亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        消隙齒輪降低柴油機怠速噪聲的應(yīng)用研究

        2017-01-17 15:14:42陳燁龍龐建武杜慧勇
        農(nóng)業(yè)工程學(xué)報 2017年1期
        關(guān)鍵詞:聲強凸輪軸聲壓級

        李 民,陳燁龍,龐建武,杜慧勇,徐 斌

        (1. 河南科技大學(xué)車輛與交通工程學(xué)院,洛陽 471003;2. 廣西玉柴機器股份有限公司,玉林 537005)

        消隙齒輪降低柴油機怠速噪聲的應(yīng)用研究

        李 民1,陳燁龍1,龐建武2,杜慧勇1,徐 斌1

        (1. 河南科技大學(xué)車輛與交通工程學(xué)院,洛陽 471003;2. 廣西玉柴機器股份有限公司,玉林 537005)

        柴油機噪聲影響著農(nóng)業(yè)機械操作者的身心健康,該文為了解決某型柴油機在怠速工況下的異響噪聲問題,采用仿真與試驗相結(jié)合的方法進(jìn)行研究。首先,通過聲強和聲壓測試確定了噪聲的主要產(chǎn)生部位;然后,基于Hypermesh和Abaqus軟件建立了曲軸及整機零部件的有限元模型,并通過模態(tài)試驗驗證了有限元模型的準(zhǔn)確性,基于Excite軟件建立了配氣正時傳動系統(tǒng)和整機的多體動力學(xué)模型,發(fā)動機整機振動計算時考慮了缸內(nèi)燃?xì)鈮毫?、正時系統(tǒng)及配氣機構(gòu)全閥系激勵和活塞敲擊激勵。多體動力學(xué)仿真結(jié)果表明:齒輪的反向敲擊出現(xiàn)時,齒輪工作面的接觸力消失,進(jìn)排氣齒輪在背隙側(cè)發(fā)生接觸產(chǎn)生沖擊力,進(jìn)而造成發(fā)動機在怠速時產(chǎn)生“噠噠”的異響噪聲;整機振動仿真結(jié)果表明:使用消隙齒輪可以消除進(jìn)/排氣凸輪軸齒輪的反向敲擊,在1 000~2 500 Hz范圍內(nèi),使得齒輪室蓋和缸蓋罩的振動速度級降低了7 dB左右。最后在半消聲室的發(fā)動機臺架上,對有無消隙齒輪的柴油機進(jìn)行了振動加速度、噪聲和聲品質(zhì)的對比試驗,試驗表明:怠速工況下,使用消隙齒輪后,前端發(fā)出的“噠噠”異響噪聲消失,齒輪室蓋振動降幅很大,前端1 m噪聲聲壓級降低了5~9 dB(A),聲品質(zhì)也有了明顯改善。因此,當(dāng)內(nèi)燃機其它齒輪傳動部位出現(xiàn)齒輪反向敲擊聲時,可考慮使用消隙齒輪予以解決。

        柴油機;振動;齒輪;怠速工況;消隙齒輪;噪聲

        0 引 言

        怠速工況的噪聲大小及聲品質(zhì)是柴油機的一個重要指標(biāo),如果系統(tǒng)設(shè)計不良,常會發(fā)出異響噪聲。怠速工況下柴油機的缸內(nèi)燃燒壓力小,進(jìn)、排氣流速慢,燃燒噪聲和空氣動力噪聲所占比例小,噪聲聲音一般來自于運動機件之間的相互敲擊碰撞[1],比如活塞敲擊、鏈條多邊形效應(yīng)、齒輪嚙合碰撞、氣門落座敲擊等[2-5],此外空壓機的進(jìn)氣噪聲有時在怠速也十分明顯[6]。

        實際使用過程中,發(fā)動機敲擊噪聲產(chǎn)生的原因非常復(fù)雜,解決方案也各不相同。李帥通過優(yōu)化氣門彈簧與凸輪型線,解決了凸輪飛脫和氣門落座力大的問題,從而降低了氣門落座的敲擊[7]。景國璽等通過調(diào)整配缸間隙、優(yōu)化活塞型線降低了低轉(zhuǎn)速下的敲擊噪聲[8]。褚志剛等提出了在齒輪中嵌入高內(nèi)阻材料、增加拖拽阻力、以及改善齒輪的支撐方式等措施來改善齒輪的異常噪聲[9]。

