王葳,何永剛,浦永蘭,潘少坤,3,謝幼華
1. 復(fù)旦大學(xué)基礎(chǔ)醫(yī)學(xué)院教育部/衛(wèi)生部醫(yī)學(xué)分子病毒學(xué)重點(diǎn)實(shí)驗(yàn)室,上海 200032; 2. 太倉(cāng)市第一人民醫(yī)院感染科,太倉(cāng) 215400; 3. 上海交通大學(xué)醫(yī)學(xué)院附屬第九人民醫(yī)院口腔預(yù)防科,上海 200011
·論著·
乙型肝炎病毒X蛋白的優(yōu)勢(shì)氨基酸序列與熱點(diǎn)突變位點(diǎn)的生物信息學(xué)分析
王葳1,何永剛1,浦永蘭2,潘少坤1,3,謝幼華1
1. 復(fù)旦大學(xué)基礎(chǔ)醫(yī)學(xué)院教育部/衛(wèi)生部醫(yī)學(xué)分子病毒學(xué)重點(diǎn)實(shí)驗(yàn)室,上海 200032; 2. 太倉(cāng)市第一人民醫(yī)院感染科,太倉(cāng) 215400; 3. 上海交通大學(xué)醫(yī)學(xué)院附屬第九人民醫(yī)院口腔預(yù)防科,上海 200011
乙型肝炎病毒X蛋白(hepatitis B virus X protein,HBx)全長(zhǎng)154個(gè)氨基酸,與肝癌發(fā)生密切相關(guān)。為確定HBx的優(yōu)勢(shì)氨基酸序列和熱點(diǎn)突變位點(diǎn),在GenBank中下載所有HBx的氨基酸序列13 950條,剔除插入突變、缺失突變和起始密碼子非甲硫氨酸的序列,最后保留7 126條。通過(guò)分析這7 126條序列,計(jì)算出HBx每個(gè)位點(diǎn)的氨基酸分布情況,出現(xiàn)頻率最高的氨基酸為該位點(diǎn)的優(yōu)勢(shì)氨基酸,其他氨基酸為突變氨基酸。154個(gè)位點(diǎn)的優(yōu)勢(shì)氨基酸組成HBx優(yōu)勢(shì)氨基酸序列。突變率>10.0%的熱點(diǎn)突變位點(diǎn)有32個(gè)。其中第36、42、44、87、88和127位氨基酸有4種(突變率>1.0%)以上突變形式,具有較高的多態(tài)性。與肝癌密切相關(guān)的K130M/V131I雙突變率為34.7%。通過(guò)7 126條HBx序列與優(yōu)勢(shì)序列的同源性比較,隨機(jī)選出其中50條序列(2條與優(yōu)勢(shì)序列同源性<75%,48條同源性為76%~99%),與23條參考序列及優(yōu)勢(shì)序列共同構(gòu)建系統(tǒng)發(fā)生樹(shù)。結(jié)果顯示,HBx優(yōu)勢(shì)氨基酸序列屬于基因型C,這與基因型C為全球主要流行型一致。本研究首次系統(tǒng)性分析了GenBank中HBx的優(yōu)勢(shì)序列,確定了32個(gè)HBx熱點(diǎn)突變位點(diǎn)和6個(gè)多態(tài)性較高的位點(diǎn),為基于HBx突變的基礎(chǔ)和應(yīng)用研究奠定了基礎(chǔ)。
乙型肝炎病毒X蛋白;熱點(diǎn)突變;優(yōu)勢(shì)序列
乙型肝炎病毒(hepatitis B virus,HBV)感染引起的慢性肝炎、肝硬化(liver cirrhosis,LC)和肝癌(hepatocellular carcinoma,HCC)是全球性的公共衛(wèi)生威脅,給患者尤其是發(fā)展中國(guó)家的患者帶來(lái)沉重負(fù)擔(dān)[1]。HBV X蛋白(HBV X protein,HBx)全長(zhǎng)154個(gè)氨基酸,對(duì)HBV的感染和復(fù)制極為重要,是HBV誘發(fā)HCC的重要原因之一,且其相關(guān)突變與HCC病情進(jìn)展密切相關(guān)[2]。HBx的熱點(diǎn)突變位點(diǎn)主要集中在第26~45位氨基酸,其他突變位點(diǎn)較為散發(fā)[3]。HBx基因與核心啟動(dòng)子(core promoter,Cp)重疊。在Cp區(qū)常見(jiàn)的A1762T/G1764A雙突變可導(dǎo)致HBx突變(K130M/V131I),與HCC密切相關(guān)[4-5]。因此,研究HBx的熱點(diǎn)突變及頻率有可能為發(fā)現(xiàn)新的HCC相關(guān)突變位點(diǎn)提供依據(jù)和啟示。本研究利用生物信息學(xué)方法系統(tǒng)分析了GenBank中HBx的優(yōu)勢(shì)氨基酸序列、點(diǎn)突變發(fā)生率和基因型,為基于HBx突變的基礎(chǔ)和應(yīng)用研究奠定了基礎(chǔ)。
