陳 平 王唯一 周郁芬 謝 玲 章永平 吳云林
上海交通大學(xué)醫(yī)學(xué)院附屬瑞金醫(yī)院北院消化內(nèi)科(201801)
PIAS1調(diào)控炎癥微環(huán)境誘導(dǎo)的胃癌上皮-間質(zhì)轉(zhuǎn)化的實(shí)驗(yàn)研究
陳 平*王唯一 周郁芬 謝 玲 章永平 吳云林#
上海交通大學(xué)醫(yī)學(xué)院附屬瑞金醫(yī)院北院消化內(nèi)科(201801)
背景:作為炎癥網(wǎng)絡(luò)調(diào)控的重要介質(zhì),STAT活化抑制蛋白1(PIAS1)在胃癌組織中低表達(dá),并與疾病進(jìn)展相關(guān),但具體機(jī)制還有待研究。目的:探討PIAS1對(duì)炎癥微環(huán)境下胃癌上皮-間質(zhì)轉(zhuǎn)化(EMT)的影響。方法:構(gòu)建重組腺病毒Ad5/F35-PIAS1和Ad5/F35-null并轉(zhuǎn)染胃癌細(xì)胞株SGC-7901,以RT-PCR法和蛋白質(zhì)印跡法分別驗(yàn)證PIAS1 mRNA和蛋白表達(dá)。隨后將SGC-7901細(xì)胞分為IL-6治療組、Ad5/F35-PIAS1+IL-6治療組、Ad5/F35-null+IL-6治療組,以MTT法測(cè)定細(xì)胞增殖率,細(xì)胞劃痕實(shí)驗(yàn)和Transwell侵襲實(shí)驗(yàn)測(cè)定細(xì)胞遷移和侵襲能力,蛋白質(zhì)印跡法測(cè)定E-cadherin、Snail、Twist、Vimentin、P-p38MAPK蛋白表達(dá)。結(jié)果:轉(zhuǎn)染Ad5/F35-PIAS1可明顯上調(diào)SGC-7901細(xì)胞中PIAS1 mRNA和蛋白表達(dá)。與IL-6治療組和Ad5/F35-null+IL-6治療組相比,Ad5/F35-PIAS1+IL-6治療組細(xì)胞增殖率、細(xì)胞遷移和侵襲能力均顯著下降(P<0.01),Snail、Twist、Vimentin、P-p38MAPK蛋白表達(dá)顯著降低(P<0.01),E-cadherin蛋白表達(dá)顯著增高(P<0.01)。而IL-6治療組和Ad5/F35-null+IL-6治療組上述指標(biāo)相比差異均無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05)。結(jié)論:PIAS1可抑制胃癌細(xì)胞在炎癥微環(huán)境下發(fā)生的EMT,進(jìn)而可能在抑制腫瘤侵襲與轉(zhuǎn)移的過(guò)程中發(fā)揮重要作用。
胃腫瘤; 上皮-間質(zhì)轉(zhuǎn)化; 炎癥微環(huán)境; 活化STAT的蛋白抑制物; 白細(xì)胞介素6
胃癌的發(fā)生、發(fā)展與多種因素有關(guān),包括腫瘤細(xì)胞與炎癥微環(huán)境之間的作用以及上皮-間質(zhì)轉(zhuǎn)化(epithelial-mesenchymal transition, EMT)改變等。有研究表明胃癌細(xì)胞受到炎癥因子白細(xì)胞介素(interleukin, IL)-6刺激48 h后,呈現(xiàn)上皮細(xì)胞形態(tài)轉(zhuǎn)變?yōu)榈湫偷拈g質(zhì)細(xì)胞形態(tài)特點(diǎn)[1],提示炎癥微環(huán)境與EMT改變密切相關(guān)。STAT活化抑制蛋白1(protein inhibitor of activated STAT 1, PIAS1)作為PIAS家族成員之一,具有較為明顯的抗炎作用[2]。