侯一超 胡 強(qiáng) 熊 華
上海交通大學(xué)醫(yī)學(xué)院附屬仁濟(jì)醫(yī)院消化內(nèi)科 上海市消化疾病研究所(200001)
·綜 述·
Hedgehog信號(hào)通路在Barrett食管發(fā)病機(jī)制中的研究進(jìn)展*
侯一超 胡 強(qiáng) 熊 華#
上海交通大學(xué)醫(yī)學(xué)院附屬仁濟(jì)醫(yī)院消化內(nèi)科 上海市消化疾病研究所(200001)
Hedgehog(Hh)信號(hào)通路在脊椎動(dòng)物體內(nèi)具有高度進(jìn)化保守性,其過度活化可引起細(xì)胞分化異常、過度增殖、抗凋亡以及促進(jìn)腫瘤細(xì)胞侵襲和轉(zhuǎn)移。Hh通路參與維持正常早期胚胎食管柱狀上皮的形成,而在成體食管鱗狀上皮中不表達(dá)或微弱表達(dá)。有研究證實(shí)胃酸和膽汁酸鹽可激活食管上皮Hh通路。異常激活的Hh通路可引起正常食管鱗狀上皮逐步轉(zhuǎn)化為柱狀上皮和腸上皮,并最終誘導(dǎo)Barrett食管(BE)形成。因此,靶向作用于Hh通路的抑制劑有望成為治療BE的新策略。本文就Hh信號(hào)通路在BE發(fā)病機(jī)制中的研究進(jìn)展作一綜述。
Hedgehog信號(hào)通路; Barrett食管; 信號(hào)轉(zhuǎn)導(dǎo); 化生; 治療
Barrett食管(BE)的病理機(jī)制為食管遠(yuǎn)端鱗狀上皮被化生的柱狀上皮取代[1-2]。2011年美國(guó)胃腸病學(xué)會(huì)將BE定義為柱狀上皮化生伴可檢測(cè)的杯狀細(xì)胞,不伴有杯狀細(xì)胞的食管柱狀上皮化生僅稱為柱狀上皮食管[3]。BE是食管腺癌(EAC)的癌前病變,流行病學(xué)研究[4]表明BE有較高的轉(zhuǎn)化為EAC的風(fēng)險(xiǎn)。其中,食管柱狀上皮化生伴杯狀細(xì)胞更易向EAC轉(zhuǎn)化[5]。盡管諸多學(xué)者提出胃食管反流是BE發(fā)病的主要病因,但BE確切的發(fā)病機(jī)制尚未完全明確。近來研究發(fā)現(xiàn)Hedgehog(Hh)信號(hào)通路與BE發(fā)生、發(fā)展密切相關(guān)。異常激活的Hh通路可引起正常食管鱗狀上皮逐步轉(zhuǎn)化為柱狀上皮和腸上皮,并最終誘導(dǎo)BE形成。因此,靶向作用于Hh通路的抑制劑有望成為治療BE的新策略。本文就Hh信號(hào)通路在BE發(fā)病機(jī)制中的研究進(jìn)展作一綜述。
Hh信號(hào)通路在脊椎動(dòng)物體內(nèi)具有高度進(jìn)化保守性,其過度活化可引起細(xì)胞分化異常、過度增殖、抗凋亡以及促進(jìn)腫瘤細(xì)胞侵襲和轉(zhuǎn)移。Hh信號(hào)通路由4部分組成,即配體、膜蛋白受體復(fù)合物、核心轉(zhuǎn)錄因子以及下游靶基因。Hh基因最早在果蠅體內(nèi)作為體節(jié)極性基因被發(fā)現(xiàn),其功能突變可使果蠅幼蟲體節(jié)平坦部分變?yōu)獒敶虡油黄?,形似刺猬。正常果蠅體內(nèi)僅有一個(gè)Hh基因,而脊椎動(dòng)物體內(nèi)存在3種Hh同源基因:Sonic Hedgehog (Shh)、Indian Hedgehog(Ihh)、Desert Hedgehog(Dhh),其中Dhh接近果蠅體內(nèi)的染色體組類型,而Ihh、Shh接近人染色體組類型。Hh通路的效應(yīng)細(xì)胞膜上存在兩種受體:Patched(Ptch)和Smoothened(Smo)。Ptch由抑癌基因Ptch編碼,能與配體直接結(jié)合,對(duì)Hh通路起負(fù)調(diào)控作用。