1.1 材料
使用MEGA6、GenBank、Prism 6等軟件。參考序列及基因型(序列號(hào)-基因型)如下:X02763.1-A、CAA36231.1-A、AAD40216.1-A、D00329.1-B、AB073846.1-B、BAK32996.1-B、CAA28288.1-C、AAM95244.1-C、BAA32912.1-C、CAA46360.1-D、AAA45504.1-D、CAA59513.1-D、CAA53341.1-E、BAA89320.1-E、CAA49453.1-F、BAB17959.1-F、AAG49731.1-F、AAF34736.1-G、BAB82385.1-G、AAL99435.1-G、AAM09038.1-H、AAM09050.1-H、AAM09062.1-H。
1.2 方法
1.2.1 HBx氨基酸序列的下載和篩選 在GenBank中下載所有HBx的氨基酸序列13 950條。剔除插入突變(>154個(gè)氨基酸)和缺失突變(<154個(gè)氨基酸)的序列,保留7 148條;再剔除起始氨基酸為非甲硫氨酸(methionine,M)的序列,保留7 128條。通過(guò)MEGA中的Align比對(duì),剔除2條同時(shí)存在插入突變和缺失突變的長(zhǎng)度為154個(gè)氨基酸的序列,最終保留7 126條HBx全長(zhǎng)序列用于分析。
1.2.2 HBx優(yōu)勢(shì)氨基酸序列和熱點(diǎn)突變位點(diǎn)的確定 通過(guò)計(jì)算得出7 126條HBx全長(zhǎng)序列上每個(gè)位點(diǎn)的20種氨基酸的出現(xiàn)頻率,指定出現(xiàn)頻率最高的氨基酸為優(yōu)勢(shì)氨基酸,其余氨基酸為突變氨基酸,其出現(xiàn)頻繁為該氨基酸的突變率。將每個(gè)位點(diǎn)優(yōu)勢(shì)氨基酸組成的虛擬序列定義為優(yōu)勢(shì)序列。
1.2.3 系統(tǒng)發(fā)生樹(shù)的構(gòu)建 通過(guò)對(duì)7 126條HBx全長(zhǎng)序列與優(yōu)勢(shì)序列的同源性比較,得出每條序列與優(yōu)勢(shì)序列的同源性關(guān)系。隨機(jī)選出與優(yōu)勢(shì)序列同源性遞增的50條序列(2條同源性<75%和48條同源性為76%~99%的序列中,每升高1%選擇兩個(gè)序列),與23條參考序列(A~H共8種基因型)和優(yōu)勢(shì)序列構(gòu)建系統(tǒng)發(fā)生樹(shù)。使用近鄰結(jié)合法(neighbor-joining,NJ),并用Bootstraping測(cè)試5 000次,其中重復(fù)性>70%者顯示在節(jié)點(diǎn)上。
2.1 HBx氨基酸序列的下載和篩選
為獲得用于分析的HBx氨基酸序列,在GenBank中搜索關(guān)鍵詞HBV X,設(shè)置條件為Protein,得到13 950條序列;剔除>154個(gè)氨基酸的序列(n=616)和<154個(gè)氨基酸的序列(n=6 186),得到7 148條序列;再剔除起始氨基酸為非甲硫氨酸的序列(n=20)及同時(shí)存在插入和缺失突變的長(zhǎng)度為154個(gè)氨基酸的序列(n=2),得到7 126條序列(圖1),用于后續(xù)分析。
圖1 HBx氨基酸序列篩選流程圖
Fig.1 Flowchart for screening of HBx protein sequences downloaded from GenBank
2.2 HBx優(yōu)勢(shì)氨基酸序列的構(gòu)建和熱點(diǎn)突變位點(diǎn)
分析7 126條HBx每一位點(diǎn)上20種氨基酸的出現(xiàn)頻率,指定出現(xiàn)頻率最高的氨基酸為優(yōu)勢(shì)氨基酸,將154個(gè)優(yōu)勢(shì)氨基酸組成的虛擬序列定義為HBx優(yōu)勢(shì)序列(圖2)。相對(duì)優(yōu)勢(shì)序列,除起始氨基酸甲硫氨酸外,將7 126條HBx中第2~154位的每個(gè)位點(diǎn)除優(yōu)勢(shì)氨基酸以外的其他氨基酸均定義為突變氨基酸,分別計(jì)算每個(gè)位點(diǎn)的突變率。結(jié)果顯示,就全序列而言,突變率為0.2%~60.6%。其中82個(gè)位點(diǎn)的氨基酸突變率<1.0%;24個(gè)位點(diǎn)的氨基酸突變率為1.0%~4.9%;15個(gè)位點(diǎn)的氨基酸突變率為5.0%~9.9%;11個(gè)位點(diǎn)的氨基酸突變率為10.0%~19.9%;8個(gè)位點(diǎn)的氨基酸突變率為20.0%~29.9%;5個(gè)位點(diǎn)的氨基酸突變率為30.0%~39.9%;5個(gè)位點(diǎn)的氨基酸突變率為40.0%~49.9%;1個(gè)位點(diǎn)的氨基酸突變率為50.0%~59.9%(第36位為54.2%);2個(gè)位點(diǎn)的氨基酸突變率為60.0%~69.9%(第30位為60.5%、第88位為60.6%)。
