柴大軍, 徐軍霞, 許昌聲, 祝 江, 林金秀
(1福建醫(yī)科大學(xué)附屬第一醫(yī)院心血管內(nèi)科,福建高血壓研究所, 2福州總醫(yī)院老年醫(yī)學(xué)科,福建 福州 350005)
視黃醇X受體激動(dòng)劑通過調(diào)控Smad2通路抑制TGF-β1誘導(dǎo)的心肌成纖維細(xì)胞膠原合成*
柴大軍1△, 徐軍霞2, 許昌聲1, 祝 江1, 林金秀1
(1福建醫(yī)科大學(xué)附屬第一醫(yī)院心血管內(nèi)科,福建高血壓研究所,2福州總醫(yī)院老年醫(yī)學(xué)科,福建 福州 350005)
目的: 探討視黃醇X受體(RXR)激動(dòng)劑9-順式視黃酸(9-cis-RA)干預(yù)對(duì)缺氧條件下轉(zhuǎn)化生長因子β1(TGF-β1)誘導(dǎo)的大鼠心肌成纖維細(xì)胞(CFs)膠原合成的影響和分子機(jī)制。方法:心肌組織塊干涸法培養(yǎng)大鼠CFs,持續(xù)通氮?dú)夥ń⒓?xì)胞缺氧環(huán)境,評(píng)價(jià)9-cis-RA和TGF-β1對(duì)CFs膠原合成的影響;ELISA法測(cè)CFs上清液Ⅰ、Ⅲ型膠原水平,Western blot法檢測(cè)胞漿、胞核和細(xì)胞的Smad2及p-Smad2水平,細(xì)胞免疫化學(xué)法觀察p-Smad2的亞細(xì)胞定位。結(jié)果:TGF-β1(0.01~10 μg/L)在缺氧條件下呈濃度依賴性地誘導(dǎo)CFs合成I型和III膠原,當(dāng)濃度達(dá)到5 μg/L時(shí),I、III型膠原的合成水平顯著增高(P<0.01)。9-cis-RA(10-9~10-6mol/L)則呈濃度依賴性抑制TGF-β1在缺氧條件下誘導(dǎo)的CFs膠原合成,當(dāng)濃度為10-7mol/L時(shí),I型和III型膠原的合成水平顯著降低(P<0.01)。Smad2抑制劑(20 nmol/L)亦可顯著抑制TGF-β1在缺氧條件下誘導(dǎo)的CFs I型和III型膠原的合成。免疫雜交和細(xì)胞免疫化學(xué)結(jié)果顯示,與TGF-β1干預(yù)相比,TGF-β1和9-cis-RA聯(lián)合干預(yù)組的CFs其胞漿內(nèi)p-Smad2的水平顯著增加,但胞核內(nèi)p-Smad2的水平明顯降低(P<0.05)。結(jié)論:RXR激動(dòng)劑9-cis-RA顯著下調(diào)TGF-β1在缺氧條件下誘導(dǎo)的CFs I型和III型膠原的合成,其機(jī)制與其抑制TGF-β1誘導(dǎo)的p-Smad2細(xì)胞核轉(zhuǎn)位有關(guān)。
視黃醇X受體; 轉(zhuǎn)化生長因子; 心肌成纖維細(xì)胞; 膠原; Smad蛋白
急性心肌梗死后,心肌重構(gòu)致使心臟的結(jié)構(gòu)和功能發(fā)生改變,最終導(dǎo)致心功能不全。其病理過程包括心肌細(xì)胞凋亡、壞死及細(xì)胞外基質(zhì)的過度沉積[1]。轉(zhuǎn)化生長因子β(transforming growth factor β,TGF-β)是心肌梗死后激活心肌成纖維細(xì)胞(cardiac fibroblasts,CFs)的關(guān)鍵細(xì)胞因子,通過Smads及非Smads(包括p38、c-Jun氨基末端蛋白激酶等)信號(hào)通路誘導(dǎo)CFs增生和膠原合成并參與梗死心肌的修復(fù)和重構(gòu)過程,但Smads通路是其主要途徑[2-3]。Smads蛋白是一族參與TGF-β超家族信號(hào)在細(xì)胞內(nèi)的信號(hào)轉(zhuǎn)導(dǎo)蛋白,調(diào)控心肌損傷后的修復(fù)和重構(gòu)。研究表明,CFs在TGF-β1的作用下,Smad2蛋白磷酸化水平增加并發(fā)生核轉(zhuǎn)位,I型和III型膠原表達(dá)增多,最終導(dǎo)致心肌纖維化[3-4 ],抑制TGF-β1/Smads通路過度激活可能是改善心梗后心肌重構(gòu)和心臟功能的重要策略。
