亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        函數(shù)對(duì)稱性的類(lèi)比推理與數(shù)理證明

        2017-01-16 08:48:20江蘇楊歡濤
        高中數(shù)理化 2016年24期
        關(guān)鍵詞:縱坐標(biāo)對(duì)稱點(diǎn)中心對(duì)稱

        ◇ 江蘇 楊歡濤

        函數(shù)對(duì)稱性的類(lèi)比推理與數(shù)理證明

        ◇ 江蘇 楊歡濤

        函數(shù)的基本性質(zhì)在高中課程標(biāo)準(zhǔn)中是難點(diǎn)也是重點(diǎn),同時(shí)在高考要求上屬于C級(jí),所以我們?cè)诟呖碱}或調(diào)研考試的中檔題中經(jīng)常見(jiàn)到如“函數(shù)f(x)關(guān)于x=a對(duì)稱”或“f(a+x0)=f(a-x0)”的題設(shè)條件.研究高中數(shù)學(xué)中函數(shù)的性質(zhì)往往繞不開(kāi)函數(shù)的對(duì)稱性,而事實(shí)上高中數(shù)學(xué)中許多函數(shù)不僅具有優(yōu)美的對(duì)稱圖象,而且還具有優(yōu)美的對(duì)稱表達(dá)式.眾所周知,對(duì)稱關(guān)系存在軸對(duì)稱和中心對(duì)稱之分,本文嘗試從數(shù)學(xué)推理和理論證明的角度來(lái)討論函數(shù)對(duì)稱性.

        1 軸對(duì)稱函數(shù)對(duì)稱性類(lèi)比與論證

        學(xué)生最熟悉的軸對(duì)稱函數(shù)非偶函數(shù)莫屬.偶函數(shù)關(guān)于y軸對(duì)稱,因此有f(x)=f(-x).關(guān)于y軸對(duì)稱,其實(shí)質(zhì)是關(guān)于x=0對(duì)稱.

        1)類(lèi)比推理.

        如圖1,函數(shù)y=f(x)關(guān)于直線x=a(a>0)對(duì)稱,以“偶函數(shù)關(guān)于x=0對(duì)稱,則f(x)=f(-x)”為基礎(chǔ),不難推理得出結(jié)論:“若函數(shù)y=f(x)關(guān)于直線x=a對(duì)稱,則f(a+x)=f(a-x).”其類(lèi)比推理過(guò)程如下:關(guān)于直線x=a對(duì)稱的函數(shù)f(x),可看成由關(guān)于x=0對(duì)稱的函數(shù)平移得來(lái),原圖象上一組對(duì)稱點(diǎn)P和P′,平移后在新圖象上對(duì)應(yīng)的坐標(biāo)可分別記為(a+x,f(a+x))和(a-x,f(a-x)).因?yàn)檫@是一組對(duì)稱點(diǎn)的水平移動(dòng),縱坐標(biāo)大小不變,顯然存在f(a+x)=f(a-x).反之,上述命題的逆命題也成立,即:“若f(a+x)=f(a-x),則若函數(shù)y=f(x)關(guān)于直線x=a對(duì)稱.”當(dāng)然這僅僅是邏輯上推演,要證明命題“若函數(shù)y=f(x)關(guān)于直線x=a對(duì)稱,則f(a+x)=f(a-x)”,必須有充分的理論證明.

        圖1

        2)理論證明.

        證明命題“若函數(shù)y=f(x)關(guān)于直線x=a對(duì)稱,則f(a+x)=f(a-x)”,需要從充分性和必要性2方面進(jìn)行說(shuō)明.充分性證明:不妨設(shè)函數(shù)上任意點(diǎn)P坐標(biāo)為(a+x,f(a+x)),由軸對(duì)稱的性質(zhì)易知點(diǎn)P關(guān)于直線x=a對(duì)稱點(diǎn)P′也在函數(shù)f(x)的圖象上,其坐標(biāo)滿足函數(shù)y=f(x)的表達(dá)式.根據(jù)中點(diǎn)坐標(biāo)公式易得xP′=a-x,所以點(diǎn)P′的縱坐標(biāo)yP′=f(ax).又因?yàn)辄c(diǎn)P與點(diǎn)P′關(guān)于直線x=a對(duì)稱,所以f(a+x)=f(a-x).必要性證明:在函數(shù)y=f(x)的圖象上任取一點(diǎn)P記其坐標(biāo)為(a+x,f(a+x)),若點(diǎn)P關(guān)于x=a的對(duì)稱點(diǎn)也在函數(shù)圖象上,則函數(shù)y=f(x)關(guān)于直線x=a對(duì)稱.易知P關(guān)于直線x=a對(duì)稱點(diǎn)的橫坐標(biāo)為xP′=a-x,根據(jù)對(duì)稱關(guān)系顯然P′的縱坐標(biāo)可記為yP′=f(a+x).又因f(a+x)=f(a-x),所以點(diǎn)P′的坐標(biāo)可記為(a-x,f(ax)),所以P′的坐標(biāo)滿足函數(shù)y=f(x)的關(guān)系式,即點(diǎn)P′也在函數(shù)圖象上,所以必要性得證.