Each residue position and deduced dominant amino acid of HBx are displayed in the horizontal coordinate, and the mutation rate in each residue position is displayed in the vertical coordinate.
圖2 HBx優(yōu)勢(shì)氨基酸序列和各位點(diǎn)的突變率
Fig.2 Deduced dominant amino acid sequence of HBx and mutation rate in each residue position
HBx氨基酸序列中有32個(gè)位點(diǎn)的總突變率>10.0%(表1)。這32個(gè)突變位點(diǎn)中,主要突變(單個(gè)氨基酸突變率>1.0%)形式只有1個(gè)的位點(diǎn)有12個(gè):C6Y、G22S、P33S、L34F、P38S、S39P、S43P、P46S、H94Y、V116L、D119E和K130M;主要突變形式有2個(gè)的位點(diǎn)有9個(gè):L5V/M、A12S/T、R26C/S、S31P/A、P40A/S、A47T/S、R78C/Y、V131I/L和S144A/V;主要突變形式有3個(gè)的位點(diǎn)有5個(gè):V30L/F/I、H86R/P/S、A102V/G/T、S101P/A/F和K118T/N/A;主要突變形式有4個(gè)的位點(diǎn)只有1個(gè):P42S/A/L/T;主要突變形式有5個(gè)的位點(diǎn)有4個(gè):A44V/I/G/L/T、V88N/I/F/S/A、T36A/P/D/S/G和I127T/V/S/L/M;主要突變形式有6個(gè)的位點(diǎn)只有1個(gè):Q87R/G/H/W/L/M(表2)。
上述HBx熱點(diǎn)突變位點(diǎn)中,K130M/V131I雙突變率為34.7%,K130M單突變率為1.5%,V131I單突變率為3.1%。32個(gè)熱點(diǎn)突變位點(diǎn)中,第36、42、44、87、88和127的突變種類(lèi)在4種以上(突變率>1.0%),這6個(gè)熱點(diǎn)突變位點(diǎn)表現(xiàn)出較高的單氨基酸多態(tài)性。
The relationships of the different amino acid sequences of HBx are indicated by phylogenetic tree constructed using the neighbor-joining (NJ) method, implemented in the MEGA6 package. The phylogenetic tree test is bootstrapped (5 000 replicates). The bootstrap values are shown below or above the branches. Each reference sequence (n=27) is represented by a specific letter, which represents it’s genotype; Each selected sequence (n=50) is represented by a specific number, which represents its homology to HBx dominant sequence. The dominant sequence using “Dominant” instead is marked with black box; HBx sequence in HepaAD38 is marked with black circle.