作為核受體超家族重要成員,視黃醇X受體(retinoid X receptor,RXR)參與調(diào)節(jié)機(jī)體的發(fā)育、分化、代謝和組織修復(fù)[5]。我們前期發(fā)現(xiàn)RXR激動(dòng)劑可顯著抑制高血壓導(dǎo)致的左心室肥厚[6],同時(shí)也證實(shí)了RXR抑制高糖環(huán)境對(duì)人血管內(nèi)皮細(xì)胞產(chǎn)生的氧化應(yīng)激損傷和血管平滑肌細(xì)胞增殖[7-8],說明RXR可能通過調(diào)控多重信號(hào)通路在心血管病理生理過程中發(fā)揮保護(hù)作用。本研究將觀察RXR激動(dòng)劑9-順式視黃酸(9-cisretinoic acid, 9-cis-RA)對(duì)在缺氧條件下TGF-β1誘導(dǎo)大鼠CFs的Smad2蛋白磷酸化、亞細(xì)胞分布及膠原合成的影響。
1 材料
雄性SD大鼠,體重(100±150) g(上海斯萊克實(shí)驗(yàn)動(dòng)物有限公司);M199培養(yǎng)基、胎牛血清(fetal bovine serum,F(xiàn)BS)、胰蛋白酶和蛋白酶抑制劑(Life);細(xì)胞核漿分離提取試劑盒(Pierce);兔抗鼠波形蛋白(vimentin)單克隆抗體和蛋白分子marker(Thermo);兔抗大鼠RXRα抗體(Abcam);兔抗鼠Smad2多克隆抗體、兔抗鼠p-Smad2多克隆抗體、9-cis-RA、DTT和Smad2抑制劑(Sigma);兔抗鼠β-actin單克隆抗體(Santa Cruz);辣根過氧化物酶偶聯(lián)羊抗兔IgG Ⅱ抗、辣根過氧化物酶偶聯(lián)羊抗鼠IgG Ⅱ抗(北京中杉金橋生物技術(shù)有限公司);大鼠Ⅰ型膠原(type Ⅰ collagen, Col Ⅰ)及Col Ⅲ ELISA試劑盒(Abbexa); PVDF膜(Millipore)。
2 方法
2.1 組織塊干涸法培養(yǎng)CFs 無菌條件下取雄性SD大鼠(100~150 g,4周齡)心尖部心肌組織50 mg,迅速置入盛放預(yù)冷M199液的培養(yǎng)皿中,眼科剪將心肌組織剪成約1 mm×1 mm×1 mm大小的組織塊,用M199液沖洗2~3次;用吸管將心肌組織塊轉(zhuǎn)移至培養(yǎng)瓶;均勻平鋪,吸凈培養(yǎng)基,于培養(yǎng)瓶對(duì)側(cè)加入4~5 mL 10% FBS M199培養(yǎng)基,傾斜約45度放置于37 ℃恒溫培養(yǎng)箱內(nèi);2~3 h后翻轉(zhuǎn)培養(yǎng)瓶,水平放置于37 ℃細(xì)胞培養(yǎng)箱內(nèi)繼續(xù)培養(yǎng)。3~4 d更換培養(yǎng)基,待細(xì)胞生長并鋪滿2/3培養(yǎng)瓶瓶底,0.25%胰酶消化傳代,取3~6代細(xì)胞進(jìn)行實(shí)驗(yàn)。
2.2 CFs的鑒定 在倒置顯微鏡中直接觀察活細(xì)胞形態(tài)及用免疫細(xì)胞化學(xué)法檢測(cè)vimentin。取3~6代細(xì)胞接種于放置有滅菌蓋玻片的6孔培養(yǎng)板,待細(xì)胞長至60%~70%匯合時(shí)棄上清,PBS漂洗1~2次;加2 mL 4%甲醛室溫下30 min,取出長有細(xì)胞的蓋玻片,細(xì)胞面朝上置于載玻片上,加0.1% Triton X-100室溫20 min,PBS漂洗2~3次;加3% H2O2,室溫放置10 min,PBS漂洗1次;加抗vimentin抗體(1∶200),4 ℃濕盒12 h,PBS漂洗5 min×3次;加HRP標(biāo)記的 II 抗(1∶500),37 ℃濕盒1.5 h,PBS漂洗5 min 3次;加入1×DAB 50~100 μL于蓋玻片上,室溫鏡下觀察1~2 min,雙蒸水沖洗;0.5×蘇木素復(fù)染1~2 min,脫水,封片,觀察,細(xì)胞胞漿呈棕黃色為成纖維細(xì)胞陽性,其陽性率大于95%用于細(xì)胞干預(yù)實(shí)驗(yàn)。