脊椎動(dòng)物體內(nèi)Ptch存在兩種形式,分別為Ptch1和Ptch2。原癌基因Smo是經(jīng)典Hh通路的關(guān)鍵基因,其功能受Ptch調(diào)控。神經(jīng)膠質(zhì)瘤相關(guān)癌基因(glioma-associated oncogene, Gli)是Hh信號(hào)通路的轉(zhuǎn)錄因子,該家族包括Gli1、Gli2、Gli3。Gli1異常激活與神經(jīng)膠質(zhì)瘤形成有關(guān),因而首先被命名。Gli1主要起激活作用,Gli2和Gli3在不同疾病模型中起激活或抑制作用。
Hh信號(hào)以級(jí)聯(lián)活化的形式進(jìn)行轉(zhuǎn)導(dǎo),初級(jí)纖毛為信號(hào)轉(zhuǎn)導(dǎo)載體。在脊椎動(dòng)物中,Ptch、Smo以及Gli1、Gli2、Gli3均位于初級(jí)纖毛上。Hh配體不存在時(shí),位于初級(jí)纖毛表面的Ptch可抑制Smo蛋白,阻止其進(jìn)入初級(jí)纖毛,之后Sufu (suppressor of fused)蛋白促使Gli蛋白磷酸化,并與其結(jié)合形成Sufu-Gli蛋白復(fù)合物。Gli2和Gli3在蛋白酶體的水解作用下處于無活性的GliR抑制體形式,Hh通路失去轉(zhuǎn)錄活性。Hh配體存在時(shí),其與Ptch結(jié)合,促使Ptch從初級(jí)纖毛內(nèi)移出,并解除Ptch對(duì)Smo的抑制,誘導(dǎo)Smo蛋白羧基末端多個(gè)Ser/Thr殘基發(fā)生磷酸化。隨后,被激活的Smo蛋白使Sufu-Gli蛋白復(fù)合物降解,繼而Gli2、Gli3去磷酸化,形成具有生物活性的GliA活化體形式,GliA與Gli1結(jié)合形成全長(zhǎng)轉(zhuǎn)錄因子,進(jìn)入核內(nèi)促進(jìn)Ptch1、Gli1表達(dá)(圖1)。Hh信號(hào)通路可通過調(diào)控多種基因的表達(dá),維持胚胎發(fā)育、損傷修復(fù)、細(xì)胞周期調(diào)控、血管生成等生物學(xué)功能。
A: Hh配體不存在時(shí),Sufu與Gli形成Sufu-Gli蛋白復(fù)合物,促使Gli轉(zhuǎn)化成抑制體形式GliR,Hh通路失去轉(zhuǎn)錄活性;B: Hh配體存在時(shí),Ptch與Hh配體結(jié)合,促使Smo蛋白發(fā)生磷酸化。隨后Sufu-Gli蛋白復(fù)合物降解并誘導(dǎo)Gli形成活化形式GliA,從而發(fā)揮轉(zhuǎn)錄活性
圖1 Hh信號(hào)通路級(jí)聯(lián)途徑
Hh信號(hào)通路參與人類胚胎時(shí)期多種器官發(fā)育,在發(fā)育完全和正常成熟組織中無表達(dá)或輕度表達(dá)。近來研究[6-9]發(fā)現(xiàn),Hh信號(hào)通路在胃癌、食管癌、胰腺癌、前列腺癌等多種上皮轉(zhuǎn)化疾病中高表達(dá),促使其在人類疾病發(fā)生機(jī)制中的研究不斷深入。
1. Hh誘導(dǎo)食管鱗狀上皮向柱狀上皮轉(zhuǎn)化:Hh是胚胎發(fā)育中重要的內(nèi)胚層信號(hào)分子,對(duì)內(nèi)胚層分化而來的胚胎食管組織的發(fā)育發(fā)揮至關(guān)重要的生理調(diào)節(jié)功能。Hh通路參與維持正常早期胚胎食管柱狀上皮的形成,而在成體食管鱗狀上皮中不表達(dá)或微弱表達(dá)[10]。研究[11]證實(shí)胃酸和膽汁酸鹽可激活食管上皮Hh通路,使Shh蛋白表達(dá)明顯升高?;罨腍h通路可使食管間質(zhì)高表達(dá)骨形成蛋白4(bone morphogenetic protein 4,BMP4)和Ptch1,繼而通過上皮-間質(zhì)轉(zhuǎn)化作用促進(jìn)上皮細(xì)胞中SOX9蛋白表達(dá),從而誘導(dǎo)食管鱗狀上皮發(fā)生柱狀上皮化生[11-12]。