        目前,國內(nèi)外學(xué)者對齒輪的動力學(xué)特性及應(yīng)用做了大量研究[10-16],關(guān)于消隙齒輪的研究主要集中于嚙合剛度的計算[17-18]、高頻傳動特性[19]以及傳動回差的計算與分析[20],消隙齒輪主要用于航天精密伺服機構(gòu)[21]、精密機床[22]、雷達(dá)數(shù)據(jù)傳遞機構(gòu)等一些伺服機電系統(tǒng)領(lǐng)域中[23],在內(nèi)燃機噪聲、振動與聲振粗糙度(noise vibration harshness,NVH)領(lǐng)域的應(yīng)用研究開展的還不系統(tǒng)與具體[24-25]。本文采用聲壓法和聲強法,確定了噪聲源的位置,并在進(jìn)、排氣凸輪軸的傳動中采用消隙齒輪替代普通齒輪,降低了柴油機怠速噪聲。

        1 噪聲源識別及前期研究

        1.1 噪聲源識別

        首先采用工程9點法測量了怠速工況下柴油機不同方向的1 m聲壓級。測點分布示意圖如圖1,其中測點2代表排氣側(cè)、測點4代表前端、測點6代表進(jìn)氣側(cè)、測點9代表頂面。結(jié)果見表1所示,前端的1 m聲壓級為75.9 dB(A),比其他測點高出5~10 dB(A),因此可判斷噪聲的主要來源在前端,排除了活塞敲擊和氣門落座敲擊的可能。

        然后使用聲強探測儀對該柴油機進(jìn)行了聲源識別,發(fā)現(xiàn)齒輪室蓋板和前端靠近曲軸位置的聲強較大,如圖2所示,采集頻率范圍為250 Hz~6.3 kHz,聲強級達(dá)到87 dB(A)。進(jìn)一步對前端噪聲頻譜進(jìn)行分析,發(fā)現(xiàn)在1~10 kHz頻率范圍內(nèi),噪聲聲壓級較大,峰值出現(xiàn)在2 kHz處,如圖3所示。

        圖1 測點分布示意圖Fig.1 Measured points distribution sketch

        表1 柴油機各測點聲壓級Table 1 Diesel engine SPL(sound pressure level) of different measurement points

        圖2 前端原始聲強云圖Fig.2 Original sound intensity color map in front of engine

        圖3 前端噪聲頻譜Fig.3 Noise spectrum in front of engine

        1.2 前期采取的措施

        為了降低柴油機前端的噪聲,前期采用以下的方法:齒輪室蓋板上使用隔聲罩進(jìn)行局部屏蔽,對進(jìn)、排氣凸輪軸的傳動齒輪采用磨齒,改善液壓張緊器的布置以及更換新的鏈條等一系列措施。但異響噪聲依然存在,噪聲應(yīng)該來自齒輪傳動,原先進(jìn)/排齒輪均為普通直齒輪,齒數(shù)43,模數(shù)2 mm,齒寬11 mm,壓力角24.376°,由于齒輪精度、安裝誤差等因素的影響,齒輪副必定存在一定的齒側(cè)間隙,加之發(fā)動機運行過程中凸輪軸受到負(fù)載扭矩波動和齒輪嚙合力徑向分量的影響,齒輪側(cè)隙也在不斷變化,它導(dǎo)致齒輪嚙合過程中產(chǎn)生相互敲擊。因此提出了在進(jìn)氣凸輪軸上將原設(shè)計的普通齒輪改用消隙齒輪的措施。

        2 正時系統(tǒng)及消隙齒輪介紹

        該柴油機正時系統(tǒng)為鏈傳動,排氣凸輪軸與進(jìn)氣凸輪軸之間采用齒輪傳動的方式,正時系統(tǒng)具體結(jié)構(gòu)見圖4所示。

        圖4 正時傳動系統(tǒng)Fig.4 Timing drive system

        原設(shè)計采用普通齒輪傳動,改進(jìn)方案在進(jìn)氣凸輪軸采用消隙齒輪。消隙齒輪由2片齒組成,結(jié)構(gòu)見圖5。較寬的齒輪固定在凸輪軸上,稱為固定輪,作用是傳遞動力;較窄的齒輪套在固定輪的輪轂上,稱為浮動輪,作用是消除齒側(cè)間隙。固定輪與浮動輪上各有一個銷釘,兩片齒輪中間通過扭簧與銷釘?shù)呐浜袭a(chǎn)生一個預(yù)載扭矩,齒輪安裝在凸輪軸后擰下沉頭螺釘與另一齒輪嚙合,使固定輪的齒左側(cè)和浮動輪的齒右側(cè)分別緊貼在排氣凸輪軸前端齒輪的齒槽左、右兩側(cè),通過這種錯齒結(jié)構(gòu)能夠消除齒側(cè)間隙,避免嚙合過程中的碰撞[26-27]。齒輪主要參數(shù)見表2。