既往研究發(fā)現(xiàn)PIAS1在胃癌中低表達(dá),上調(diào)胃癌細(xì)胞PIAS1表達(dá)后,腫瘤細(xì)胞遷移率下降,其機(jī)制可能涉及p38促分裂原活化蛋白激酶(mitogen-activated protein kinases, MAPKs)信號(hào)轉(zhuǎn)導(dǎo)途徑的調(diào)控[3],說(shuō)明PIAS1可能是胃癌潛在的治療靶點(diǎn),但具體機(jī)制仍有待研究。本研究通過(guò)檢測(cè)胃癌細(xì)胞株中PIAS1和EMT相關(guān)標(biāo)記分子的表達(dá),旨在揭示PIAS1與EMT的關(guān)系及其可能的相關(guān)分子機(jī)制,從而為靶向調(diào)控EMT治療胃癌提供理論依據(jù)。
一、細(xì)胞株、主要試劑
胃癌細(xì)胞株SGC-7901由上海交通大學(xué)醫(yī)學(xué)院附屬瑞金醫(yī)院消化內(nèi)科實(shí)驗(yàn)室提供,Ad5/F35-PIAS1和Ad5/F35-null空載質(zhì)粒由上海鴻鳴生物科技有限公司構(gòu)建合成,Transwell侵襲小室(Corning公司),E-cadherin、Snail、Twist、Vimentin抗體(Abcam公司),P-p38MAPK抗體(Cell Signaling Technology公司),PIAS1、GAPDH抗體(Santa Cruz公司),RPMI-1640培養(yǎng)基、胰蛋白酶和TRIzol試劑(Life Technologies公司),胎牛血清(Thermo Fisher公司),IL-6(RD公司),MTT試劑(上海碧云天生物技術(shù)有限公司),PIAS1引物、GAPDH引物以及RT-PCR試劑盒由生工生物工程(上海)股份有限公司合成和提供。
二、方法
1. 細(xì)胞培養(yǎng):將胃癌SGC-7901細(xì)胞置于含10%胎牛血清的RPMI-1640培養(yǎng)基,培養(yǎng)條件為5% CO2、飽和濕度、溫度為37 ℃,收集對(duì)數(shù)生長(zhǎng)期細(xì)胞用于后續(xù)實(shí)驗(yàn)。
2. 細(xì)胞分組:先將Ad5/F35-PIAS1(MOI 10)和Ad5/F35-null(MOI 5)轉(zhuǎn)染細(xì)胞,并設(shè)立空白對(duì)照組(加入同體積PBS液),培養(yǎng)24 h后收集細(xì)胞檢測(cè)PIAS1表達(dá)。SGC-7901細(xì)胞實(shí)驗(yàn)分組如下:①Ad5/F35-PIAS1+IL-6治療組:含10%胎牛血清的RPMI-1640培養(yǎng)基加入IL-6(50 ng/mL)培養(yǎng)48 h后,加入Ad5/F35-PIAS1(MOI 10)。②Ad5/F35-null+IL-6治療組:含10%胎牛血清的RPMI-1640培養(yǎng)基中加入IL-6(50 ng/mL)培養(yǎng)48 h后,加入Ad5/F35-null (MOI 5)。③IL-6治療組:含10%胎牛血清的RPMI-1640培養(yǎng)基IL-6(50 ng/mL)培養(yǎng)48 h后,加入PBS液。三組細(xì)胞培養(yǎng)24 h后收集細(xì)胞行后續(xù)實(shí)驗(yàn)。
3. MTT法:以每孔5×104/mL個(gè)細(xì)胞接種于96孔板,每孔終體積為100 μL,待細(xì)胞完全貼壁后,另設(shè)陰性對(duì)照孔。細(xì)胞終止培養(yǎng)前4 h每孔加入MTT 20 μL,孵育完畢后吸除孔內(nèi)上清液,每孔加入150 μL DMSO,微型振蕩器振蕩10 min,上酶聯(lián)免疫分析儀測(cè)定490 nm波長(zhǎng)處每孔吸光的光密度值(A值)并計(jì)算細(xì)胞增殖率,增殖率(%)=實(shí)驗(yàn)孔A值/陰性對(duì)照孔A值×100%。
