亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        A MASCHKE TYPE THEOREM FOR PARTIAL π-COMODULES

        2017-01-19 06:08:38JIALingCHENXiaoyuan
        數(shù)學(xué)雜志 2017年1期
        關(guān)鍵詞:浙江

        JIA Ling,CHEN Xiao-yuan

        (1.Department of Mathematics and Statistics,Ludong University,Yantai 264025,China )

        (2.Basic Department,Zhejiang Business College,Hangzhou 310053,China )

        A MASCHKE TYPE THEOREM FOR PARTIAL π-COMODULES

        JIA Ling1,CHEN Xiao-yuan2

        (1.Department of Mathematics and Statistics,Ludong University,Yantai 264025,China )

        (2.Basic Department,Zhejiang Business College,Hangzhou 310053,China )

        In this paper,we study the Maschke type theorems of partial group comodules. By the methods of weak Hopf group coalgebras,we obtain the classical Maschke type theorems of Hopf algebras,which generalized those of Hopf algebras and results of[8].

        partial π-comodule;trace map;Maschke type theorem

        1 Introduction

        Partial actions of groups as powerful tools were introduced during the study of operator algebras by Exel[2].With the further development,many positive results were proposed [3–6].Caenepeel and the other authors developed a theory of partial actions of Hopf algebras [1]and introduced the notion of a partial entwining structure as a generalization of entwining structure(see[9]).

        On other hand,the notion of a Hopf π-coalgebra which generalized that of a Hopf algebra was introduced and played an important role,consequently group entwining structures and group weak entwining structure were carefully studied.Motivated by this fact,we introduce the notion of a partial group comodule and give a Maschke type theorem for them.Because the“coassociativity”of a partial structure is destroyed,the generalization is not trivial and easy.

        In this paper,we first recall basic definitions of partial group comodules and give some examples.Then we state a Maschke-type theorem of partial group Hopf modules which generalizes the relevant results of Hopf modules(see[7,8]),entwined modules,group Hopf modules,etc..

        The organization of the paper is as follows:First we introduce the notion of partial group comodules and then give our main result-Maschke type theorem.

        ConventionsWe work over a commutative ring k.We denote by i the unit of the group π and use the standard(co)algebra notation,i.e.,Δ is a coproduct,ε is a counit,m is a product and 1 is a unit.If 1 appears more than once in the same expression,then we use different 1′.The identity map from any k-space V to itself is denoted by idV.Write aαfor any element in Aαand[a]for an element in=A/kerf,where f is a k-linear map. For a right π-C-comodule M,we write ρα,β(m)=for any α,β∈π and m∈Mαβ.

        2 The Main Results

        Definition 2.1A π-coalgebra over k is a family of C={Cα}α∈πof k-spaces endowed with a family k-linear maps Δ={Δα,β:Cαβ→Cα?Cβ}α,β∈πand a k-linear map ε:Ci→k such that for any α,β,γ∈π,

        (1)(Δα,β?idCγ)Δαβ,γ=(idCα?Δβ,γ)Δα,βγ.

        (2)(idCα?ε)Δα,i=(ε?idCα)Δi,α=idCα.

        Here we extend the Sweedler notation for comultiplication,we write

        Remark(Ci,Δi,i,ε)is a coalgebra in the usual sense.

        Definition 2.2A Hopf π-coalgebra(Hopf group coalgebra)is a family of algebras H={Hα}α∈πand also a π-coalgebra{Hα,Δ={Δα,β},ε}α,β∈πendowed with a family S={Sα-1:Hα→Hα-1}α∈πof k-linear maps called an antipode such that for any α∈π.

        Definition 2.3Let H be a Hopf group coalgebra and A={Aα}α∈πbe a family of algebras endowed with a family of k-linear maps{ρα,β:Aαβ→Aα?Aβ}α,β∈π.A is called a right partial group comodule-algebra if the following conditions are satisfied:

        Example 1Let H ba a Hopf group coalgebra and e={eα}α∈πbe a central idempotent such that Δα,β(eαβ)(eα?1β)=eα?eβand ε(ei)=1,then H is a right partial group comodule-algebra.

        Definition 2.4Let H ba a Hopf group coalgebra and A be a right partial group comodule-algebra.An A-module M={Mα}α∈πwith a family of k-linear maps

        is called a partial(H,A)-Hopf module if the following conditions are verified for any m∈Mα,m′∈Mαβγ,m′′∈Mαβ,a∈Aαβ:

        We define the coinvariants of M as

        Example 2Let H ba a Hopf group coalgebra and A be a right partial group comodulealgebra.It is easy to prove that A is a partial(H,A)-Hopf module with the multiplications as A-actions.

        Definition 2.5Let H ba a Hopf group coalgebra and A be a right partial group comodule-algebra.A right partial π-H-comodule map θ={θα:Hα→Aα}α∈πsuch that=1αis called a right total integral of A.

        Definition 2.6Letand tr={trα:Mi→Mα}α∈πbe a family of k-linear maps such that trα(m)=Then tr is called a trace map of M.

        In the following parts we always suppose that

        for any a∈Aαand b∈Hβ.

        Proposition 2.7m=(mα)α∈πis a coinvariant of M if and only if(m)=m.

        ProofIf m=(mα)α∈π∈MCOH,then

        and the partial coactions given by

        It is easy to prove that the actions are well-defined.We only have to show the coactions are well-defined.In fact,we have

        Then we claim that ξαis well-defined for any α∈π.Indeed,for any m∈Mi,h∈Hα,

        Lemma 2.8For any α∈π,canonical map.

        ProofIn fact,for any m∈Mα,we have

        Lemma 2.9If for any α∈π,h∈Hα,a∈Aα,

        then ξαis a right Aα-linear map.