圖3 HBx優(yōu)勢(shì)序列和50條按同源性遞增隨機(jī)篩選的序列系統(tǒng)發(fā)生樹(shù)
Fig.3 Phylogenetic tree for the dominant HBx and 50 selected HBx sequences based on an increasing homology
2.3 HBx的系統(tǒng)發(fā)生關(guān)系
7 126條HBx氨基酸序列與優(yōu)勢(shì)氨基酸序列之間的同源性為54.5%~98.7%。其中同源性<75%有2條(同源性分別為54.5%和57.1%);75%≤同源性<80%有95條(占1.3%);80%≤同源性<85%有332條(占4.7%);85%≤同源性<90%有733條(占10.3%);90%≤同源性<95%有4 433條(占62.2%);同源性≥95%有1 531條(占21.5%)。
通過(guò)NJ系統(tǒng)發(fā)生樹(shù)(圖3)可看出,HBx優(yōu)勢(shì)氨基酸序列、基因型C的參考序列與同源性為94%~99%的11條序列歸為一支,屬基因型C;同源性為82%~86%的6條序列與基因型F的參考序列歸為一支,屬基因型F;同源性為81%和84%的2條序列與基因型H的參考序列歸為一支,屬基因型H;同源性為76%~80%的9條序列與基因型G的參考序列歸為一支,屬基因型G;同源性為82%~94%的8條序列與基因型B的參考序列歸為一支,屬基因型B;基因型為86%~93%的7條序列和HepAD38與基因型A和D的參考序列歸為一支,分型不明確;同源性為87%和90%的2條序列介于基因型G與H之間,分型不明確;同源性為57%、64%、77%、81%和83%的5條序列離8種基因型參考序列分支均較遠(yuǎn),分型不明確。
HBx相對(duì)分子質(zhì)量約為16 500,含154個(gè)氨基酸[6]。HBx是一個(gè)多功能蛋白,在HBV生活史及HCC的發(fā)生和發(fā)展中起重要作用。HBx具有廣泛的生物學(xué)功能,可通過(guò)與多個(gè)細(xì)胞內(nèi)轉(zhuǎn)錄因子如活化蛋白1(activator protein 1,AP-1)等作用調(diào)控基因表達(dá),也可與多條信號(hào)通路中的關(guān)鍵因子作用而影響細(xì)胞周期、細(xì)胞凋亡和自吞噬等多個(gè)生理過(guò)程[7]。最新研究發(fā)現(xiàn),HBx能結(jié)合Smc5/6并將其帶至溶酶體降解,從而保護(hù)病毒基因轉(zhuǎn)錄免受宿主細(xì)胞的抑制[8]。
HCC是病死率最高的癌癥之一[9-10]。HBx基因突變與HCC的發(fā)生和進(jìn)程密切相關(guān)[2]。目前已報(bào)道的與HCC相關(guān)的突變位點(diǎn)有V5M(G1386A)、P38S(C1485T)[11]、G50R(G1521C/A)[12]、D80E(G1613A)[13]、H94Y(C1653T)[11,13]、S101P(T1674C)[14]、I127T/N/S(T1753V)[13-14]、K130M(A1762T)和V131I(G1764A)[11,13]。與HCC相關(guān)的雙突變位點(diǎn)有K130M/V131I(A1762T/G1764A)和L30F/S144A[12],3個(gè)位點(diǎn)共突變有V5M/K130M/V131I[11]。未發(fā)現(xiàn)與HCC有明顯相關(guān)性的熱點(diǎn)突變位點(diǎn)有A23T(G1440A)[14]、G31R、G32R(G1467C)[14]、A/P36T(G/C1479A)[14]、S43P和Q87R[12]。