2.3 ELISA法測(cè)定CFs的I型和III型膠原合成 取3~6代細(xì)胞接種于96孔培養(yǎng)板中,待細(xì)胞生長至60%~70%匯合時(shí)干預(yù),干預(yù)結(jié)束收集細(xì)胞上清,依據(jù)試劑盒說明進(jìn)行檢測(cè)。
2.4 細(xì)胞蛋白的提取和Western blot實(shí)驗(yàn) 提取細(xì)胞總蛋白,采用細(xì)胞核漿分離提取試劑盒依據(jù)產(chǎn)品流程進(jìn)行分離胞漿蛋白和胞核蛋白,煮沸變性10 min,采用10%~12% SDS-PAGE電泳分離50 μg細(xì)胞蛋白樣品,轉(zhuǎn)至PVDF膜后用特異的抗Smad2和p-Smad2抗體進(jìn)行Western blot檢測(cè),β-actin作為內(nèi)參照。
2.5 免疫細(xì)胞化學(xué)測(cè)心肌成纖維細(xì)胞Smad2蛋白的磷酸化水平 取3~6代細(xì)胞接種于無菌蓋玻片上,待細(xì)胞長至50%~60%匯合,棄培養(yǎng)基,PBS漂洗1~2次;4%甲醛固定30 min,加0.1% Triton X-100室溫5~10 min,PBS漂洗2~3次;加3% H2O2室溫10 min,PBS漂洗1次;加p-Smad2抗體(1∶100),4 ℃濕盒12 h,PBS漂洗5 min 3次;加HRP標(biāo)記的 II 抗(即用型),37 ℃濕盒1.5 h,PBS漂洗5 min 3次;加DAB顯色1~2 min,自來水沖洗;蘇木素復(fù)染,脫水,封片,鏡下觀察細(xì)胞胞漿胞核棕黃色顆粒(即p-Smad2)。
3 統(tǒng)計(jì)學(xué)處理
采用統(tǒng)計(jì)軟件SPSS 13.0進(jìn)行數(shù)據(jù)分析,所有計(jì)量資料以均數(shù)±標(biāo)準(zhǔn)誤(mean±SEM)表示。多組間計(jì)量資料比較采用單因素方差分析(one-way ANOVA),各組均數(shù)間兩兩比較使用SNK-q檢驗(yàn),以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
1 缺氧條件下TGF-β1上調(diào)CFs I、III型膠原合成
ELISA檢測(cè)結(jié)果顯示,TGF-β1在缺氧條件下呈濃度依賴性促進(jìn)CFs I、III型膠原的合成。與對(duì)照組相比,1 μg/L TGF-β1可使CFs的I、III型膠原合成水平顯著增加(P<0.05),當(dāng)TGF-β1的干預(yù)濃度達(dá)到5 μg/L時(shí),CFs I、III型膠原的合成水平進(jìn)一步增加并達(dá)到高峰,見圖1。
Figure 1.The effects of TGF-β1 on the synthesis of Col I and Col III in the CFs under hypoxic environment. The CFs were incubated with TGF-β1 at concentrations of 0~10 μg/L for 24 h. Mean±SEM.n=4.*P<0.05vs0 μg/L;◆P<0.05vs0.1 μg/L;▲P<0.05vs1 μg/L.