        圖5 消隙齒輪結(jié)構(gòu)示意圖Fig.5 Anti-backlash gear structure sketch

        表2 齒輪副主要參數(shù)Table 2 Gear pair major parameters

        不同參數(shù)的扭簧對消隙齒輪的動力學(xué)特性有很大影響,降噪效果也有差異,扭轉(zhuǎn)剛度大,齒輪磨損加??;扭轉(zhuǎn)剛度小,消隙作用小,降噪效果差[28]。本文采用優(yōu)化的扭簧進(jìn)行試驗與仿真分析,扭轉(zhuǎn)剛度為67.45 N·m/rad,預(yù)緊狀態(tài)下扭簧壓縮角度為0.146 rad。

        3 仿真模型的建立

        3.1 有限元模型的建立

        使用Hypermesh軟件對曲軸和整機表面各零部件的三維模型進(jìn)行了網(wǎng)格劃分,圖6是裝配后的整機有限元模型,各部分的單元及節(jié)點數(shù)如表3所示。與曲軸連接的飛輪和減震器采用六面體一階單元,曲軸及其它零部件均采用四面體二階單元。裝配后,總單元數(shù)量為928 237。

        圖6 整機有限元模型Fig.6 Engine finite element modeling(FEM) model

        表3 主要零部件有限元模型的單元及節(jié)點數(shù)Table 3 Main components element and node numbers of FEM model

        模型建立后,使用Abaqus軟件對整機模型進(jìn)行模態(tài)計算,為了驗證其準(zhǔn)確性,與試驗結(jié)果進(jìn)行對比。表4是模態(tài)計算與模態(tài)試驗前六階模態(tài)固有頻率的對比結(jié)果。從對比結(jié)果來看,誤差率均小于10%,說明有限元模型的建立是比較準(zhǔn)確的,能夠滿足動力學(xué)的計算要求。之后對模型進(jìn)行縮減,提取子結(jié)構(gòu),保留主節(jié)點的自由度、質(zhì)量、剛度等信息,為動力學(xué)的計算做好基礎(chǔ)。

        3.2 多體動力學(xué)模型的建立

        使用AVL-EXCITE軟件的Power Unit模塊建立了整機的動力學(xué)模型,建好的模型如圖7。

        圖7 整機多體動力學(xué)模型Fig.7 Engine multi-body dynamics model

        仿真時施加的激勵主要有:燃?xì)鈮毫?、正時鏈條、正時齒輪對機體的激勵力,配氣機構(gòu)閥系激勵和活塞敲擊缸套激勵力。缸內(nèi)壓力通過臺架試驗實際測量得到;活塞敲擊激勵在Piston&Rings模塊中計算獲得;正時系統(tǒng)及閥系的激勵則通過Timing Drive模塊獲得。其中,正時齒輪激勵區(qū)分普通齒輪副模型和消隙齒輪副模型進(jìn)行計算。將得到的齒輪激勵加載到整機模型中,計算得到整機的振動數(shù)據(jù)。

        4 仿真云圖計算結(jié)果分析

        4.1 齒輪嚙合力

        當(dāng)進(jìn)、排氣凸輪軸均采用普通直齒輪進(jìn)行傳動時,由于齒側(cè)間隙的存在以及凸輪軸扭矩波動的作用,齒輪嚙合過程不可避免的發(fā)生相互碰撞,產(chǎn)生高頻激勵,繼而發(fā)出噪聲。而消隙齒輪則能夠補償齒側(cè)間隙,對齒輪的反向沖擊起到緩沖作用,避免反向敲擊的情況,圖8則是齒輪嚙合力對比。從圖8中可以看出,普通齒輪嚙合時,在一個循環(huán)周期內(nèi),背隙側(cè)嚙合力出現(xiàn)了4次,而且在背隙側(cè)齒輪接觸的瞬間產(chǎn)生了敲擊力,幅值將近400 N。而排氣凸輪軸齒輪與消隙齒輪嚙合時,背隙側(cè)沒有嚙合力產(chǎn)生,也就不會發(fā)生齒輪相互碰撞的現(xiàn)象。

        圖8 齒輪背隙側(cè)嚙合力的對比Fig.8 Comparison of meshing force on backlash side of gear

        4.2 振動速度結(jié)果分析

        對于動力學(xué)的計算結(jié)果,可以通過振動速度級的大小來評價噪聲的強弱[29]。圖9是計算的中心頻率為1 600 Hz的整機表面振動速度云圖,圖9a中速度分布與圖2的聲強云圖大體一致,說明軟件仿真預(yù)測的主要噪聲源位置與結(jié)果聲強試驗測試確定的主要噪聲源基本吻合,仿真結(jié)果可信。圖9b中可以看出使用消隙齒輪后,柴油機齒輪室蓋板、缸蓋罩等表面零部件的振動速度級均有一定的降低,減振、降噪效果顯著。