深入研究較多的HCC相關(guān)突變位點(diǎn)是K130M/V131I (A1762T/G1764A)。A1762T/G1764A位于Cp區(qū),首先在HBV e抗原(HBV e antigen,HBeAg)陰性患者中發(fā)現(xiàn)[15]。該雙突變能抑制HBeAg表達(dá),增強(qiáng)HBV復(fù)制[5]。自然發(fā)生的K130M/V131I雙突變頻率在HCC患者與HBV慢性無(wú)癥狀攜帶者(chronic asymptomatic carrier,ASC)、慢性乙型肝炎(chronic hepatitis B,CHB)患者和LC患者中存在顯著差異,且隨著病情進(jìn)展在ASC及CHB、LC、HCC患者中顯著增加,此雙突變可能無(wú)須進(jìn)展至LC就能直接誘發(fā)HCC[5]。
除與基礎(chǔ)核心啟動(dòng)子區(qū)(basal core promoter, BCP)和EnⅡ重疊外,HBx基因的5′端與聚合酶的RNase H功能域部分重疊,3′端與PreC部分重疊,但HBx基因與這兩個(gè)基因的編碼框均不同框。HBx與RNase H重疊部分長(zhǎng)250 bp(1374~1623位核苷酸,對(duì)應(yīng)HBx的1~84位氨基酸);與PreC重疊部分長(zhǎng)15 bp(1814~1828位核苷酸,對(duì)應(yīng)HBx的147~154位氨基酸)。RNase H在HBV復(fù)制過(guò)程中主要起負(fù)鏈DNA合成時(shí)降解pgRNA的作用。目前對(duì)RNase H突變的臨床研究較少。細(xì)胞水平研究發(fā)現(xiàn),基因型D的RNase H中D689、R703、E718、D737、D777和R781突變會(huì)抑制HBV DNA合成[16]。其中Asp777和Arg781落在與HBx的重疊部分,分別對(duì)應(yīng)27~28位和31~32位氨基酸。27~28位氨基酸在HBx上的突變率很低,而31~32位氨基酸在HBx上的突變率相對(duì)較高。HBx第26~52位氨基酸的突變率較高,RNase H在此區(qū)域的突變率也較高。RNase H與HBx的編碼框并不相同,在一定程度上可限制RNase H和HBx突變,但兩者可能在此區(qū)域的保守性均較低。PreC/C基因編碼的HBe與HBV建立慢性感染密切相關(guān)。影響HBeAg表達(dá)的主要原因?yàn)锽CP突變(A1762T/G1764A)和基因型依賴(lài)的G1896A突變[17]。在PreC中與HBx的重疊部位為1~8位氨基酸,處于信號(hào)肽的N端,在HBeAg分泌過(guò)程中被切割[18]。HBx第147位氨基酸為脯氨酸(P,CCA),其對(duì)應(yīng)的最后一個(gè)堿基為A,單獨(dú)A突變?yōu)?47位同義突變,對(duì)HBx無(wú)影響。HBx第148~154位氨基酸突變率較低,可能因?yàn)槠渑cPreC重疊但不同框。
目前研究主要集中在少數(shù)熱點(diǎn)突變位點(diǎn),尚缺乏對(duì)HBx所有位點(diǎn)進(jìn)行系統(tǒng)的突變研究。本研究從GenBank中篩選到7 126條HBx序列,首次系統(tǒng)分析了HBx的優(yōu)勢(shì)氨基酸序列,并對(duì)HBx每個(gè)氨基酸位點(diǎn)的突變率進(jìn)行了分析。結(jié)果顯示,熱點(diǎn)突變位點(diǎn)基本與他人研究一致,集中在26~52位氨基酸的反式激活因子區(qū)域(圖2),主要熱點(diǎn)突變位點(diǎn)有R26C/S、V30L/F/I、S31P/A、P33S、T36A/P/D/S/G、P38S、S39P、P42S/A/L/T、S43P、A44V/I/G/L/T、P46S和A47T/S;其他熱點(diǎn)突變位點(diǎn)相對(duì)較為分散,主要有L5V/M、C6Y、A12S/T、G22S、R78C/Y、H86R/P/S、Q87R/G/H/W/L/M、V88N/I/F/S/A、H94Y、S101P/A/F、A102V/G/T、V116L、K118T/N/A、D119E、I127T/V/S/L/M、K130M、V131I/L和S144A/V。其中與HCC密切相關(guān)的K130M/V131I雙突變發(fā)生頻率為34.7%,與其他研究較為吻合[5,11,14]。
