亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Products of multiplication,composition and differentiation between weighted Bergman-Nevanlinna and Bloch-type spaces on the unit ball

        2016-12-21 09:23:48ZhangChao
        關(guān)鍵詞:張超乘積國(guó)家自然科學(xué)基金

        Zhang Chao

        (Department of Mathematics,Guangdong University of Education,Guangzhou 510310,China)

        Products of multiplication,composition and differentiation between weighted Bergman-Nevanlinna and Bloch-type spaces on the unit ball

        Zhang Chao

        (Department of Mathematics,Guangdong University of Education,Guangzhou 510310,China)

        The paper defines differentiation operator on H(B)by radial derivative,then it studies the boundedness and compactness of products of multiplication,composition and differentiation between weighted Bergman-Nevanlinna and Blochtype spaces on the unit ball.

        composition operator,multiplication operator,differentiation operator,Bergman-Nevanlinna space,Bloch-type space

        1 Introduction

        Let D be the open unit disk in the complex plane.Let B={z∈Cn:|z|<1}be the unit ball of Cn,and S=?B its boundary.We will denote by dv the normalized Lebesgue measure on B.

        2 MψCφR and RMψCφ

        The following criterion for compactness is a useful tool to us and it follows from standard arguments,for example,to those outlined in Proposition 3.11 of[3].

        3 CφRMψand RCφMψ

        [1]Sharma A K.Products of multiplication,composition and differention between weighted Bergman-Nevanlinna and Bloch-tyoe spacers[J].Turk.J.Math.,2011,35(2):275-291.

        [2]Zhu Kehe.Spaces of Holomorphic Functions in the Unit Ball[M].New York:Springer-Verlag,2004.

        [3]Cowen C C,MacCluer B D.Composition Operators on Spaces of Analytic Functions[M].Boca Raton:CRC Press,1995.

        [4]Shapiro J H.Composition Operators and Classical Function Theory[M].New York:Springer-Verlag,1993.

        [5]Hibschweiler R A,Portnoy N.Composition followed by differentiation between Bergman and Hardy spaces[J]. Rock Mountain Journal of Mathematics,2005,35(3):843-855.

        [6]Ohno S.Products of composition and differentiation between Hardy spaces[J].Bull.Austral.Math.Soc.,2006,73:235-243.

        [7]Sharma A K,Sharma S D,Kumar S.Weighted composition followed by differentiation betwwen Bergman spaces[J].International Mathematical Forum.,2007,2(33):1647-1656.

        [8]Kumar S,Singh K J.Weighted composition operators on weighted Bergman spaces[J].Extracta Mathematicae,2007,22(3):245-256.

        單位球上加權(quán)Bergman-Nevanlinna空間到Bloch-型空間上乘法,復(fù)合,微分算子的乘積

        張超

        (廣東第二師范學(xué)院數(shù)學(xué)系,廣東 廣州 510310)

        文章用徑向?qū)?shù)定義了H(B)空間上的微分算子,從而研究了單位球上加權(quán)Bergman-Nevanlinna空間到Bloch-型空間上乘法,復(fù)合,微分算子的乘積,給出了這類乘積有界和緊的充要條件.

        符合算子;乘法算子;微分算子;Bergman-Nevanlinna空間;Bloch-type空間

        O177

        2015-12-21.

        國(guó)家自然科學(xué)基金(11501136);廣東第二師范學(xué)院博士基金(2014ARF04).

        張超(1977-),博士,講師,研究方向:泛函分析.

        A Article ID:1008-5513(2016)03-0271-17

        10.3969/j.issn.1008-5513.2016.03.006

        2010 MSC:47B33,30C35,46E35

        猜你喜歡
        張超乘積國(guó)家自然科學(xué)基金
        常見基金項(xiàng)目的英文名稱(一)
        張超個(gè)人簡(jiǎn)介
        散文百家(2021年11期)2021-11-12 03:06:38
        My New Invention
        How to Protect Us from Infectious Diseases
        張超個(gè)人簡(jiǎn)介
        散文百家(2021年4期)2021-04-30 03:15:20
        乘積最大
        Dirichlet級(jí)數(shù)及其Dirichlet-Hadamard乘積的增長(zhǎng)性
        我校喜獲五項(xiàng)2018年度國(guó)家自然科學(xué)基金項(xiàng)目立項(xiàng)
        2017 年新項(xiàng)目
        國(guó)家自然科學(xué)基金項(xiàng)目簡(jiǎn)介
        中文字幕日本人妻久久久免费| 亚洲第一女人天堂av| 日韩av在线不卡一区二区| 观看在线人视频| 97久久天天综合色天天综合色hd| 日本熟妇hd8ex视频| 男人一插就想射的原因| 亚洲自偷自拍另类第1页| 天躁夜夜躁狼狠躁| 人妖另类综合视频网站| 日韩有码中文字幕在线视频 | 午夜免费啪视频| 两个黑人大战嫩白金发美女| 国产经典免费视频在线观看| 久久亚洲精品国产av| 无人区一码二码三码四码区| 国产精品多人P群无码| 在线免费观看国产视频不卡| 日韩三级一区二区不卡| 国产午夜鲁丝片av无码| 欧美日韩国产在线观看免费| 91青青草手机在线视频| 野花香社区在线视频观看播放| 久久精品国产亚洲av麻| 污污污国产免费网站| 日本免费精品一区二区| 韩国三级中文字幕hd | 91精品国产高清久久久久| 91久久国产香蕉熟女线看| 大地资源在线观看官网第三页| 99精品久久这里只有精品| 手机在线观看亚洲av| 亚洲成av人综合在线观看| 久久av无码精品人妻出轨| 青青草视频在线视频播放| 国产精品高潮呻吟av久久黄| 日韩人妻无码精品-专区| 亚洲 欧美 激情 小说 另类| 午夜免费观看一区二区三区| 丰满少妇高潮惨叫久久久一| 精品国产国产AV一区二区|