        圖9 1 600 Hz整機表面振動速度云圖對比Fig.9 Comparison of vibration velocity in engine surface at 1 600 Hz

        圖10是進(jìn)氣凸輪軸前端采用消隙齒輪前后,齒輪室蓋板和缸蓋罩在其主振動方向上振動速度級對比。齒輪嚙合激勵的高頻部分是激發(fā)發(fā)動機表面噪聲輻射的主要原因,因此,重點關(guān)注1 000~4 000 Hz頻段內(nèi)的振動結(jié)果[30]。從頻域內(nèi)的對比可知,在中心頻率為2 000 Hz的頻段內(nèi),齒輪室蓋板的振動速度級達(dá)到峰值,大小為82.4 dB,而缸蓋罩的振動速度級峰值出現(xiàn)在中心頻率為1 600 Hz的頻段內(nèi),大小為70.3 dB。采用消隙齒輪后,在1 000~2 500 Hz頻段內(nèi),齒輪室蓋板和缸蓋罩的振動速度級均有一定幅度的下降,1 778~2 339 Hz頻段內(nèi),齒輪室蓋速度級降至75.1dB;1 413~1 778 Hz頻段內(nèi),缸蓋罩速度級降至63.6 dB,兩者降幅在7 dB左右。

        圖10 振動速度級對比Fig.10 Comparison of vibration velocity level

        5 試驗結(jié)果分析

        5.1 齒輪室蓋振動結(jié)果分析

        在試驗臺架上,測量了齒輪室蓋板的振動加速度。從圖11中可以看出,在曲軸兩轉(zhuǎn)(一個工作循環(huán))周期內(nèi),采用消隙齒輪前,加速度有8個峰值,且最大幅值達(dá)到120 m/s2;采用消隙齒輪后,加速度峰值減少為4個,且幅值也大幅下降,除1缸活塞上止點附近由于爆發(fā)壓力的作用使得加速度幅值達(dá)到50 m/s2外,其它位置的振動加速度均不超過20 m/s2。進(jìn)一步與圖8的背隙側(cè)齒輪嚙合力對比還可以看出,消失的4個峰值的時刻正好與普通齒輪嚙合力產(chǎn)生的位置相同,因此,齒輪的反向敲擊是導(dǎo)致齒輪室蓋振動加強的原因。

        圖11 齒輪室蓋振動加速度對比Fig.11 Comparison of vibration acceleration of gear chamber cover

        5.2 聲壓級與聲品質(zhì)結(jié)果分析

        在半消聲室中,分別對原機(未采用消隙齒輪)和新機(采用消隙齒輪)進(jìn)行了怠速工況下的噪聲測量試驗,同時,使用模擬人工頭對聲品質(zhì)進(jìn)行了測量,人工頭的布置位置如圖1所示,測量的結(jié)果見表5和表6。

        表5 聲壓級對比Table 5 Comparison of SPL

        表6 聲品質(zhì)對比Table 6 Comparison of sound quality

        從表5可以看出,原機的前端噪聲聲壓級比其它幾個測點高出4~6 dB(A),采用消隙齒輪后,前端、進(jìn)氣側(cè)、排氣側(cè)和頂面的噪聲聲壓級均有所降低,降幅在5~9 dB(A),且前端的降幅最大。從表6可以看出,無論在進(jìn)氣側(cè)還是排氣側(cè),采用消隙齒輪后,響度、尖銳度和粗糙度均有所下降。從人的主觀評價來說,使用消隙齒輪后,發(fā)動機聲音品質(zhì)有極大的改善,原來強烈尖銳的敲擊聲已經(jīng)不再存在,總體聲音變得柔和舒服。

        圖12是采用消隙齒輪前后,發(fā)動機前端和頂面在頻域下的噪聲聲壓級對比結(jié)果。從圖12中可以看出,在中頻和低頻范圍內(nèi)兩者差異不是很明顯,但在高頻范圍內(nèi),采用消隙齒輪后,噪聲聲壓級有大幅的降低,幅值降低了10 dB(A)左右。因此,采用消隙齒輪可以避免齒輪的往復(fù)沖擊,有效地降低齒輪傳動中的高頻噪聲。

        圖12 噪聲聲壓級對比Fig.12 Comparison of SPL

        5.3 前端聲強結(jié)果分析

        采用消隙齒輪后,再次對前端進(jìn)行聲強探測,采集頻率同樣為250 Hz~6.3 kHz,得到聲強云圖如圖13所示,通過與圖2進(jìn)行對比可以看出齒輪室蓋板位置的聲強大大減弱,已不再是主要的噪聲源。

        圖13 前端使用消隙齒輪后聲強云圖Fig.13 Sound intensity color map in front of engine by using anti-backlash gear

