lai Y H, Cui X L. Application of 454 sequencing technique in microbial ecology., 2011, 31: 76–81 (in Chinese with English abstract)
[22] 陳哲, 袁紅朝, 吳金水, 魏文學(xué). 長期施肥制度對稻田土壤反硝化細(xì)菌群落活性和結(jié)構(gòu)的影響. 生態(tài)學(xué)報(bào), 2009, 29: 5923–5929 Chen Z, Yuan H Z, Wu J S, Wei W X. Activity and composition of the denitrifying bacterial community respond differently to long-term fertilization., 2009, 29: 5923–5929 (in Chinese with English abstract)
[23] 袁紅朝, 秦紅靈, 劉守龍, 童成立, 魏文學(xué), 吳金水. 長期施肥對紅壤性水稻土細(xì)菌群落結(jié)構(gòu)和數(shù)量的影響. 中國農(nóng)業(yè)科學(xué), 2011, 44: 4610–4617 Yuan H Z, Qin H L, Liu S L, Tong C L, Wei W X, Wu J S. Response of abundance and composition of the bacterial community to long-term fertilization in paddy soils., 2011, 44: 4610–4617 (in Chinese with English abstract)
[24] 何振立. 土壤微生物量的測定方法: 現(xiàn)狀和展望. 土壤學(xué)進(jìn)展, 1994, 22(4): 36–44 He Z L. Method for determination of soil microbial biomass: present and future., 1994, 22(4): 36–44 (in Chinese with English abstract)
[25] 許冠東. Genome Sequencer FLX引領(lǐng)快速基因組測序時代的到來. 微生物學(xué)通報(bào), 2008, 35: 149–151 Xu G D. Genome Sequencer FLX lead the arrival of the era of rapid genome sequencing., 2008, 35: 149–151 (in Chinese with English abstract)
[26] 楊劍虹. 土壤農(nóng)化分析與環(huán)境監(jiān)測. 北京: 中國大地出版社, 2008. pp 26–75 Yang J H. Soil Chemical Analysis and Environmental Monitoring. Beijing: China Publishing House, 2008. pp 26–75 (in Chinese)
[27] Amato K R, Yeoman C J, Kent A, Righini N, Carbonero F, Eatrada A, Gaskins H R, Stumpf R M, Yildirim S, Torralba M, Gillis M, Wilson B A, Nelson K E, White B A, Leigh S R. Habitat degradation impacts black howler monkey () gastrointestinal microbiomes., 2013, 7: 1344–1353
[28] 張北贏, 陳天林, 王兵. 長期施用化肥對土壤質(zhì)量的影響. 中國農(nóng)學(xué)通報(bào), 2010, 26: 182–187 Zhang B Y, Chen T L, Wang B. The influence of long-term application of chemical fertilizer on soil quality., 2010, 26: 182–187 (in Chinese with English abstract)
[29] 林治安, 趙秉強(qiáng), 袁亮, Hwat B S. 長期定位施肥對土壤養(yǎng)分與作物產(chǎn)量的影響. 中國農(nóng)業(yè)科學(xué), 2009, 42: 2809–2819 Lin Z A, Zhao B Q, Yuan L, Hwat B S. Effects of organic manure and fertilizers long-term located application on soil fertility and crop yield., 2009, 42: 2809–2819 (in Chinese with English abstract)
[30] 張國榮, 李菊梅, 徐明崗, 高菊生, 谷思玉. 長期不同施肥對水稻產(chǎn)量及土壤肥力的影響. 中國農(nóng)業(yè)科學(xué), 2009, 42: 543–551 Zhang G R, Li J M, Xu M G, Gao J S, Gu S Y. Effect of chemical fertilizer and organic manure on rice yield and soil fertility., 2009, 42: 543–551 (in Chinese with English abstract)
[31] 徐祖祥. 西湖平原區(qū)連續(xù)13年定位施肥對麥, 稻產(chǎn)量及土壤肥力的影響. 植物營養(yǎng)與肥料學(xué)報(bào), 2011, 17: 16–21 Xu Z X. Influences of consecutive 13 years long-term fertilization on yield of rice and wheat and soil fertility in Xihu plain., 2011, 17: 16–21 (in Chinese with English abstract)
[32] 李新愛, 童成立, 蔣平, 吳金水, 汪立剛. 長期不同施肥對稻田土壤有機(jī)質(zhì)和全氮的影響. 土壤, 2006, 38: 298–303 Li X A, Tong C L, Jiang P, Wu J S, Wang L G. Effect of long-term fertilization on soil organic matter and total nitrogen in paddy soil., 2006, 38: 298–303 (in Chinese with English abstract)
[33] Mitchell C C, Weaterman R L, Brown J R, Peck T R. Overview of long-term agronomic research., 1991, 83: 24–29