        3)補(bǔ)充證明.

        結(jié)論1:若函數(shù)y=f(x)關(guān)于直線x=a對(duì)稱,則f(x)=f(2a-x).不妨令上述結(jié)論中的a+x=t,移項(xiàng)后可得x=t-a,以t-a替換x,顯然a-x=2at,因此就存在f(t)=f(2a-t),也即f(x)=f(2ax).不妨設(shè)結(jié)論1中的2a=b,則結(jié)論1的形式就可變?yōu)榻Y(jié)論2:若函數(shù)y=f(x)關(guān)于直線x=對(duì)稱,則f(x)=f(b-x).借助上述理論證明過(guò)程,不難證明結(jié)論3:若函數(shù)y=f(x)關(guān)于直線對(duì)稱,則f(a+x)=f(b-x).

        2 點(diǎn)對(duì)稱函數(shù)對(duì)稱性的分析與證明

        關(guān)于點(diǎn)(中心)對(duì)稱函數(shù)的對(duì)稱表達(dá)式又呈現(xiàn)出什么樣的形式呢?這可從奇函數(shù)對(duì)稱性表達(dá)式的類(lèi)比中窺得一斑,并且通過(guò)理論的證明來(lái)印證.

        圖2

        1)類(lèi)比推理.

        眾所周知,奇函數(shù)關(guān)于原點(diǎn)對(duì)稱,其對(duì)稱表達(dá)式為f(x)+f(-x)=0,以此為基礎(chǔ),不難類(lèi)比出命題:若函數(shù)y=f(x)關(guān)于點(diǎn)(a,b)對(duì)稱,則f(a+x)+f(a-x)=2b.如圖2不妨假設(shè)a>0、b>0,則函數(shù)y=f(x)可視為原奇函數(shù)向右平移a個(gè)單位,再向上平移b個(gè)單位形成,在此過(guò)程中原圖象上任意一組對(duì)稱點(diǎn)P和P′,在平移后其對(duì)應(yīng)坐標(biāo)分別可記為(a+x,f(a+x))和(a-x,f(a-x)),根據(jù)中心對(duì)稱的特性(對(duì)稱點(diǎn)連線經(jīng)過(guò)對(duì)稱點(diǎn)且被對(duì)稱點(diǎn)平分)并結(jié)合中點(diǎn)坐標(biāo)公式可得f(a+x)+f(a-x)=2b.同樣,其逆命題也成立,即:“若f(a+x)+f(a-x)=2b,則y=f(x)關(guān)于點(diǎn)(a,b)對(duì)稱.”

        2)理論證明.

        充分性證明:在y=f(x)上任取一點(diǎn)P(a+x,f(a+x)),根據(jù)中心對(duì)稱的性質(zhì),易知點(diǎn)P關(guān)于點(diǎn)(a,b)中心對(duì)稱點(diǎn)P′也在f(x)的圖象上,其坐標(biāo)應(yīng)滿足函數(shù)y=f(x)的表達(dá)式.根據(jù)中點(diǎn)橫坐標(biāo)公式易得xP′=a-x,所以點(diǎn)P′的縱坐標(biāo)yP′=f(a-x),利用中點(diǎn)縱坐標(biāo)公式可得f(a+x)+f(a-x)=2b.