圖1 TGF-β1在低氧環(huán)境下對(duì)心肌成纖維細(xì)胞I型和III型膠原合成的影響
2 9-cis-RA對(duì)缺氧條件下TGF-β1誘導(dǎo)CFs合成I型和III型膠原的影響
TGF-β1(5 μg/L)在缺氧條件下顯著上調(diào)CFs I、III型膠原的合成水平(P<0.01);RXR激動(dòng)劑9-cis-RA呈濃度依賴性地抑制TGF-β1在缺氧條件下誘導(dǎo)CFs I、III型膠原的合成,與TGF-β1組相比,9-cis-RA(10-7mol/L)顯著降低CFs I、III型膠原的合成水平(P<0.01),見圖2。
3 Smad2抑制劑對(duì)TGF-β1在缺氧條件下誘導(dǎo)CFs合成I型和III型膠原的影響
TGF-β1(5 μg/L)在缺氧條件下顯著上調(diào)CFs I、III型膠原的合成(P<0.05);同9-cis-RA(10-7mol/L)干預(yù)相似,Smad2抑制劑(20 nmol/L)干預(yù)亦可顯著抑制TGF-β1在缺氧環(huán)境下對(duì)CFs I、III型膠原合成的影響(P<0.05),見圖3。
4 9-cis-RA對(duì)TGF-β1在缺氧條件下誘導(dǎo)CFs Smad2磷酸化的影響
用TGF-β1(5 μg/L)在缺氧條件下處理CFs,發(fā)現(xiàn)TGF-β1時(shí)間依賴性地誘導(dǎo)Smad2蛋白發(fā)生磷酸化,于干預(yù)45 min時(shí)增加顯著,60 min時(shí)達(dá)到峰點(diǎn)。
Figure 2.The effects of 9-cis-RA on TGF-β1-induced synthesis of Col I and Col III in the CFs under hypoxic environment. CFs were treated with the indicated concentrations of 9-cis-RA for 1 h and then exposed to TGF-β1 at concentration of 5 μg/L for 24 h. Mean±SEM.n=4.*P<0.05vsTGF-β1 0 μg/L;◆P<0.05vsTGF-β1 5 μg/L;▲P<0.05vs9-cis-RA (10-9mol/L);☆P<0.05vs9-cis-RA (10-8mol/L).
圖2 RXR激動(dòng)劑9-cis-RA抑制缺氧環(huán)境下TGF-β1誘導(dǎo)的CFs I型和III型膠原合成
Figure 3.The effects of Smad2 inhibitor on TGF-β1-induced synthesis of Col I and Col III in the CFs under hypoxic environment. The CFs were treated with 9-cis-RA (10-7mol/L) or Smad2 inhibitor (20 nmol/L) for 1 h and then exposed to TGF-β1 (5 μg/L) for 24 h. Mean±SEM.n=4.*P<0.05vscontrol;◆P<0.05vsTGF-β1.
圖3 Smad2抑制劑對(duì)缺氧環(huán)境下TGF-β1誘導(dǎo)CFs I型和III型膠原合成的影響
以9-cis-RA(10-7mol/L)預(yù)處理CFs 30 min,再用TGF-β1干預(yù),結(jié)果發(fā)現(xiàn)9-cis-RA顯著增強(qiáng)TGF-β1對(duì)Smad2蛋白磷酸化的誘導(dǎo)效應(yīng),但各組間Smad2總蛋白水平未見明顯變化。上述有趣的現(xiàn)象提示,在缺氧條件下,9-cis-RA配體激活RXR受體后,TGF-β1誘導(dǎo)CFs內(nèi)Smad2蛋白發(fā)生磷酸化的效應(yīng)出現(xiàn)一定程度的增強(qiáng),見圖4。
Figure 4.The effects of 9-cis-RA on TGF-β1-induced Smad2 phosphorylation in the CFs under hypoxic environment. The CFs were treated with 9-cis-RA (10-7mol/L) for 1 h and then exposed to TGF-β1 (5 μg/L) for the indicated time. Mean±SEM.n=3.*P<0.05vs0 min;#P<0.05vs30 min;◆P<0.05vs45 min;▲P<0.05vs60 min.