[34] 侯紅乾, 劉秀梅, 劉光榮, 李祖章, 劉益仁, 黃永蘭, 冀建華, 邵彩虹, 王福全. 有機(jī)無機(jī)肥配施比例對紅壤稻田水稻產(chǎn)量和土壤肥力的影響. 中國農(nóng)業(yè)科學(xué), 2011, 44: 516–523 Hou H Q, Liu X M, Liu G R, Li Z Z, Liu Y R, Huang Y L, Ji J H, Shao C H, Wang F Q. Effect of long-term located organic- inorganic fertilizer application on rice yield and soil fertility in red soil area of China., 2011, 44: 516–523 (in Chinese with English abstract)
[35] 董春華, 高菊生, 曾希柏, 劉強(qiáng), 徐明崗, 文石林. 長期有機(jī)無機(jī)肥配施下紅壤性稻田水稻產(chǎn)量及土壤有機(jī)碳變化特征. 植物營養(yǎng)與肥料學(xué)報(bào), 2014, 20: 336–345 Dong C H, Gao J S, Zeng X B, Liu Q, Xu M G, Wen S L. Effect of long-term organic manure and inorganic fertilizer combined application on rice yield and soil organic carbon content in reddish paddy fields., 2014, 20: 336–345 (in Chinese with English abstract)
[36] Hedlund K. Soil microbial community structure in relation to vegetation management on former agricultural land., 2002, 34: 1299–1307
[37] 李娟, 趙秉強(qiáng), 李秀英, Hwat B S. 長期有機(jī)無機(jī)肥料配施對土壤微生物學(xué)特性及土壤肥力的影響. 中國農(nóng)業(yè)科學(xué), 2008, 41: 144–152 Li J, Zhao B Q, Li X Y, Hwat B S. Effects of long-term combined application of organic and mineral fertilizers on soil microbio-logical properties and soil fertility., 2008, 41: 144–152 (in Chinese with English abstract)
[38] 丁偉, 葉江平, 蔣衛(wèi), 霍沁建, 陳曉明, 梁永江, 張長華, 袁玲. 長期施肥對植煙土壤微生物的影響. 植物營養(yǎng)與肥料學(xué)報(bào), 2012, 18: 1168–1176 Ding W, Ye J P, Jiang W, Huo Q J, Chen X M, Liang Y J, Zhang C H, Yuan L. Effects of long-term fertilization on microorganisms in flue-cured tobacco grown soil., 2012, 18: 1168–1176 (in Chinese with English abstract)
[39] 臧逸飛, 郝明德, 張麗瓊, 張昊青. 26年長期施肥對土壤微生物量碳、氮及土壤呼吸的影響. 生態(tài)學(xué)報(bào), 2015, 35: 1445–1451 Zang Y F, Hao M D, Zhang L Q, Zhang H Q. Effect of wheat cultivation and fertilization on soil microbial biomass carbon, soil microbial biomass nitrogen and soil basal respiration in 26 years., 2015, 35: 1445–1451 (in Chinese with English abstract)
[40] 游春平, 傅瑩, 韓靜君, 劉開啟, 鄭奕雄. 我國花生病害的種類及其防治措施. 江西農(nóng)業(yè)學(xué)報(bào), 2010, 22: 97–101 You C P, Fu Y, Han J J, Liu K Q, Zheng Y X. Occurrence and management of main peanut diseases in China., 2010, 22: 97–101 (in Chinese with English abstract)
[41] Kamaa M, Mburu H, Blanchart E, Chibole L, Chotte J L, Kibunja C, Lesueur D. Effects of organic and inorganic fertilization on soil bacterial and fungal microbial diversity in the Kabete long-term trial, Kenya., 2011, 47: 315–321
[42] 陳丹梅, 陳曉明, 梁永江, 霍新建, 張長華, 段玉琪, 楊宇虹, 袁玲. 輪作對土壤養(yǎng)分、微生物活性及細(xì)菌群落結(jié)構(gòu)的影響. 草業(yè)學(xué)報(bào), 2015, 24: 56–65 Chen D M, Chen X M, Liang Y J, Huo X J, Zhang C H, Duan Y Q, Yang Y H, Yuan L. Influence of crop rotation on soil nutrients, microbial activities and bacterial community structure., 2015, 24: 56–65 (in Chinese with English abstract)
[43] 常越亞, 胡雪峰, 穆貞, 楊敏勇, 王堅(jiān). 施肥方式對水稻抗病蟲害能力的影響. 土壤通報(bào), 2015, 46: 446–452 Chang Y Y, Hu X F, Mu Z, Yang M Y, Wang J. Effect of different fertilization on the capabilities of rice’s resistance to pests and diseases., 2015, 46: 446–452 (in Chinese with English abstract)
[44] 王海英, 郭守玉, 黃滿榮, Lumbsch H T, 魏春江. 子囊菌較擔(dān)子菌具有更快的進(jìn)化速率和更高的物種多樣性. 中國科學(xué): 生命科學(xué), 2010, 40: 731–737 Wang H Y, Guo S Y, Huang M R, Lumbsch H T, Wei C J. Ascomycota has faster evolutionary rate and higher species diversity than Basidiomycota (Fungi)., 2010, 40: 731–737 (in Chinese with English abstract)
Influence of Long-term Fertilizations on Nutrients and Fungal Communities in Typical Paddy Soil of South China