        必要性證明:在函數(shù)y=f(x)的圖象上任取一點(diǎn)P記其坐標(biāo)為(a+x,f(a+x)),若點(diǎn)P關(guān)于點(diǎn)(a,b)中心對(duì)稱點(diǎn)P′也在函數(shù)f(x)的圖象上則函數(shù)y=f(x)關(guān)于點(diǎn)(a,b)對(duì)稱.易知點(diǎn)P關(guān)于點(diǎn)(a,b)中心對(duì)稱點(diǎn)的橫坐標(biāo)為xP′=a-x,根據(jù)對(duì)稱關(guān)系顯然P′的縱坐標(biāo)可記為yP′=2b-f(a+x).又因?yàn)閒(a+x)+f(a-x)=2b,所以點(diǎn)P′的坐標(biāo)可記為(a-x,f(a-x)),所以P′的坐標(biāo)滿足函數(shù)y=f(x)的關(guān)系式,即點(diǎn)P′也在函數(shù)圖象上,所以必要性得證.

        3)補(bǔ)充說(shuō)明.

        反思上述函數(shù)對(duì)稱性的邏輯推理與數(shù)理證明過(guò)程,不難發(fā)現(xiàn)這種對(duì)稱性的結(jié)論與奇偶函數(shù)對(duì)稱性結(jié)論存在極大的相關(guān)性.因?yàn)榕己瘮?shù)關(guān)于y軸對(duì)稱,奇函數(shù)關(guān)于原點(diǎn)對(duì)稱,所以只需要研究其在區(qū)間(-∞,0)上的性質(zhì),就可知道函數(shù)在對(duì)應(yīng)區(qū)間(0,+∞)的圖象和性質(zhì).而上述對(duì)稱性結(jié)論是研究函數(shù)在區(qū)間(-∞,a)上的圖象和性質(zhì),就可知道函數(shù)在其對(duì)稱區(qū)間(a,+∞)上的圖象和性質(zhì).所以上述對(duì)稱思想研究函數(shù)的圖象和性質(zhì)可以看成奇、偶函數(shù)對(duì)稱性結(jié)論的推廣.

        (作者單位:江蘇省蘇州市第一中學(xué))

        猜你喜歡
        縱坐標(biāo)對(duì)稱點(diǎn)中心對(duì)稱
        變化的“魚(yú)”
        更正
        勘 誤
        九點(diǎn)圓圓心關(guān)于三邊的對(duì)稱點(diǎn)的性質(zhì)
        線性代數(shù)中矩陣特征值的解析方法
        中心對(duì)稱 貫穿始終
        《中心對(duì)稱圖形——平行四邊形》測(cè)試卷
        中心對(duì)稱圖形在實(shí)際生活中的應(yīng)用
        利用對(duì)稱求函數(shù)的解析式
        第五屆播睿智杯“奇思妙想”有獎(jiǎng)數(shù)學(xué)知識(shí)競(jìng)賽
        欧美日韩不卡合集视频| 国产成人自拍视频在线免费| 69精品人妻一区二区| 中文字幕女同系列在线看一| 久久无码av一区二区三区| 日出水了特别黄的视频| 天天躁日日躁狠狠躁一区| 成人一区二区三区蜜桃| 亚洲综合视频一区二区| 久久久久人妻精品一区二区三区 | 国产精品毛片无码久久| 日韩av无卡无码午夜观看| 日韩人妻av不卡一区二区三区| 国产91久久麻豆黄片| 亚洲欧美日韩综合一区二区| 亚洲国产欧美日韩欧美特级| 18禁无遮挡羞羞污污污污网站| 超91精品手机国产在线| 91尤物在线看| 色婷婷久色国产成人免费| 亚洲天堂精品一区入口| 丰满少妇人妻久久久久久| 人妻丝袜av中文系列先锋影音| 18无码粉嫩小泬无套在线观看| 欧美日韩国产高清| av大片网站在线观看| 亚洲一区二区三区高清在线观看| 国产免费内射又粗又爽密桃视频| 亚洲AV电影天堂男人的天堂| 国模少妇无码一区二区三区| 九九精品国产亚洲av日韩| 香港三日本三级少妇三级视频| 日日躁夜夜躁狠狠久久av | 日韩精品欧美激情国产一区| 午夜男女靠比视频免费| 麻豆国产精品va在线观看不卡 | 中文亚洲av片在线观看不卡| 99久久综合九九亚洲| 国产精品女同一区二区免| 米奇欧美777四色影视在线| 国产精品无码一区二区在线看|