細(xì)胞角蛋白(cytokeratins, CKs)是上皮細(xì)胞特異性標(biāo)記物,存在多種亞型。其中CK1~6、CK9~17主要在食管鱗狀上皮中表達(dá),而CK7、8、18~20則在食管柱狀上皮中表達(dá)。Hh信號(hào)通路在食管上皮中異常激活時(shí)會(huì)誘導(dǎo)柱狀上皮標(biāo)記物CK8、18以及SOX9表達(dá)升高[13],而在原代角化細(xì)胞中,激活下游靶基因BMP4則會(huì)引起CK5、10、13表達(dá)下降[14]。食管發(fā)生柱狀上皮化生時(shí),鱗狀上皮標(biāo)記物p63、SOX2、periplakin(PPL)、cornulin(CRNN)表達(dá)降低,其中PPL、CRNN與BMP4表達(dá)呈負(fù)相關(guān)[14-15]。研究[16]表明,人鱗狀上皮細(xì)胞轉(zhuǎn)染BMP4基因后,CK8、18、SOX9表達(dá)明顯上調(diào);成纖維細(xì)胞轉(zhuǎn)染SOX9基因后,CK8、18表達(dá)升高。SOX9參與小鼠胚胎食管柱狀上皮形成,其在正常成體食管上皮中不表達(dá),異常激活時(shí)可誘導(dǎo)食管柱狀上皮形成,可測(cè)及柱狀上皮標(biāo)記物CK7、8、20表達(dá)升高。
上述研究提示Hh信號(hào)通路在胚胎食管發(fā)育與成體食管柱狀上皮化生中發(fā)揮不同功能。Shh在胚胎食管發(fā)育中表達(dá)活躍,主要維持前腸正常發(fā)育,抑制其表達(dá)或表達(dá)活性降低會(huì)引起食管發(fā)育畸形,如食管閉鎖[17]。
2. Hh誘導(dǎo)食管柱狀上皮向腸上皮轉(zhuǎn)化:食管上皮中Hh通路持續(xù)激活可促使食管柱狀上皮向腸上皮轉(zhuǎn)化。尾側(cè)型同源盒轉(zhuǎn)錄因子2 (caudal type homeobox transcription factor 2, CDX2)和黏蛋白2(mucin 2, MUC2)是腸上皮化生的標(biāo)記物。其中,CDX2參與腸上皮細(xì)胞早期分化和穩(wěn)態(tài)維持,并可誘導(dǎo)MUC2、堿性磷酸酶和麥芽糖酶表達(dá)。Wang等[18]的研究發(fā)現(xiàn),翼螺旋轉(zhuǎn)錄因子2(forkhead/winged helix transcription factor 2, FOXA2)在BE上皮化生組織中高表達(dá),而在正常食管上皮和食管鱗癌組織中低表達(dá)。Hh通路關(guān)鍵基因Gli1表達(dá)沉默可使食管鱗狀上皮細(xì)胞中FOXA2蛋白表達(dá)明顯降低,而FOXA2可通過作用于前梯度蛋白2(anterior gradient protein 2, AGR2)上調(diào)MUC2表達(dá)。Watts等[19]的研究發(fā)現(xiàn),F(xiàn)OXA不依賴于SOX9進(jìn)行信號(hào)轉(zhuǎn)導(dǎo),提示FOXA的表達(dá)直接受Hh信號(hào)通路調(diào)控。研究[14,20]表明,CDX2無法單獨(dú)誘導(dǎo)BE形成,需與BMP4形成轉(zhuǎn)錄因子復(fù)合物,進(jìn)一步與MUC2啟動(dòng)子序列結(jié)合,從而啟動(dòng)轉(zhuǎn)錄,使原代角化細(xì)胞出現(xiàn)分泌樣空泡、微絨毛樣結(jié)構(gòu),最終形成類似腸上皮樣結(jié)構(gòu)。