CHEN Dan-Mei1, YUAN Ling1,*, HUANG Jian-Guo1, JI Jian-Hua2, HOU Hong-Qian2, and LIU Yi-Ren2,*
1College of Resources and Environment, Southwest University, Chongqing 400716, China;2Soil and Fertilizer and Resources and Environment Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
A long-term field experiment was carried out for 31 years in Jiangxi Academy of Agricultural Sciences with a typical paddy soil in South China to study the influence of fertilizer application on changes of soil nutrients and fungal communities by rational analysis and 454 high-throughput sequencing technology. The fertilization treatments included control (without fertilizer), sole chemical fertilizer, 70% chemical fertilizer in combination with 30% organic fertilizer, 50% chemical fertilizer in combination with 50% organic fertilizer and 30% chemical fertilizer in combination with 70% organic fertilizer. The soil pH decreased in the treatment of sole chemical fertilizer, but increased obviously with the proportion of organic fertilizer increased. Organic-inorganic fertilizations significantly increased organic matter, available nitrogen and phosphorus, and microbial biomass carbon and nitrogen in the soil. The number of soil fungal 18S rDNA sequences was doubled while the species number of fungi decreased by 11-40 when received chemical fertilizer only, compared with the treatment of organic-inorganic fertilization. The top 20 predominant fungi ranged from 78.82% to 91.51% of the total in soil, and among them 7-13 species attributed to Ascomycetes which was the largest soil fungal group and accounted for 23.13%-75.09% of the top 20 predominant fungi. Compared with the control, 14-15 of the same species of dominant fungi were found in the treatment of organic-inorganic fertilizers but only nine in the treatment of sole chemical fertilizer. Principal component analysis showed the significant difference in soil fungal community compositions between treatment of sole chemical fertilizer and others. In general, sole application of chemical fertilizer results in soil acidification, and exponential increment of soil fungi, but significant reduction in their species, richness and diversity indexes, suggesting the great changes in fungal community composition and the risk of over production of pathogen fungi in the soil. On the contrary, organic-inorganic fertilization treatment is beneficial to maintain the healthy ecological environment of paddy soil and the diversity of soil fungal communities.
Long-term fertilization; Rice; Soil nutrients; Fungus
本研究由國家自然科學(xué)基金項(xiàng)目(31460544), 江西省農(nóng)業(yè)科學(xué)院博士啟動基金(2012CBS011), 國家科技支撐計(jì)劃項(xiàng)目(2012BAD05B05)和國家公益性行業(yè)科研專項(xiàng)(201203030)資助。
This study was supported by the National Natural Science Foundation of China (31460544), the Doctoral Scientific Research Foundation of Jiangxi Academy of Agricultural Sciences (2012CBS011), the National Support Program of China (2012BAD05B05), and the China Special Fund for Agro-scientific Research in the Public Interest (201203030).
2015-12-08; Accepted(接受日期): 2016-09-18; Published online(網(wǎng)絡(luò)出版日期): 2016-09-27.
10.3724/SP.J.1006.2017.00286
袁玲, E-mail: lingyuanh@aliyun.com; 劉益仁, E-mail: jxnclyr@163.com
E-mail: 544328279@qq.com, Tel: 18608149225
URL: http://www.cnki.net/kcms/detail/11.1809.S.20160927.0842.010.html