4. 細(xì)胞劃痕實(shí)驗(yàn):取2×105個(gè)細(xì)胞接種于6孔培養(yǎng)板,待完全融合時(shí),以200 μL微量槍頭在6孔板內(nèi)單層細(xì)胞上垂直劃痕,PBS液洗滌2次后加入無(wú)血清培養(yǎng)基,倒置顯微鏡下觀察24 h劃痕兩側(cè)細(xì)胞的遷移情況,每組取3個(gè)部位拍照并測(cè)量劃痕兩側(cè)細(xì)胞間的相對(duì)距離,距離差除以2為細(xì)胞相對(duì)遷移距離,計(jì)算細(xì)胞相對(duì)遷移率,相對(duì)遷移率=相對(duì)遷移距離/0 h時(shí)劃痕邊緣距劃痕中線距離。實(shí)驗(yàn)重復(fù)3次,取均值。
5. Transwell侵襲實(shí)驗(yàn): 在具有8 μm小孔聚碳酸酯濾膜的培養(yǎng)小室上鋪用預(yù)冷無(wú)血清培養(yǎng)基稀釋的Matrigel基質(zhì)膠,37 ℃孵育30 min后待其凝固,接種不同處理組1×106個(gè)/mL SGC-7901細(xì)胞,體積100 μL;下室加入600 μL含10%胎牛血清的培養(yǎng)基。每個(gè)組別設(shè)3個(gè)復(fù)孔,培養(yǎng)24 h后,取出Transwell小室,棄去培養(yǎng)液,用棉簽輕輕擦掉上層未遷移細(xì)胞,0.1%結(jié)晶紫染色5 min,PBS洗滌,顯微鏡下采集圖像,隨機(jī)讀取3個(gè)視野,取平均值作為穿過(guò)小室細(xì)胞數(shù)。
6. RT-PCR法:收集各組細(xì)胞,采用TRIzol試劑裂解細(xì)胞,提取總RNA,紫外分光光度儀測(cè)定RNA濃度,逆轉(zhuǎn)錄合成cDNA。PIAS1引物上游:5’-CCA CGC CTT CCT GCT GTA GA-3’,下游:5’-TAT CAC ACA GGC AGT CTT AGA T-3’,片段長(zhǎng)度642 bp。內(nèi)參照GAPDH引物上游:5’-GGC TGA GAA CGG GAA GCT TGT C- 3’,下游:5’-CAG CCT TCT CCA TGG TGG TGA AGA-3’,片段長(zhǎng)度142 bp。PCR反應(yīng)條件:94 ℃預(yù)變性4 min;94 ℃變性45 s,58 ℃(PIAS1)或55 ℃(GAPDH)退火45 s,72 ℃延伸1 min,共35個(gè)循環(huán);72 ℃終延伸10 min。取PCR產(chǎn)物行1.2%瓊脂糖凝膠電泳,Bio-Rad凝膠成像系統(tǒng)攝影,Quantity One軟件分析,以GAPDH作為內(nèi)參照,進(jìn)行定量分析。
7. 蛋白質(zhì)印跡法:收集各組細(xì)胞,BCA法行蛋白定量。取20 μg蛋白行聚丙烯酰胺凝漿電泳后,將蛋白轉(zhuǎn)移至PVDF膜,經(jīng)5%脫脂奶粉封閉后,分別加入一抗E-cadherin、Snail、Twist、Vimentin、P-p38MAPK(工作濃度均為1∶500)以及PIAS1、GAPDH(工作濃度均為1∶1 000),4 ℃孵育過(guò)夜。TBS/T液洗膜,加入HRP標(biāo)記的二抗(工作濃度為1∶1 000)室溫孵育60 min。TBS/T液洗膜,ECL法顯影,膠片曝光。采用Bio-Rad凝膠成像系統(tǒng)攝影,Quantity One軟件行灰度分析,以GAPDH作為內(nèi)參照,進(jìn)行定量分析。
三、統(tǒng)計(jì)學(xué)分析
一、PIAS1表達(dá)水平測(cè)定
轉(zhuǎn)染24 h后,與對(duì)照組或Ad5/F35-null組相比,Ad5/F35-PIAS1組PIAS1 mRNA和蛋白表達(dá)顯著增高(P<0.01)(圖1、圖2)。
二、細(xì)胞增殖率