        6 結(jié) 論

        1)該柴油機怠速工況下發(fā)出“噠噠”異響噪聲源于進(jìn)/排氣凸輪軸嚙合時的齒輪反向敲擊力,該激勵力通過進(jìn)、排氣凸輪軸傳遞到軸承座,造成前端齒輪室蓋局部振動速度大,產(chǎn)生異常噪聲。

        2)采用消隙齒輪后,消除了進(jìn)/排氣凸輪軸之間齒輪的反向敲擊,原先發(fā)動機前端“噠噠”的異響噪聲也消失了,能使發(fā)動機前端1 m噪聲的聲壓級降低5~9 dB(A),發(fā)動機的聲品質(zhì)有明顯改善。當(dāng)內(nèi)燃機其它齒輪傳動部位出現(xiàn)齒輪反向敲擊聲時,可考慮使用消隙齒輪予以解決。

        [1] 龐劍.汽車噪聲與振動-理論與應(yīng)用[M].北京:北京理工大學(xué)出版社,2006:162-171.

        [2] 杜燦誼,喻菲菲,曾祥坤.發(fā)動機活塞敲擊故障仿真與診斷分析[J].車用發(fā)動機,2013(2):79-84.Du Canyi,Yu Feifei,Zeng Xiangkun. Simulation and diagnosis of engine piston knocking fault[J]. Vehicle Engine,2013(2):79-84.(in Chinese with English abstract)

        [3] 李一民,郝志勇,張志明,等.汽油機正時鏈傳動動力學(xué)仿真研究[J].內(nèi)燃機工程,2013,34(1):81-87.Li Yimin,Hao Zhiyong,Zhang Zhiming,et al. Simulation research on dynamic characteristic of timing chain trains of gasoline engine[J]. Chinese Internal Combustion Engine Engineering,2013,34(1):81-87.(in Chinese with English abstract)

        [4] George B,Douglas F. A multi-variable experimental study of diesel gear train rattle[J]. SAE Technical Paper,doi:10. 4271/2011-01-1561.

        [5] 舒歌群,馬維忍,梁興雨,等.柴油機配氣機構(gòu)多體動力學(xué)的仿真研究[J].機械設(shè)計,2009,26(3):49-52.Shu Gequn,Ma Weiren,Liang Yuxing,et al. Simulative study on multi-bodied dynamics of valve gear of diesel engine[J]. Journal of Machine Design,2009,26(3):49-52.(in Chinese with English abstract)

        [6] 褚志剛,鄧兆祥,王亮,等.中型載貨汽車怠速異響噪聲源識別[J].振動與沖擊,2009,28(3):171-173.Chu Zhigang,Deng Zhaoxiang,Wang Liang,et al. Idle abnormal noise source identification for a multi-duty truck[J]. Journal of Vibration and Shock,2009,28(3):171-173.(in Chinese with English abstract)

        [7] 李帥.發(fā)動機配氣機構(gòu)振動噪聲研究[D].長沙:湖南大學(xué),2012.Li Shuai. Research on Vibration and Noise of Engine Valve Train[J]. Changsha:Hunan University,2012.(in Chinese with English abstract)

        [8] 景國璽,郝志勇,金陽,等.發(fā)動機燃燒噪聲和活塞拍擊噪聲的產(chǎn)生機理實驗研究[J].振動工程學(xué)報,2010,23(6):655-659.

        [9] 褚志剛,鄧兆祥,胡玉梅,等.SC6350C汽車變速器噪聲控制[J].中國機械工程,2005,16(16):1481-1485.Chu Zhigang,Deng Zhaoxiang,Hu Yumei,et al. Noise control for SC6350C vehicle transmission[J]. China MechanicalEngineering,2005,16(16):1481-1485.(in Chinese with English abstract)

        [10] 李一民,郝志勇,葉慧飛.柴油機正時齒輪系動力學(xué)特性分析[J].浙江大學(xué)學(xué)報:工學(xué)版,2012,46(8):1472-1477.Li Yimin,Hao Zhiyong,Ye Huifei. Dynamic characteristic analysis of diesel timing gear trains[J]. Journal of Zhejiang University:Engineering Science,2012,46(8):1472-1477.(in Chinese with English a bstract)

        [11] 張鎖懷,沈允文,董海軍,等.齒輪拍擊系統(tǒng)的動力響應(yīng)[J].振動工程學(xué)報,2003,16(1):62-66.Zhang Suohuai,Shen Yunwen,Dong Haijun,et al. Dynamic response of a gear rattling system[J]. Journal of Vibration Engineering,2003,16(1):62-66.(in Chinese with English abstract)