圖4 RXR激動(dòng)劑9-cis-RA對(duì)缺氧環(huán)境下TGF-β1誘導(dǎo)Smad2磷酸化的影響
5 9-cis-RA 對(duì)TGF-β1在缺氧條件下誘導(dǎo)CFs Smad2蛋白磷酸化及亞細(xì)胞分布的影響
TGF-β1(5 μg/L)在缺氧條件下處理CFs 60 min,發(fā)現(xiàn)細(xì)胞內(nèi)Smad2磷酸化水平顯著增加,單純9-cis-RA(10-7mol/L)干預(yù)對(duì)Smad2磷酸化無明顯影響。與對(duì)照組相比,TGF-β1干預(yù)顯著增加CFs胞核內(nèi)的p-Smad2水平(P<0.01);但是,與TGF-β1干預(yù)相比,TGF-β1+9-cis-RA聯(lián)合干預(yù)顯著增加CFs胞漿內(nèi)p-Smad2的水平(P<0.05),而胞核內(nèi)的p-Smad2水平明顯降低(P<0.05),各組間總Smad2蛋白水平未見明顯變化。細(xì)胞免疫化學(xué)法再次印證了上述發(fā)現(xiàn),在靜息狀態(tài)下,CFs細(xì)胞胞漿內(nèi)可見少許棕黃色顆粒沉著,胞核內(nèi)未見到棕色顆粒;TGF-β1刺激后胞漿及胞核內(nèi)均可見大量棕黃色顆粒,胞核中棕黃色顆粒沉著更為明顯,單純9-cis-RA處理與對(duì)照組無顯著變化,聯(lián)合TGF-β1及9-cis-RA干預(yù)后可見胞漿中大量棕黃色顆粒沉著,胞核中棕黃色顆粒僅見少量增多。上述結(jié)果顯示:在缺氧條件下,TGF-β1干預(yù)在誘導(dǎo)Smad2蛋白磷酸化的同時(shí),還促進(jìn)p-Smad2進(jìn)入細(xì)胞核。9-cis-RA激活RXR后,TGF-β1介導(dǎo)的p-Smad2和細(xì)胞核轉(zhuǎn)位被顯著抑制,見圖5。
Figure 5.Regulation of p-Smad2 subcellular localization by TGF-β1 and RXR agonist. The CFs were treated with 9-cis-RA (10-7mol/L) or TGF-β1(5 μg/L) for 60 min, or pretreated with 9-cis-RA followed by exposure to TGF-β1 for 60 min. A: Western blot detection of p-Smad2 in the CFs; B: p-Smad2 immunostaining in the CFs (×400). Mean±SEM.n=3.*P<0.05vscontrol;◆P<0.05vsTGF-β1 group.
圖5 RXR激動(dòng)劑9-cis-RA對(duì)缺氧環(huán)境下TGF-β1誘導(dǎo)p-Smad2亞細(xì)胞分布的影響
心梗后心臟重塑包括心肌細(xì)胞及非心肌細(xì)胞的重塑,其中非心肌細(xì)胞的重塑表現(xiàn)為成纖維細(xì)胞增殖及其分化為肌成纖維細(xì)胞,合成和分泌細(xì)胞外基質(zhì)導(dǎo)致心肌僵硬度增加,順應(yīng)性下降,引起心室收縮和舒張功能下降,其中I型和III型膠原是心肌細(xì)胞外基質(zhì)的主要組分[3,9]。
TGF-β超家族成員眾多,功能多元且廣泛,參與調(diào)控細(xì)胞的生長、發(fā)育、分化及凋亡,并調(diào)節(jié)機(jī)體免疫功能及上皮向間質(zhì)的轉(zhuǎn)化[10-12]。作為該家族的重要成員,TGF-β1是膠原纖維合成和沉積的有力推手,是導(dǎo)致機(jī)體多個(gè)器官和組織纖維化的重要因素之一[13]。研究發(fā)現(xiàn),TGF-β1信號(hào)通路在心肌梗死后心臟重構(gòu)的病理生理過程中發(fā)揮重要作用[11,14]。在本研究中,我們通過離體培養(yǎng)的CFs干預(yù)并模擬缺氧環(huán)境,發(fā)現(xiàn)TGF-β1呈劑量依賴性地促進(jìn)CFs內(nèi)I型和III型膠原的合成。在此過程中,心肌成纖維細(xì)胞胞漿中的p-Smad2水平顯著增高,并發(fā)生由胞漿向胞核轉(zhuǎn)位致使胞核中p-Smad2水平同步增高。因此,Smad2通過磷酸化活化和亞細(xì)胞再分布在TGF-β1在缺氧環(huán)境下誘導(dǎo)CFs合成I型和III型膠原的過程中發(fā)揮重要作用。Smad2也有望成為抑制和逆轉(zhuǎn)心肌梗死后心臟重構(gòu)及改善心臟功能的干預(yù)靶點(diǎn)。