HBx第5位優(yōu)勢(shì)氨基酸是L,其出現(xiàn)頻率為68.7%,主要突變位點(diǎn)有L5V(24.2%)和L5M(6.9%);但有報(bào)道為V5M突變,且V5M與HCC密切相關(guān)[11]。第30位優(yōu)勢(shì)氨基酸為V,其出現(xiàn)頻率為39.5%,主要突變位點(diǎn)有V30L(38.0%)、V30F(19.7%)和V30I(2.7%);有研究報(bào)道為V/L30F突變[14],認(rèn)為V和L均為野生型。第36位優(yōu)勢(shì)氨基酸為T(mén),其出現(xiàn)頻率為45.8%,主要突變位點(diǎn)有T36A(33.5%)、T36D(6.6%)、T36P(6.6%)、T36S(4.9%)和T36G(17.0%);有研究報(bào)道為A/P36T突變[14],認(rèn)為A和P為野生型。上述3個(gè)位點(diǎn)中第5位和第36位優(yōu)勢(shì)氨基酸的出現(xiàn)頻率比突變頻率顯著高,表明以前認(rèn)為的野生型可能要做調(diào)整。第30位優(yōu)勢(shì)氨基酸的出現(xiàn)頻率(39.5%)與主要突變頻率(38.0%)接近,可認(rèn)為優(yōu)勢(shì)氨基酸有兩種。
HBx第36、42、44、87、88和127位氨基酸的多態(tài)性頻率較高,突變率>1.0%的有T36A/P/D/S/G、P42S/A/L/T、A44V/I/G/L/T、Q87R/G/H/W/L/M、V88N/I/F/S/A和I127T/V/S/L/M,尚無(wú)報(bào)道。
HBx優(yōu)勢(shì)序列及與其同源性較高(94%~99%)的序列歸于基因型C,表明提交到數(shù)據(jù)庫(kù)中的序列為基因型C的序列數(shù)量最多,這與國(guó)內(nèi)HBV主要流行型為C型和B型[19]及全球主要流行型為C型[20]一致;與HBx優(yōu)勢(shì)氨基酸序列同源性較低(76%~86%)的序列歸于流行性較低的F、G和H型。有研究報(bào)道,HBV基因型B比基因型C發(fā)生K130M/V131I雙突變的概率低,且HCC患者中HBV基因型C的K130M/V131I雙突變比例比基因型B高[5]。在母嬰垂直傳播研究中發(fā)現(xiàn),HBV基因型C比基因型B突變更快,更易發(fā)生K130M/V131I雙突變[21]。由此可見(jiàn),HBV基因型C的K130M/V131I雙突變與HCC相關(guān)性較高,也提示對(duì)HBV基因型C的ASC及CHB、LC患者檢測(cè)K130M/V131I(A1762T/G1764A)雙突變具有重要意義。
綜上所述,本研究系統(tǒng)性研究了HBx優(yōu)勢(shì)氨基酸序列和每個(gè)位點(diǎn)氨基酸的突變情況,確定了32個(gè)HBx熱點(diǎn)突變位點(diǎn),首次報(bào)道了6個(gè)氨基酸多態(tài)性位點(diǎn),為HBx突變研究及基于HBx突變的臨床診斷與治療奠定了基礎(chǔ)。
[1] Lavanchy D. Hepatitis B virus epidemiology, disease burden, treatment, and current and emerging prevention and control measures [J]. J Viral Hepat, 2004, 11(2): 97-107.