        [12] 董海軍,沈允文,劉夢軍,等.齒輪系統(tǒng)Rattling動力學(xué)行為研究[J].機械工程學(xué)報,2004,40(1):136-141.Dong Haijun,Shen Yunwen,Liu Mengjun et al. Research on the dynamical behaviors of rattling in gear system[J]. Chinese Journal of Mechanical Engineering,2004,40(1):136-141.(in Chinese with English abstract)

        [13] 楊軍.齒輪系統(tǒng)輪齒嚙合過程的動力學(xué)分析[J].機械傳動,2011,35(8):29-34.Yang Jun. Dynamics analysis of tooth meshing process of gear system[J]. Journal of Mechanical,2011,35(8):29-34.(in Chinese with English abstract)

        [14] 張發(fā)民.基于ANSYS/LS-DYNA的齒輪傳動沖擊特性仿真分析[J].機械傳動,2011,35(9):9-11.Zhang Famin. Simulation analysis of gear transmission impact characteristic based on ANSYS/LS-DYNA[J]. Journal of Mechanical,2011,35(9):9-11.(in Chinese with English abstract)

        [15] 李三群,賈長治,武彩崗,等.基于虛擬樣機技術(shù)的齒輪嚙合動力學(xué)仿真研究[J].系統(tǒng)仿真學(xué)報,2007,19(4):901-904.Li Sanqun,Jia Changzhi,Wu Caigang,et al. Dynamic simulation study of gear meshing based on virtual prototyping technology[J]. Journal of System Simulation,2007,19(4):901-904.(in Chinese with English abstract)

        [16] Shim S B,Park Y J,Kim K U. Reduction of PTO rattle noise of an agricultural tractor using an anti-backlash gear[J]. Biosystems Engineering,2008,33(5):346-354.

        [17] Yang Z,Shang J Z,Luo Z R. Effect analysis of friction and damping on anti-backlash gear based on dynamics model with time-varying mesh stiffness[J]. Journal of Central South University,2013,20(12):3461-3470.

        [18] 楊政,尚建忠,羅自榮,等.扭簧加載雙片齒輪消隙機構(gòu)綜合嚙合剛度[J].機械工程學(xué)報,2013,49(1):23-30.Yang Zheng,Shang Jianzhong,Luo Zirong,et al. Research on synthesis meshing stiffness of torsional spring-loaded double-gear anti-backlash mechanism[J]. Journal of Mechanical Engineering,2013,49(1):23-30.(in Chinese with English abstract)

        [19] 李雄峰,郝衛(wèi)生,張兆凱,等.消隙齒輪傳動建模與分析研究[J].戰(zhàn)術(shù)導(dǎo)彈控制技術(shù),2013,30(2):42-47.Li Xiongfeng,Hao Weisheng,Zhang Zhaokai,et al. Modeling and analysis of anti-backlash gear transmission [J]. Control Technology of Tactical Missile,2013,30(2):42-47.(in Chinese with English abstract)

        [20] 謝鋒,唐?。洱X輪傳動機構(gòu)回差分析與計算[J].機械管理開發(fā),2013(1):28-31.Xie Feng,Tang Wei. Analysis and calculation of spring eliminating clearances gear drive structure[J]. Mechanical Management and Development,2013(1):28-31.(in Chinese with English abstract)

        [21] 廖洪波,范大鵬,范世珣.消隙齒輪伺服系統(tǒng)動力學(xué)建模與頻率特性研究[J].航空學(xué)報,2015,36(3):987-994.Liao Hongbo,Fan Dapeng,Fan Shixun. Research on the dynamics and frequency response characteristic of the anti-backlash gear servo system[J]. Acta Aeronautica et Astronautica Sinica,2015,36(3):987-994.(in Chinese with English abstract)

        [22] 鐘文斌,田貴磊,肖圣龍.雙齒輪消隙結(jié)構(gòu)的研制與分析[J].機械設(shè)計與制造,2014(1):105-107.Zhong Wenbin,Tian Guilei,Xiao Shenglong. A research and analysis on one structure of double gear anti-backlash[J]. Machinery Design &Manufacture,2014(1):105-107.(in Chinese with English abstract)

        [23] 胡超,施滸立,寧春林.齒輪消隙功能實現(xiàn)探索[J].機電工程,2008,25(2):11-14.Hu Chao,Shi Huli,Ning ChunLin. Research on functional implementation of gear clearance eliminating[J]. Mechanical &Electrical Engineering Magazine,2008,25(2):11-14.(in Chinese with English abstract)

        [24] Jeffrey C H,Kwin R A. Cummins 4B noise reduction anti-backlash camshaft gear[J]. SAE Technical Paper,doi:10.4271/1999-01-1761.