研究表明,RXR作為核受體超家族的重要成員,與TGF-β信號(hào)通路之間有著錯(cuò)綜復(fù)雜的交聯(lián)關(guān)系,共同參與調(diào)控機(jī)體發(fā)育、腫瘤發(fā)生與轉(zhuǎn)移、機(jī)體免疫及組織修復(fù)等諸多病理和生理過程,在不同病理生理過程中,RXR對(duì)TGF-β信號(hào)通路的調(diào)控作用也不盡相同[15-17]。我們?cè)诒狙芯恐邪l(fā)現(xiàn),在缺氧環(huán)境下,TGF-β1干預(yù)可顯著增加CFs胞漿內(nèi)的p-Smad2水平,并促進(jìn)p-Smad2發(fā)生核移位,最終促進(jìn)I型和III型膠原的合成和分泌。RXR天然激動(dòng)劑9-cis-RA在明顯增強(qiáng)TGF-β1誘導(dǎo)Smad2發(fā)生磷酸化效應(yīng)的同時(shí),卻顯著抑制p-Smad2由胞漿向胞核轉(zhuǎn)位發(fā)揮轉(zhuǎn)錄效應(yīng),進(jìn)而下調(diào)CFs 合成I型和III型膠原。提示RXR與TGF-β-Smads信號(hào)通路存在“交互對(duì)話”,為闡明RXR對(duì)TGF-β-Smads信號(hào)通路的調(diào)控機(jī)制增加新的內(nèi)容。我們推測(cè):TGF-β1誘導(dǎo)Smad2磷酸化過程中必需的磷酸激酶發(fā)生活化可能部分依賴于RXR,同時(shí),RXR在胞漿能夠與p-Smad2結(jié)合并抑制其發(fā)生核轉(zhuǎn)位,尚需進(jìn)一步探討。
[1] D’Elia N, D’Hooge J, Marwick TH. Association between myocardial mechanics and ischemic LV remodeling[J]. JACC Cardiovasc Imaging, 2015, 8(12):1430-1443.
[2] Westman PC, Lipinski MJ, Luger D, et al. Inflammation as a driver of adverse left ventricular remodeling after acute myocardial infarction[J]. J Am Coll Cardiol, 2016, 67(17):2050-2060.
[3] Xiao X, Chang G, Liu J, et al. Simvastatin ameliorates ventricular remodeling via the TGF-β1 signaling pathway in rats following myocardial infarction[J]. Mol Med Rep, 2016, 13(6):5093-5101.
[4] Ren M, Wang B, Zhang J, et al. Smad2 and Smad3 as mediator of the response of adventitial fibroblasts induced by transforming growth factor [J]. Mol Med Report, 2011, 4(3):561-567.
[5] Evans RM, Mangelsdorf DJ. Nuclear receptors, RXR, and the big bang[J]. Cell, 2014, 157(1):255-266.
[6] Zhu J, Ning RB, Lin XY, et al. Retinoid X receptor agonists inhibit hypertension-induced myocardial hypertrophy by modulating LKB1/AMPK/p70S6K signaling pathway[J]. Am J Hypertens, 2014, 27(8):1112-1124.
[7] Chai D, Wang B, Shen L, et al. RXR agonists inhibit high glucose induced oxidative stress by repressing PKC activity in human endothelial cells[J]. Free Radic Biol Med, 2008, 44(7):1334-1347.
[8] 柴大軍,許昌聲,寧若冰,等. RXR激動(dòng)劑通過抑制PKC的激活對(duì)抗高糖誘導(dǎo)的血管平滑肌細(xì)胞增殖[J]. 中國病理生理雜志, 2013, 29(2):266-271.
[9] Sui X, Wei H, Wang D, et al. Novel mechanism of cardiac protection by valsartan: synergetic roles of TGF-β1 and HIF-1α in Ang II-mediated fibrosis after myocardial infarction[J]. J Cell Mol Med, 2015, 19(8):1773-1782.
[10]Zhu H, Luo H, Shen Z, et al. Transforming growth factor-β1 in carcinogenesis, progression, and therapy in cervical cancer[J]. Tumour Biol, 2016, 37(6):7075-7083.
[11]Meng XM, Nikolic-Paterson DJ, Lan HY.TGF-β: the master regulator of fibrosis[J]. Nat Rev Nephrol, 2016, 12(6):325-338.
[12]Komai T, Okamura T, Yamamoto K, et al. The effects of TGF-βs on immune responses[J]. Nihon Rinsho Meneki Gakkai Kaishi, 2016, 39(1):51-58.