[2] Geng M, Xin X, Bi LQ, Zhou LT, Liu XH. Molecular mechanism of hepatitis B virus X protein function in hepatocarcinogenesis [J]. World J Gastroenterol, 2015, 21(38): 10732-10738.
[3] Hwang GY, Huang CJ, Lin CY, Wu CC. Dominant mutations of hepatitis B virus variants in hepatoma accumulate in B-cell and T-cell epitopes of the HBx antigen [J]. Virus Res, 2003, 92(2): 157-164.
[4] Baptista M, Kramvis A, Kew MC. High prevalence of 1762(T) 1764(A) mutations in the basic core promoter of hepatitis B virus isolated from black Africans with hepatocellular carcinoma compared with asymptomatic carriers [J]. Hepatology, 1999, 29(3): 946-953.
[5] Yang Z, Zhuang L, Lu Y, Xu Q, Tang B, Chen X. Naturally occurring basal core promoter A1762T/G1764A dual mutations increase the risk of HBV-related hepatocellular carcinoma: a meta-analysis [J/OL]. Oncotarget, 2016. http://www.impactjournals.com/oncotarget/index.php?journal=oncotarget&page=article&op=view&path%5B%5D=7123&path%5B%5D=20283.
[6] Tiollais P, Pourcel C, Dejean A. The hepatitis B virus [J]. Nature, 1985, 317(6037): 489-495.
[7] Bouchard MJ, Schneider RJ. The enigmatic X gene of hepatitis B virus [J]. J Virol, 2004, 78(23): 12725-12734.
[8] Decorsière A, Mueller H, van Breugel PC, Abdul F, Gerossier L, Beran RK, Livingston CM, Niu C, Fletcher SP, Hantz O, Strubin M. Hepatitis B virus X protein identifies the Smc5/6 complex as a host restriction factor [J]. Nature, 2016, 531(7594): 386-389.
[9] Zhuang LP, Xu LT, Wang P, Jiang Y, Yong P, Zhang CY, Zhang HB, Meng ZQ, Yang PY. Na+/K+-ATPase alpha 1 subunit, a novel therapeutic target for hepatocellular carcinoma [J]. Oncotarget, 2015, 6(29): 28183-28193.
[10] Yang ZG, Zhang JL, Lu YF, Xu QA, Wang Q, Zhang WS, Chen SS, Lu LQ, Chen XR. Aspartate aminotransferase-lymphocyte ratio index and systemic immune-inflammation index predict overall survival in HBV-related hepatocellular carcinoma patients after transcatheter arterial chemoembolization [J]. Oncotarget, 2015, 6(40): 43090-43098.
[11] Lee JH, Han KH, Lee JM, Park JH, Kim HS. Impact of hepatitis B virus (HBV) X gene mutations on hepatocellular carcinoma development in chronic HBV infection [J]. Clin Vaccine Immunol, 2011, 18(6): 914-921.
[12] Zhang X, Ding HG. Key role of hepatitis B virus mutation in chronic hepatitis B development to hepatocellular carcinoma [J]. World J Hepatol, 2015, 7(9): 1282-1286.
[13] Park YM. Clinical utility of complex mutations in the core promoter and proximal precore regions of the hepatitis B virus genome [J]. World J Hepatol, 2015, 7(1): 113-120.
[14] 王淼,胡艷芳,史為濤,王勤英. 原發(fā)性肝細(xì)胞癌患者乙型肝炎病毒X基因突變檢測(cè)及其臨床意義 [J]. 中華肝臟病雜志, 2015,23(8):599-603.
[15] Okamoto H, Tsuda F, Akahane Y, Sugai Y, Yoshiba M, Moriyama K, Tanaka T, Miyakawa Y, Mayumi M. Hepatitis B virus with mutations in the core promoter for an e antigen-negative phenotype in carriers with antibody to e antigen [J]. J Virol, 1994, 68(12): 8102-8110.