        [25] 董懿瓊,楊雪春.無間隙齒輪在汽車發(fā)動機降噪中的應(yīng)用嘗試[J].南昌大學(xué)學(xué)報:工科版,2006,28(3):250-255.Dong Yiqiong,Yang Xuechun. Experimental application of gapless gear pairs to noise reduction of an automobile engine[J]. Journal of Nanchang University:Engineering &Technology,2006,28(3):250-255.(in Chinese with English abstract)

        [26] Rodney G,Mark P,Mandar M.Gear design for low whine noise in a supercharger application[J].SAE Technical Paper,doi:10.4271/2007-01-2293.

        [27] Yashodhan V J,Jordan E K. Gear train mesh efficiency study:The effects of an anti-backlash gear[J]. SAE Technical Paper,doi:10.4271/2014-01-1769.

        [28] 李民,陳燁龍,龐建武,等.柴油機雙頂置凸輪軸消隙齒輪動力學(xué)特性研究[J].內(nèi)燃機工程,2016,37(4):247-252.Li Min,Chen Yelong,Pang Jianwu,et al. Study on dynamic characteristics of anti-backlash gear of a DHOC diesel engine[J]. Chinese Internal Combustion Engine Engineering,2016,37(4):247-252.(in Chinese with English abstract)

        [29] 張俊紅,鄭勇.內(nèi)燃機振動、噪聲的多體動力學(xué)分析[J].中國機械工程,2006,17(1):25-28.Zhang Junhong,Zheng Yong. Multi-body dynamics analysis of internal combustion engine vibration and noise[J]. China Mechanical Engineering,2006,17(1):25-28.(in Chinese with English abstract)

        [30] 舒歌群,馬維忍,梁興雨,等.柴油機薄壁件表面輻射噪聲的研究[J].內(nèi)燃機工程,2009,30(2):25-29.Shu Gequn,Ma Weiren,Liang Yuxing,et al. Radiation noise of external thin-wall components in diesel engine[J]. Chinese Internal Combustion Engine Engineering,2009,30(2):25-29.(in Chinese with English abstract)

        Application on reducing idle noise of diesel engine by using anti-backlash gear

        Li Min1,Chen Yelong1,Pang Jianwu2,Du Huiyong1,Xu Bin1
        (1. Vehicle &Transportation Engineering School,Henan University of Science and Technology,Luoyang 471003,China;2. Guangxi Yuchai Diesel Engine Co.,LTD,Yulin 537005,China)

        Dieselengine noise has a bad influence on physical and mental health of agricultural machinery operators. In this paper,we aimed at eliminating the abnormal rattling noise of a diesel engine running at idle speed condition by simulation and experiment. Firstly,on engine test bench in a semi-anechoic room,the rattling noise was identified through sound intensity and sound pressure measurement,the nine point sound pressure results showed that the rattling noise was more obvious in front of the engine,and the sound intensity of the engine front part showed that the main part of rattling noise was generated from the timing gear cover in front of intake camshaft and exhaust camshaft. In order to eliminating the abnormal rattling noise,some improvements were also attempted,such as using acoustic shield over intake camshaft and exhaust camshaft,improving the accuracy of timing gears through gear grinding,optimizing the parameters of valve-chain hydraulic tension device,replacing new timing chain,but the experiments showed all these improvements had no effect in noise reduction. Through analyzing of the previous experimental results,a hypothesis was proposed that the idle abnormal noise might be caused by the knock between the intake cam gear and exhaust cam gear,thus replacing intake cam normal gear by anti-backlash gear might eliminating the gear knock,and the diesel abnormal idle noise might be solved. Secondly,in order to identify if the gears knock really happened,multi-body dynamic simulation was performed. By using Hypermesh and Abaqus software,the FEM(finite element modeling) model of the engine including crankshaft,cylinder block,cylinder head and other engine components were built,and the model tests of each part were performed. The results showed that the frequency difference between experiment and simulation was within 10%,the accuracy of the FEM model was acceptable. By using Excite software,the multi-body dynamics model including the gear of the intake camshaft were built separately,and the multi-body dynamics model of the valve timing system and the vibration model of the engine were also built. During the vibration simulation,the exciting forces including cylinder pressure,valve timing system,valve exciting force,and piston slap force were considered. The engage force and vibration velocity with/without using anti-backlash gear were also compared. The valve timing system simulation results showed that when diesel engine with normal gear was running at idle speed,the gears reversed slap was occurred between the intake cam gear and exhaust cam gear.The moment when reversed slap of timing gear occurred,the contract force on the work side was eliminated,and the contract force on the backlash side appeared.So the idle speed abnormal rattling noise was excited by the reversed slap between intake camshaft gear and exhaust camshaft gear was validated. Anti-backlash gear can eliminate the reversed slap of valve timing gear,the vibration simulation results also showed that the vibration velocity of gear chamber cover and cylinder head cover was 7 dB lower in the frequency range of 1 000 Hz to 2 500 Hz when anti-backlash gear was used,especially at 1 600 Hz,the vibration amplitude was reduced more obviously. Finally,the diesel engine with/without anti-backlash gear was tested on bench in a semi-anechoic room. The engine bench vibration test results showed that the idling vibration acceleration of gear chamber cover was reduced from 120 m/s2to 50 m/s2and the acceleration peaks were reduced from 8 to 4,the moments of disappeared acceleration peaks while using anti-backlash gear met the disappearing moments of the engage force on the backlash side which was calculated by simulation exactly. The 1m SPL and sound quality were measured by engineering nine points method and KEMAR(knowles electronics manikin for acoustic)artificial head,and the noise test results showed:when anti-backlash gear was used,the abnormal rattling noise disappeared and the 1m SPL in front of engine was 5-9 dB(A) reduced,especially in the high frequency range. The KEMAR artificial head test results also showed that the sound quality of the diesel engine was improved obviously. In conclusion,anti-backlash gear can be used in other noisy mechanical transmission parts.