        ProofIndeed for any α∈π,h∈Hα,a∈Aα,we have

        Lemma 2.10Let H ba a Hopf group coalgebra and A be a right partial group comodulealgebra.If the condition in Lemma 2.9 is satisfied,then

        ProofIt is sufficed to prove that ξ is right partial π-H-colinear.In fact,for any α,β∈π,h∈Hαβ,m∈Mi,on one hand,Therefore we complete the proof.Now we can give our main result.

        Theorem 2.11Let H ba a Hopf group coalgebra and A be a right partial group comodule-algebra with a total integral θ,and M,N∈.Supposing the condition in Lemma 2.9 is satisfied,if fi:Mi→Nisplits as Ai-module map,then f={fα:Mα→Nα}α∈πsplits as partial π-H-comodule map.

        ProofAssume that there exits an Ai-module map gi:Ni→Misuch that gifi=idMi. We define

        Hence we complete the proof.

        [1]Caenepeel S,Janssen K.Partial(co)actions of hopf algebras and partial Hopf-Galois theory[J]. Comm.Algebra,2008,36(8):2923–2946.

        [2]Dokuchaev M,Exel R,Piccione P.Partia representations and partial group algebras[J].J.Algebra, 2000,226:251–268.

        [3]Dokuchaev M,Exel R.Associativity of crossed products by partial actions enveloping actions and partial representations[J].Trans.Amer.Math.Soc.,2005,357:1931–1952.

        [4]Dokuchaev M,Ferrero M,Pacques A.Partial galois theory of commutative rings[J].J.Pure.Appl. Algebra,to appear.

        [5]Dokuchaev M,Zhukavets N.On finite degree partial representations of group[J].J.Algebra,2004, 274:309–334.

        [6]Exel R.Twisted partial actions:a classification of regular C?-algebra bundels[J].Proc.London Math.Soc.,1997,74:417–443.

        [7]Doi Y.Hopf Extensions of algebras and maschke type theorems[J].Israel J.Math.,1990,72(1-2): 99–108.

        [8]Jia Ling.A Maschke-type theorem for a partial entwining structure[J].Taiwanese J.Math.,2010, 14(4):1571–1576.

        [9]Guo Jingjing,Zhao Wenzheng.Relative Hopf modules and generalized cleft extensions[J].J.Math., 2011,31(3):21–29.

        偏π-余模的Maschke型定理

        賈玲1,陳笑緣2

        (1.魯東大學(xué)數(shù)學(xué)與統(tǒng)計(jì)科學(xué)學(xué)院,山東煙臺(tái)264025)

        (2.浙江商業(yè)職業(yè)技術(shù)學(xué)院基礎(chǔ)部,浙江杭州310053)

        本文研究了偏群余模的Mashcke型定理.利用弱Hopf群余代數(shù)推廣Hopf代數(shù)的方法,獲得了偏群余模的Mashcke型定理.推廣了Hopf代數(shù)理論中的Maschke型定理和[8]的相關(guān)結(jié)論.

        偏群余模;跡映射;Maschke型定理

        O153.3

        tion:16W30

        A

        0255-7797(2017)01-0021-07

        ?Received date:2014-09-05Accepted date:2015-05-06

        Foundationitem:SupportedbyNaturalScienceFoundationofShandongProvience (ZR2012AL02).

        Biography:Jia Ling(1974–),female,born at Ji’nan,Shandong,associate professor,major in Hopf algebra.

        猜你喜歡
        浙江
        Mother
        掃一掃閱覽浙江“助企八條”
        浙江嘉興卷
        Dave Granlund's Cartoons
        “雙下沉、兩提升”浙江醫(yī)改提升群眾獲得感
        浙江“最多跑一次”倒逼“放管服”
        幽默臺(tái)歷
        喜劇世界(2017年5期)2017-03-29 01:52:25
        浙江“雙下沉、兩提升”之路
        浙江老年報(bào):養(yǎng)安享杭州又增新點(diǎn)
        杭州(2015年9期)2015-12-21 02:51:52
        浙江醫(yī)改三部曲
        成人自拍一二在线观看| 亚洲AV成人无码久久精品在| 亚洲国产一区二区三区,| 午夜蜜桃视频在线观看| 国产精品私密保养| 真人与拘做受免费视频| 亚洲精品理论电影在线观看| 中文字幕一区二区三区精品在线| 日本人视频国产一区二区三区| 欧洲美女黑人粗性暴交| 国产午夜福利不卡在线观看视频| 少妇被爽到自拍高潮在线观看| 一区二区视频中文字幕| 内地老熟女老少配视频| 在线一区不卡网址观看| 视频一区中文字幕亚洲| 亚洲精品一品区二品区三区| 中出人妻中文字幕无码| 国产午夜无码视频免费网站| 国产一区二区精品久久呦| 国产99一区二区三区四区| 国产精品久久久久影院| 国产麻豆一精品一AV一免费软件| 免费人成网站在线观看| 亚洲av不卡无码国产| 日本高清色倩视频在线观看| 国产性一交一乱一伦一色一情| 女同在线网站免费观看| 99热在线观看| 在教室伦流澡到高潮hnp视频| 亚洲午夜久久久精品国产| 上海熟女av黑人在线播放| 曰本大码熟中文字幕| 国产精品无码久久久久免费AV| 国产伦精品一区二区三区| 色一情一乱一伦麻豆| 久久99精品久久久久久| 精品少妇后入一区二区三区| 亚洲一区二区三区四区精品在线| 亚洲熟女乱色综合亚洲图片| 人妻人妻少妇在线系列|