IL-6治療組和Ad5/F35-null+IL-6治療組細(xì)胞增殖率顯著高于Ad5/F35-PIAS1+IL-6治療組(P<0.01),而前兩組間相比差異無(wú)統(tǒng)計(jì)學(xué)意義(P>0.01)(表1)。
*與Ad5/F35-PIAS1組比較,P<0.01
*與Ad5/F35-PIAS1組比較,P<0.01
三、細(xì)胞遷移和侵襲能力的影響
IL-6治療組和Ad5/F35-null+IL-6治療組劃痕間距和穿過(guò)細(xì)胞數(shù)顯著高于Ad5/F35-PIAS1+IL-6治療組(P<0.01);而前兩組上述指標(biāo)相比差異無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05)(圖3、圖4、表1)。
四、各檢測(cè)蛋白的表達(dá)
與IL-6治療組和Ad5/F35-null+IL-6治療組相比,Ad5/F35-PIAS1+IL-6治療組Snail、Twist、Vimentin、P-p38MAPK蛋白表達(dá)降低,E-cadherin蛋白表達(dá)增高(P<0.01)。而Ad5/F35-null+IL-6治療組與IL-6治療組上述蛋白表達(dá)相比差異均無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05)(圖5)。
EMT與胚胎發(fā)育、傷口愈合、腫瘤侵襲轉(zhuǎn)移等過(guò)程密切相關(guān)。有研究證實(shí),EMT與腫瘤浸潤(rùn)轉(zhuǎn)移有關(guān),當(dāng)腫瘤細(xì)胞發(fā)生EMT時(shí),易形成局部擴(kuò)散,細(xì)胞侵入淋巴管和血管而發(fā)生轉(zhuǎn)移,因此抑制EMT的發(fā)生,對(duì)調(diào)節(jié)腫瘤侵襲與轉(zhuǎn)移具有重要意義[4]。EMT過(guò)程中伴有多個(gè)分子標(biāo)記物的改變,如上皮細(xì)胞標(biāo)記物E-cadherin表達(dá)下調(diào),間質(zhì)細(xì)胞轉(zhuǎn)錄因子如Snail、Twist表達(dá)上調(diào)。E-cadherin屬經(jīng)典的鈣黏蛋白家族,主要參與細(xì)胞間連接,與腫瘤侵襲、轉(zhuǎn)移關(guān)系密切。Snail是一種鋅指蛋白轉(zhuǎn)錄因子,被認(rèn)為是EMT的啟動(dòng)者。Twist蛋白是一種堿性螺旋環(huán)狀結(jié)構(gòu)的轉(zhuǎn)錄因子,是介導(dǎo)EMT的關(guān)鍵因子之一。E-cadherin是Snail直接作用的靶基因,Snail表達(dá)上調(diào),導(dǎo)致E-cadherin表達(dá)下調(diào),減少細(xì)胞間的黏附連接,從而使上皮細(xì)胞獲得間充質(zhì)細(xì)胞的特性[5]。Vimentin作為間質(zhì)細(xì)胞的標(biāo)記因子,是存在于間質(zhì)細(xì)胞中的一種中間纖維蛋白,在多種惡性腫瘤細(xì)胞中過(guò)表達(dá),參與腫瘤細(xì)胞的遷移、黏附[6]。既往報(bào)道發(fā)現(xiàn),激活p38MAPK在EMT過(guò)程中起有重要作用,抑制該蛋白的活性可阻止EMT過(guò)程[7]。也有研究表明干擾Snail等基因的表達(dá)和重新表達(dá)E-cadherin等方法可逆轉(zhuǎn)EMT過(guò)程,降低腫瘤的侵襲和轉(zhuǎn)移[8]。
圖3 各組細(xì)胞遷移能力比較(細(xì)胞劃痕實(shí)驗(yàn),×100)
圖4 各組細(xì)胞侵襲能力比較(Transwell實(shí)驗(yàn),×200)