[13]彭紅星, 楊榮時(shí), 王 煥, 等.長期煙霧暴露對(duì)大鼠肺血管重塑及轉(zhuǎn)化生長因子-β1 表達(dá)的影響[J]. 中國病理生理雜志, 2016, 32(7):1327-1330.
[14]Khan SA, Dong H, Joyce J, et al. Fibulin-2 is essential for angiotensin II-induced myocardial fibrosis mediated by transforming growth factor (TGF)-β[J]. Lab Invest, 2016, 96(7):773-783.
[15]Chakrabarti M, McDonald AJ, Will Reed J, et al. Mole-cular signaling mechanisms of natural and synthetic reti-noids for inhibition of pathogenesis in Alzheimer’s disease[J]. J Alzheimers Dis, 2015, 50(2):335-352.
[16]Shirakami Y, Sakai H, Shimizu M. Retinoid roles in blocking hepatocellular carcinoma[J]. Hepatobiliary Surg Nutr, 2015, 4(4):222-228.
[17]Rankinen T, Sarzynski MA, Ghosh S, et al. Are there genetic paths common to obesity, cardiovascular disease outcomes, and cardiovascular risk factors?[J]. Circ Res, 2015, 116(5):909-922.
(責(zé)任編輯: 盧 萍, 羅 森)
Retinoid X receptor agonist inhibits TGF-β1-induced collagen synthesis in cardiac fibroblasts by repressing Smad2 activation
CHAI Da-jun1, XU Jun-xia2, XU Chang-sheng1, ZHU Jiang1, LIN Jin-xiu1
(1DepartmentofCardiology,TheFirstAffiliatedHospitalofFujianMedicalUniversity,FujianHypertensionInstitute,2DepartmentofGeriatricMedicine,GeneralHospitalofFuzhou,Fuzhou350005,China.E-mail:dajunchai@126.com)
AIM: To investigate the effect of activation of retinoid X receptor (RXR) on transforming growth factor β1 (TGF-β1) induced collagen synthesis under hypoxic environment in rat cardiac fibroblasts (CFs) and underlying molecular mechanisms. METHODS: CFs were cultured using myocardial tissue with dry method. Hypoxic environment was established for CFs by continuous nitrogen supplement. Type I and type III collagens in supernatants were detected by ELISA. Nuclear and cytoplasmic extractions were prepared using NE-PER nuclear and cytoplasmic extraction reagents. The protein levels of Smad2 and p-Smad2 were determined by Western blot and immunocytochemical staining. RESULTS: Under hypoxic condition, TGF-β1 (0.01~10 μg/L) increased the synthesis of type I and type III collagens in a dose-dependent manner in the CFs. At the concentration of 5 μg/L, the synthesis of collagen I and III was significantly increased as compared with control group (P<0.01). RXR agonist 9-cis-retinoic acid (9-cis-RA; 10-9~10-6mol/L) decreased TGF-β1 (5 μg/L)-induced synthesis of type I and III collagens in a dose-dependent manner in the CFs under hypoxic condition. The synthesis of type I and type III collagens was significantly inhibited by 9-cis-RA (P<0.01). Smad2 inhibitor (20 nmol/L) showed similar inhibitory effect on the synthesis of type I and III collagens induced by TGF-β1 under hypoxic condition. Compared with TGF-β1 intervention group, the cytoplasmic level of p-Smad2 in the CFs was significantly increased in TGF-β1+9-cis-RA group, but the nuclear p-Smad2 level was significantly decreased (P<0.05). CONCLUSION: Retinoid X receptor agonist 9-cis-RA inhibits TGF-β1-induced synthesis of type I and type III collagens in the CFs by repressing p-Smad2 nuclear translocation under hypoxic condition.
Retinoid X receptor; Transforming growth factors; Cardiac fibroblasts; Collagen; Smad proteins
1000- 4718(2016)12- 2228- 05
2016- 07- 11
2016- 08- 30
福建省衛(wèi)生系統(tǒng)中青年骨干人才培養(yǎng)重點(diǎn)項(xiàng)目(No. 2013-ZQN-ZD-18)
R543; R363.2
A
10.3969/j.issn.1000- 4718.2016.12.017
雜志網(wǎng)址: http://www.cjpp.net
△通訊作者 Tel: 0591-87981637; E-mail: dajunchai@126.com