將正常小鼠體內(nèi)SOX9基因敲除后會(huì)導(dǎo)致其腸上皮Paneth細(xì)胞、杯狀細(xì)胞缺失[21]。Clemons等[16]的研究顯示,SOX9可使人類食管鱗狀細(xì)胞向腸上皮分化,并誘導(dǎo)腸上皮特定分化標(biāo)記物A33表達(dá)。進(jìn)一步研究顯示SOX9是BMP4調(diào)控BE形成的下游靶基因,Hh信號(hào)通路通過旁分泌誘導(dǎo)SOX9表達(dá)。上述研究提示SOX9對(duì)維持正常腸上皮形成具有重要作用,而在食管上皮中的異常表達(dá)可誘導(dǎo)柱狀上皮形成,使食管柱狀上皮向腸上皮化生。此外,Takito等[22]的研究發(fā)現(xiàn),SOX9可誘導(dǎo)細(xì)胞外基質(zhì)蛋白hensin表達(dá)升高,后者可誘導(dǎo)腎閏細(xì)胞表達(dá)絨毛蛋白,促使其形成微絨毛樣結(jié)構(gòu)。
綜上所述,胃酸、膽汁酸等反流物首先啟動(dòng)食管組織中Hh信號(hào)通路,隨即通過旁分泌或上皮-間質(zhì)轉(zhuǎn)化作用分別誘導(dǎo)BMP4、SOX9表達(dá),亦可直接激活下游靶基因FOXA表達(dá)。隨后AGR2、CDX2被激活,鱗狀上皮相關(guān)標(biāo)記物CK10、13等表達(dá)逐漸降低。繼而通過誘導(dǎo)柱狀上皮標(biāo)記物CK8、18以及腸上皮化生標(biāo)記物MUC2、A33表達(dá),從而使食管鱗狀上皮向柱狀上皮轉(zhuǎn)化,并最終誘導(dǎo)食管腸上皮化生,形成BE。Krishnadath等[23]亦指出Hh信號(hào)通路參與了正常食管-食管炎-胃食管反流病-BE的演變過程。
目前,針對(duì)Hh信號(hào)通路相關(guān)基因(如Smo、Gli)的藥物已被陸續(xù)研發(fā)并處于基礎(chǔ)研究中。Smo抑制劑環(huán)巴胺是第一個(gè)被發(fā)現(xiàn)的Hh信號(hào)通路特異性阻斷劑,其能顯著抑制依賴于Hh通路的腫瘤細(xì)胞增長(zhǎng),如前列腺癌、乳腺癌、肺癌等。環(huán)巴胺具有多種衍生物,如IPI-926、Mu-SSKYQ-環(huán)巴胺、KAAD-環(huán)巴胺等,其中KAAD-環(huán)巴胺是目前認(rèn)為最強(qiáng)效的Hh信號(hào)通路抑制劑[24]。除環(huán)巴胺外,亦有多種Hh信號(hào)通路抑制劑在諸多疾病模型中得到廣泛研究。Schulze等[25]的研究顯示,Smo抑制劑vismodegib(GDC-0449)聯(lián)合放療對(duì)轉(zhuǎn)移性基底細(xì)胞癌有明顯改善作用。Gu等[26]的研究表明,Smo抑制劑BMS-833923聯(lián)合放射治療可有效抑制胰腺癌淋巴結(jié)轉(zhuǎn)移。此外,Olive等[27]對(duì)胰腺癌小鼠模型研究發(fā)現(xiàn),Smo抑制劑IPI-926可加強(qiáng)化療藥物吉西他濱的抗腫瘤作用。研究[28-30]發(fā)現(xiàn)三氧化二砷可通過破壞DNA合成,阻斷Gli轉(zhuǎn)錄活性,從而抑制骨肉瘤、成神經(jīng)管細(xì)胞瘤、基底細(xì)胞癌生長(zhǎng)。但目前多數(shù)研究均處于臨床試驗(yàn)階段,僅vismodegib(GDC-0449)被食品和藥物管理局(FDA)批準(zhǔn)用于治療轉(zhuǎn)移性基底細(xì)胞癌[31]。