組 別細(xì)胞增殖率(%)劃痕間距(%)穿過(guò)細(xì)胞數(shù)IL-6治療組72.4±11.219.03±2.7054.44±7.74Ad5/F35-null+IL-6治療組69.7±9.818.42±4.4253.22±11.50Ad5/F35-PIAS1+IL-6治療組42.2±12.39.80±2.2228.44±3.57
*與Ad5/F35-PIAS1+IL-6治療組比較,P<0.01
有研究認(rèn)為,腫瘤細(xì)胞EMT的發(fā)生除與細(xì)胞本身生物學(xué)性狀改變有關(guān)外,更與其所處的微環(huán)境密切相關(guān)[9]。有研究發(fā)現(xiàn)IL-6可通過(guò)影響細(xì)胞表面蛋白和骨架蛋白的活性,影響細(xì)胞形態(tài)和結(jié)構(gòu),是導(dǎo)致腫瘤細(xì)胞EMT的關(guān)鍵因子,亦是導(dǎo)致癌癥轉(zhuǎn)移、擴(kuò)散、惡化的重要原因[1]?;诖?,本研究通過(guò)IL-6處理胃癌細(xì)胞模擬腫瘤炎癥微環(huán)境,發(fā)現(xiàn)胃癌細(xì)胞中EMT調(diào)控蛋白Snail、Twist、Vimentin、P-p38MAPK蛋白表達(dá)升高,而E-cadherin表達(dá)下調(diào)。
多項(xiàng)研究指出PIAS1通過(guò)調(diào)節(jié)NF-κB和p38MAPK等信號(hào)轉(zhuǎn)導(dǎo)途徑[2,10],參與抑制IL-6等細(xì)胞因子的釋放,是炎癥網(wǎng)路調(diào)控的重要調(diào)節(jié)因子。本研究借助IL-6處理胃癌細(xì)胞模擬炎癥微環(huán)境,通過(guò)PIAS1高表達(dá)揭示其對(duì)EMT的影響,結(jié)果發(fā)現(xiàn)經(jīng)PIAS1表達(dá)上調(diào)的胃癌細(xì)胞增殖和侵襲轉(zhuǎn)移力下降,EMT相關(guān)標(biāo)記分子的表達(dá)情況顯示E-cadherin表達(dá)上調(diào)而Vimentin表達(dá)下調(diào),進(jìn)一步揭示PIAS1可能抑制胃癌細(xì)胞發(fā)生EMT的機(jī)制涉及降低p38MAPK蛋白的磷酸化、導(dǎo)致Snail和Twist蛋白下調(diào)表達(dá)。
總之,EMT相關(guān)標(biāo)記分子的變化提示炎癥微環(huán)境可能誘導(dǎo)胃癌細(xì)胞發(fā)生EMT,而此環(huán)境下PIAS1高表達(dá)可能抑制胃癌細(xì)胞的EMT,并最終在抑制胃癌細(xì)胞侵襲與轉(zhuǎn)移過(guò)程中發(fā)揮重要作用。
1 Nguyen DP, Li J, Tewari AK. Inflammation and prostate cancer: the role of interleukin 6 (IL-6)[J]. BJU Int, 2014, 113 (6): 986-992.
2 Liu B, Yang Y, Chernishof V, et al. Proinflammatory stimuli induce IKKalpha-mediated phosphorylation of PIAS1 to restrict inflammation and immunity[J]. Cell, 2007, 129 (5): 903-914.
3 Chen P, Zhao D, Sun Y, et al. Protein inhibitor of activated STAT-1 is downregulated in gastric cancer tissue and involved in cell metastasis[J]. Oncol Rep, 2012, 28 (6): 2149-2155.