        diesel engine;vibrations;gears;idle condition;anti-backlash gear;noise

        10.11975/j.issn.1002-6819.2017.01.008

        TK42

        A

        1002-6819(2017)-01-0063-07

        李 民,陳燁龍,龐建武,杜慧勇,徐 斌. 消隙齒輪降低柴油機怠速噪聲的應(yīng)用研究[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(1):63-69.

        10.11975/j.issn.1002-6819.2017.01.008 http://www.tcsae.org

        Li Min,Chen Yelong,Pang Jianwu,Du Huiyong,Xu Bin. Application on reducing idle noise of diesel engine by using anti-backlash gear[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2017,33(1):63-69.(in Chinese with English abstract)doi:10.11975/j.issn.1002-6819.2017.01.008 http://www.tcsae.org

        2016-04-23

        2016-10-27

        國家重點研發(fā)計劃項目(2016YFD0700701)

        李 民,男,河南洛陽人,博士,副教授,碩士生導(dǎo)師,主要從事內(nèi)燃機現(xiàn)代設(shè)計方法及內(nèi)燃機振動噪聲控制技術(shù)研究。洛陽 河南科技大學(xué)車輛與交通工程學(xué)院,471003。Email:limin@haust.edu.cn

        猜你喜歡
        聲強凸輪軸聲壓級
        三維聲強與振速波束形成結(jié)合的聲源識別方法研究
        機器噪聲平均聲壓級計算方法差異性實證研究
        電動工具(2024年1期)2024-02-29 01:40:24
        超音速聲強近似測量方法
        一種計算消聲室聲壓級的新方法
        全新DXR mkll有源揚聲器
        演藝科技(2019年4期)2019-03-30 03:21:46
        凸輪軸高速數(shù)控磨削在位測量技術(shù)
        Diodes1.9W D類音頻放大器提供高聲壓級水平并延長電池壽命
        聲化學(xué)能量測量儀的研究
        凸輪軸孔軸線與止推面垂直度超差問題研究
        河南科技(2014年16期)2014-02-27 14:13:21
        Delphi公司的新型電動凸輪軸相位調(diào)節(jié)器
        性av一区二区三区免费| 99久久这里只精品国产免费| 亚洲一区二区三在线播放| 少妇被爽到高潮喷水免费福利| 欧美不卡一区二区三区| 无码精品a∨在线观看十八禁 | 久久伊人精品中文字幕有| 色88久久久久高潮综合影院 | 一本大道东京热无码中字| 白色月光在线观看免费高清 | 国产精品无码不卡一区二区三区| 亚洲中文字幕久爱亚洲伊人| 青青久久精品一本一区人人| 国产精品福利一区二区| 国产山东熟女48嗷嗷叫| 无码久久精品蜜桃| 中文字幕精品一区二区的区别| 日日碰狠狠添天天爽五月婷| 欧韩视频一区二区无码| 日本福利视频免费久久久| 丁香婷婷激情视频在线播放| 欧美精品videossex少妇| 欧美日韩国产在线观看免费| 天堂av一区二区麻豆| 亚洲成av人综合在线观看| 四川丰满少妇被弄到高潮| 亚洲欧美变态另类综合| 国产av剧情久久精品久久 | 国产婷婷一区二区三区| 人妻无码人妻有码不卡| 丁香婷婷六月综合缴清| 成人影院yy111111在线| 在线亚洲综合| 日本中文字幕人妻精品| 97在线视频人妻无码| 宝贝把腿张开我要添你下边动态图| 2022AV一区在线| 亚洲国产一区二区三区| 思思久久96热在精品国产| 国产国拍亚洲精品福利| 亚洲一品道一区二区三区|