鑒于Hh通路在BE的形成過程中具有重要作用,推測(cè)Hh通路靶向抑制劑是否可阻斷BE發(fā)展,并抑制其向EAC演變。Gibson等[32]對(duì)行胃空腸吻合術(shù)的胃食管反流模型大鼠進(jìn)行研究,發(fā)現(xiàn)BE和EAC大鼠食管上皮Ihh mRNA表達(dá)水平顯著升高,較正常食管組織分別提升了184倍和99倍。然而給予口服Smo抑制劑BMS-833923后,BE和EAC的發(fā)生率分別減少了35.7%和36%,且食管上皮增殖蛋白Ki-67表達(dá)明顯下降,上述結(jié)果表明Hh通路活化在BE和EAC的發(fā)生、發(fā)展中扮演至關(guān)重要的角色,Smo抑制劑可阻止BE的發(fā)生以及向EAC演變。Ma等[33]的研究顯示,食管癌細(xì)胞株KYSE-180經(jīng)Shh中和性抗體5E1或Smo抑制劑KAAD-環(huán)巴胺處理后,細(xì)胞增殖受抑制,同時(shí)發(fā)現(xiàn)細(xì)胞DNA合成周期中出現(xiàn)亞二倍體(sub-G1)峰聚集,表明KYSE-180細(xì)胞株出現(xiàn)明顯凋亡。目前臨床上暫無治療BE的特異性藥物,治療方案主要圍繞化學(xué)預(yù)防進(jìn)行。然而越來越多的研究顯示,Hh信號(hào)通路參與BE的發(fā)生、發(fā)展以及向EAC轉(zhuǎn)化。因此,靶向抑制Hh信號(hào)通路可為BE的治療提供新思路。
目前對(duì)Hh信號(hào)通路的研究雖已取得較大進(jìn)展,然而由于Hh信號(hào)通路轉(zhuǎn)導(dǎo)途徑的復(fù)雜性,且Hh信號(hào)通路在BE發(fā)病機(jī)制中的研究處于起步階段,目前仍有諸多問題有待闡明,如需進(jìn)一步探索Hh信號(hào)通路參與調(diào)控的柱狀上皮化生、腸上皮化生標(biāo)記物;以Hh信號(hào)通路中關(guān)鍵基因作為靶點(diǎn)治療BE的特異性藥物開發(fā);Hh信號(hào)通路與其他信號(hào)通路間的相互作用在BE形成中的機(jī)制等。隨著對(duì)Hh信號(hào)通路的組成、信號(hào)轉(zhuǎn)導(dǎo)途徑以及與BE分子作用機(jī)制的深入了解,相關(guān)研究成果必將為BE的早期診斷、靶向治療等揭開新篇章。
1 Zhang X, Westerhoff M, Hart J. Expression of SOX9 and CDX2 in nongoblet columnar-lined esophagus predicts the detection of Barrett’s esophagus during follow-up[J]. Mod Pathol, 2015, 28 (5): 654-661.
2 Nakagawa H, Whelan K, Lynch JP. Mechanisms of Barrett’s oesophagus: intestinal differentiation, stem cells, and tissue models[J]. Best Pract Res Clin Gastroenterol, 2015, 29 (1): 3-16.
3 Menezes A, Tierney A, Yang YX, et al. Adherence to the 2011 American Gastroenterological Association medical position statement for the diagnosis and management of Barrett’s esophagus[J]. Dis Esophagus, 2015, 28 (6): 538-546.
4 Bhat S, Coleman HG, Yousef F, et al. Risk of malignant progression in Barrett’s esophagus patients: results from a large population-based study[J]. J Natl Cancer Inst, 2011, 103 (13): 1049-1057.