4 Guarino M, Rubino B, Ballabio G. The role of epithelial-mesenchymal transition in cancer pathology[J]. Pathology, 2007, 39 (3): 305-318.
5 Wang Y, Shi J, Chai K, et al. The role of snail in EMT and tumorigenesis[J]. Curr Cancer Drug Targets, 2013, 13 (9): 963-972.
6 Zhou YF, Xu W, Wang X, et al. Negative methylation status of vimentin predicts improved prognosis in pancreatic carcinoma[J]. World J Gastroenterol, 2014, 20 (36): 13172-13177.
8 Guo HM, Zhang XQ, Xu CH, et al. Inhibition of invasion and metastasis of gastric cancer cells through snail targeting artificial microRNA interference[J]. Asian Pac J Cancer Prev, 2011, 12 (12): 3433-3438.
9 Jung HY, Fattet L, Yang J. Molecular pathways: linking tumor microenvironment to epithelial-mesenchymal transition in metastasis[J]. Clin Cancer Res, 2015, 21 (5): 962-968.
10 Heo KS, Chang E, Takei Y, et al. Phosphorylation of protein inhibitor of activated STAT1 (PIAS1) by MAPK-activated protein kinase-2 inhibits endothelial inflammation via increasing both PIAS1 transrepression and SUMO E3 ligase activity[J]. Arterioscler Thromb Vasc Biol, 2013, 33 (2): 321-329.
(2016-05-12收稿;2016-05-30修回)
Effect of PIAS1 on Epithelial-mesenchymal Transition of Gastric Cancer under Inflammatory Microenvironment
CHENPing,WANGWeiyi,ZHOUYufen,XIELing,ZHANGYongping,WUYunlin.
DepartmentofGastroenterology,RuijinHospitalNorth,ShanghaiJiaotongUniversitySchoolofMedicine,Shanghai(201801)
WU Yunlin, Email: wuyunlin1951@163.com
Stomach Neoplasms; Epithelial-Mesenchymal Transition; Inflammatory Microenvironment; Protein Inhibitors of Activated STAT; Interleukin-6
10.3969/j.issn.1008-7125.2017.01.004
*Email: chenping714@medmail.com.cn
#本文通信作者,Email: wuyunlin1951@163.com
Background: Protein inhibitor of activated STAT 1 (PIAS1) is an important regulator for inflammatory signaling network, which is low expressed in gastric cancer and associated with development of cancer, but its mechanism has not been elucidated. Aims: To investigate the effect of PIAS1 on epithelial-mesenchymal transition (EMT) of gastric cancer under inflammatory microenvironment. Methods: Recombinant adenovirus Ad5/F35-PIAS1 and Ad5/F35-null were constructed and transfected into gastric cancer cell line SGC-7901, mRNA and protein expressions of PIAS1 were detected by RT-PCR and Western blotting, respectively. SGC-7901 cells were divided into IL-6 treatment group, Ad5/F35-PIAS1+IL-6 treatment group and Ad5/F35-null+IL-6 treatment group. Cell proliferation was measured by MTT method, migration and invasion capacities were assessed by wound healing test and Transwell chamber invasion assay. Protein expressions of E-cadherin, Snail, Twist, Vimentin and P-p38MAPK were assessed by Western blotting. Results: The transfection of Ad5/F35-PIAS1 significantly increased the expressions of PIAS1 mRNA and protein in SGC-7901 cells. Compared with IL-6 treatment group and Ad5/F35-null+IL-6 treatment group, capacities of cell proliferation, migration and invasion were significantly decreased (P<0.01); protein expressions of Snail, Twist, Vimentin and P-p38MAPK were significantly decreased while expression of E-cadherin protein was significantly increased in Ad5/F35-PIAS1+IL-6 treatment group (P<0.01). No significant differences in above-mentioned indices were found between IL-6 treatment group and Ad5/F35-null+IL-6 treatment group (P>0.05). Conclusions: PIAS1 could inhibit EMT of gastric cancer cells under inflammatory microenvironment, and may play an important role in inhibition of tumor invasion and metastasis.