[16] Ko C, Shin YC, Park WJ, Kim SA, Ryu WS. Residues Arg703, Asp777, and Arg781 of the RNase H domain of hepatitis B virus polymerase are critical for viral DNA synthesis [J]. J Virol, 2014, 88(1): 154-163.
[17] Tong S, Revill P. Overview of hepatitis B viral replication and genetic variability [J]. J Hepatol, 2016, 64(1 Suppl): S4-S16.
[18] Ito K, Kim KH, Lok AS, Tong S. Characterization of genotype-specific carboxyl-terminal cleavage sites of hepatitis B virus e antigen precursor and identification of furin as the candidate enzyme [J]. J Virol, 2009, 83(8): 3507-3517.
[19] Li HM, Wang JQ, Wang R, Zhao Q, Li L, Zhang JP, Shen T. Hepatitis B virus genotypes and genome characteristics in China [J]. World J Gastroenterol, 2015, 21(21): 6684-6697.
[20] Jazayeri SM, Alavian SM, Carman WF. Hepatitis B virus: origin and evolution [J]. J Viral Hepat, 2010, 17(4): 229-235.
[21] Wu Q, Xu C, Li J, Li L, Yan G, Yue L, Zeng Y, Huang H, Deng G, Wang Y. Evolution and mutations of hepatitis B virus quasispecies in genotype B and C during vertical transmission [J]. J Med Virol, 2016, 88(6): 1018-1026.
s. PAN Shaokun, E-mail: span10@fudan.edu.cn;XIE Youhua, E-mail: yhxie@fudan.edu.cn
Bioinformatic determination of dominant amino acid sequence and mutation hotspots in hepatitis B virus X protein
WANG Wei1, HE Yonggang1, PU Yonglan2, PAN Shaokun1,3, XIE Youhua1
1.KeyLaboratoryofMedicalMolecularVirologyofMinistriesofEducationandHealth,SchoolofBasicMedicalSciences,FudanUniversity,Shanghai200032,China; 2.DepartmentofInfectiousDiseases,TaicangFirstPeople’sHospital,Taicang215400,China; 3.DepartmentofPreventiveDentistry,ShanghaiNinthPeople’sHospital,ShanghaiJiaoTongUniversitySchoolofMedicine,ShanghaiKeyLaboratoryofStomatology,Shanghai200011,China
Hepatitis B virus X protein (HBx), a 154-amino acid protein encoded by hepatitis B virus (HBV), has been implicated in the development of hepatocellular carcinoma (HCC). The aim of the present study is to establish a complete and dominant peptide sequence of HBx. A total of 13 950 HBx protein sequences were retrieved from GenBank. After excluding the non-complete ones that harbor insertions, deletions and non-methionine start amino acid, 7 126 were included in the study. Occurrence frequencies of the 20 amino acids at each position of HBx were calculated. The amino acid with the highest frequency at each position was designated as the dominant amino acid at the position and all the dominant residues constituted the complete and dominant peptide sequence of HBx. All the non-dominant amino acids were taken as the mutants. 32 hotspots with a mutation rate over 10.0% were detected. The positions 36, 42, 44, 87, 88, and 127 showed a higher polymorphism, having more than 4 kinds of mutations with a rate over 1.0%. The K130M/V131I dual mutation, regarded as a high risk factor of HBV-related HCC, showed an occurrence frequency at 34.7% in this study. The homology between the dominant sequence and each of the 7 126 HBx sequences was calculated. 50 sequences, which included 2 sequences with a homology to the dominant below 75% and 48 sequences with a homology between 76%-99%, were chosen for phylogenetic tree construction. The phylogenetic tree with the dominant HBx, 50 selected HBx and 23 reference sequences showed that the dominant HBx belonged to genotype C. This study has systematically constituted a calculated HBx peptide sequence with dominant amino acid at each position, laying the foundation for the basic and applied research on HBx.
Hepatitis B virus X protein; Mutation hotspot; Dominant sequence
國(guó)家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃(2012CB519002)
潘少坤,謝幼華
2016-04-05)