5 Westerhoff M, Hovan L, Lee C, et al. Effects of dropping the requirement for goblet cells from the diagnosis of Barrett’s esophagus[J]. Clin Gastroenterol Hepatol, 2012, 10 (11): 1232-1236.
6 Gao Q, Yuan Y, Gan HZ, et al. Resveratrol inhibits the hedgehog signaling pathway and epithelial-mesenchymal transition and suppresses gastric cancer invasion and metastasis[J]. Oncol Lett, 2015, 9 (5): 2381-2387.
7 Kebenko M, Drenckhan A, Gros SJ, et al. ErbB2 signaling activates the Hedgehog pathway via PI3K-Akt in human esophageal adenocarcinoma: identification of novel targets for concerted therapy concepts[J]. Cell Signal, 2015, 27 (2): 373-381.
8 Subramani R, Gonzalez E, Nandy SB, et al. Gedunin inhibits pancreatic cancer by altering sonic hedgehog signaling pathway[J]. Oncotarget, 2016 [Epub ahead of print].
9 Mimeault M, Rachagani S, Muniyan S, et al. Inhibition of hedgehog signaling improves the anti-carcinogenic effects of docetaxel in prostate cancer[J]. Oncotarget, 2015, 6 (6): 3887-3903.
10 Litingtung Y, Lei L, Westphal H, et al. Sonic hedgehog is essential to foregut development[J]. Nat Genet, 1998, 20 (1): 58-61.
11 Yamanaka Y, Shiotani A, Fujimura Y, et al. Expression of Sonic hedgehog (SHH) and CDX2 in the columnar epithelium of the lower oesophagus[J]. Dig Liver Dis, 2011, 43 (1): 54-59.
12 Peng T, Zhu G, Dong Y, et al. BMP4: a possible key factor in differentiation of auditory neuron-like cells from bone-derived mesenchymal stromal cells[J]. Clin Lab, 2015, 61 (9): 1171-1178.
13 Wang DH, Clemons NJ, Miyashita T, et al. Aberrant epithelial-mesenchymal Hedgehog signaling characterizes Barrett’s metaplasia[J]. Gastroenterology, 2010, 138 (5): 1810-1822.
14 Mari L, Milano F, Parikh K, et al. A pSMAD/CDX2 complex is essential for the intestinalization of epithelial metaplasia[J]. Cell Rep, 2014, 7 (4): 1197-1210.
15 Watanabe H, Ma Q, Peng S, et al. SOX2 and p63 colocalize at genetic loci in squamous cell carcinomas[J]. J Clin Invest, 2014, 124 (4): 1636-1645.
16 Clemons NJ, Wang DH, Croagh D, et al. Sox9 drives columnar differentiation of esophageal squamous epithelium: a possible role in the pathogenesis of Barrett’s esophagus[J]. Am J Physiol Gastrointest Liver Physiol, 2012, 303 (12): G1335-G1346.
17 Fragoso AC, Martinez L, Estevo-Costa J, et al. Abnormal Sonic hedgehog signaling in the lung of rats with esophageal atresia induced by adriamycin[J]. Pediatr Res, 2014, 76 (4): 355-362.
18 Wang DH, Tiwari A, Kim ME, et al. Hedgehog signaling regulates FOXA2 in esophageal embryogenesis and Barrett’s metaplasia[J]. J Clin Invest, 2014, 124 (9): 3767-3780.
19 Watts JA, Zhang C, Klein-Szanto AJ, et al. Study of FoxA pioneer factor at silent genes reveals Rfx-repressed enhancer at Cdx2 and a potential indicator of esophageal adenocarcinoma development[J]. PLoS Genet, 2011, 7 (9): e1002277.
20 Kong J, Crissey MA, Funakoshi S, et al. Ectopic Cdx2 expression in murine esophagus models an intermediate stage in the emergence of Barrett’s esophagus[J]. PLoS One, 2011, 6 (4): e18280.
21 Bastide P, Darido C, Pannequin J, et al. Sox9 regulates cell proliferation and is required for Paneth cell differentiation in the intestinal epithelium[J]. J Cell Biol, 2007, 178 (4): 635-648.
22 Takito J, Al-Awqati Q. Conversion of ES cells to columnar epithelia by hensin and to squamous epithelia by laminin[J]. J Cell Biol, 2004, 166 (7): 1093-1102.
23 Krishnadath KK, Wang KK. Molecular pathogenesis of Barrett esophagus: current evidence[J]. Gastroenterol Clin North Am, 2015, 44 (2): 233-247.
24 Lee ST, Panter KE, Gardner DR, et al. Development of a monoclonal antibody-based ELISA for the hedgehog inhibitors cyclopamine and KAAD-cyclopamine[J]. J Pharm Biomed Anal, 2012, 66: 282-286.
25 Schulze B, Meissner M, Ghanaati S, et al. Hedgehog pathway inhibitor in combination with radiation therapy for basal cell carcinomas of the head and neck : First clinical experience with vismodegib for locally advanced disease[J]. Strahlenther Onkol, 2016, 192 (1): 25-31.
26 Gu D, Liu H, Su GH, et al. Combining hedgehog signaling inhibition with focal irradiation on reduction of pancreatic cancer metastasis[J]. Mol Cancer Ther, 2013, 12 (6): 1038-1048.
27 Olive KP, Jacobetz MA, Davidson CJ, et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer[J]. Science, 2009, 324 (5933): 1457-1461.
28 Nakamura S, Nagano S, Nagao H, et al. Arsenic trioxide prevents osteosarcoma growth by inhibition of GLI transcription via DNA damage accumulation[J]. PLoS One, 2013, 8 (7): e69466.
29 Beauchamp EM, Ringer L, Bulut G, et al. Arsenic trioxide inhibits human cancer cell growth and tumor development in mice by blocking Hedgehog/GLI pathway[J]. J Clin Invest, 2011, 121 (1): 148-160.
30 Amakye D, Jagani Z, Dorsch M. Unraveling the therapeutic potential of the Hedgehog pathway in cancer[J]. Nat Med, 2013, 19 (11): 1410-1422.
31 Guha M. Hedgehog inhibitor gets landmark skin cancer approval, but questions remain for wider potential[J]. Nat Rev Drug Discov, 2012, 11 (4): 257-258.
32 Gibson MK, Zaidi AH, Davison JM, et al. Prevention of Barrett esophagus and esophageal adenocarcinoma by smoothened inhibitor in a rat model of gastroesophageal reflux disease[J]. Ann Surg, 2013, 258 (1): 82-88.
33 Ma X, Sheng T, Zhang Y, et al. Hedgehog signaling is activated in subsets of esophageal cancers[J]. Int J Cancer, 2006, 118 (1): 139-148.
(2016-05-03收稿;2016-06-21修回)
Advances in Study on Hedgehog Signaling Pathway in Pathogenesis of Barrett’s Esophagus
HOUYichao,HUQiang,XIONGHua.
DivisionofGastroenterologyandHepatology,RenjiHospital,SchoolofMedicine,ShanghaiJiaoTongUniversity;ShanghaiInstituteofDigestiveDisease,Shanghai(200001)
XIONG Hua, Email: huaxong88@126.com
Hedgehog (Hh) signaling pathway is evolutionarily conserved in vertebrates, its excessive activation is associated with abnormal cell differentiation, over proliferation, apoptosis resistance and promotion of invasion and metastasis of tumor cells. Hh signaling pathway involves in the formation and maintenance of esophageal columnar epithelium in embryonic stage, however, undetectable or barely expressed in matured esophageal squamous epithelium. Studies have shown that esophageal Hh signaling pathway can be activated by gastric acid and bile salts. Aberrant activation of Hh signaling pathway can cause the gradual transition of squamous epithelium to columnar epithelium and intestinal-type epithelium, ultimately induces the occurrence of Barrett’s esophagus (BE). Therefore, targeted inhibiting the Hh signaling pathway may be a new strategy for the treatment of BE. This article reviewed the advances in study on Hh signaling pathway in the pathogenesis of BE.
Hedgehog Signaling Pathway; Barrett Esophagus; Signal Transduction; Metaplasia; Therapy
10.3969/j.issn.1008-7125.2017.01.010
國(guó)家自然科學(xué)基金(No.81270480,No.81570494)
#本文通信作者,Email: huaxong88@126.com