王芳,王亞,翟成波
(1.山西大學數(shù)學科學學院,山西 太原 030006;2.南陽信息工程學校,河南 淅川 474450)
半序積空間中新的不動點定理
王芳1,王亞2,翟成波1
(1.山西大學數(shù)學科學學院,山西 太原 030006;2.南陽信息工程學校,河南 淅川 474450)
使用半序理論,h-序差和變距離函數(shù)的性質,在半序積Banach空間上討論了一類沒有凹凸性的單調算子,得出新的不動點存在唯一性結果,推廣了文獻中相關的不動點定理.
積空間;單調算子;正規(guī)錐;h-序差;變距離函數(shù)
近年來,對半序空間中非線性算子不動點的研究相當活躍,尤其是單調算子的研究獲得了許多較好的結果,見文獻[1-13].大多數(shù)文獻利用算子的凹凸性及單調迭代技巧,得到了算子存在唯一不動點的結論.其中的凹凸性起著重要的作用.本文利用半序理論,h-序差的性質和變距離函數(shù)的特點來研究積空間中的單調算子,給出不動點的存在唯一性結論,其中的單調算子沒凹凸性的要求.進而得到半序積Banach空間中單調算子存在唯一不動點的新結果,本質上推廣了文獻中的相關結論.
設X是實 Banach空間,θ表示 X中的零元.非空凸閉集 K?X是一個錐,“≤”是由K引出的半序,即?x,y∈X.若y-x∈K,??x≤y.設x,y∈X,x≤y,定義序區(qū)間 [x,y]={z∈E|x≤z≤y}.錐 K稱為是正規(guī)的,如果存在常數(shù) N >0,使得θ≤x≤y?‖x‖≤N‖y‖,稱最小的N為K的正規(guī)常數(shù).若x≤y,有Tx≤Ty(Tx≥Ty),則稱算子T:K→K是增算子(減算子).積空間X×X也是實Banach空間,其中半序關系為:
這些概念可見文獻[15].
本節(jié)考慮積空間中的單調算子,給出一類單調算子不動點的存在唯一結論.
注 2.2在文獻[13]中的定理2.3中,所給條件(i)不能推得G滿足推論2.1的條件,因而文獻[13]中的定理2.3是不正確的.
[1]Guo D.Positive fixed points and eigenvectors of noncompact decreasing operators with applications to nonlinear integral equations[J].Chin.Ann.Math.Ser.B,1993,4:419-426.
[2]Sun J X,Zhao Z Q.Fixed point theorems of increasing operators and applications to nonlinear integrodifferential equations with discontinuous terms[J].J.Math.Anal.Appl.,1993,175:3-45.
[3]Li K,Liang J,Xiao T J.A fixed point theorem for convex and decreasing operators[J].Nonlinear Anal.,2005,63:e209-e216.
[4]Zhao Z Q,Du X S.Fixed points of generalized e-concave(generalized e-convex)operators and their applications[J].J.Math.Anal.Appl.,2007,334:1426-1438.
[5]Liang Z D,Lian X G,Zhang M Y.A class of concave operators with applications[J].Nonlinear Anal.,2008,68:2507-2515.
[6]Li X C,Wang Z H.Fixed point theorems for decreasing operators in ordered Banach spaces with lattice structure and their applications[J].Fixed Point Theory Appl.,2013,18:1-6.
[7]Wang W X,Liu X L.Positive solutions of operator equations and nonlinear beam equations with a perturbed loading force[J].Wseas Transactions on Mathematics,2012,3(11):252-261.
[8]Sang Y B,Wei Z L,Dong W.The existence of multiple fixed points for the sum of two operators and applications[J].Fixed Point Theory,2012,13(1):193-204.
[9]Zhai C.B,Guo C.M.On α-convex operators[J].J.Math.Anal.Appl.,2006,316:556-565.
[10]Zhai C B,Cao X M.Fixed point theorems for τ-φ-concave operators and applications[J].Comput.Math. Appl.,2010,59:532-538.
[11]Zhai C B,Yang C,Zhang X.Positive solutions for nonlinear operator equations and several classes of applications[J].Math.Z.,2010,266:43-63.
[12]欒輝.非緊非連續(xù)單調算子新不動點定理[J].南昌工業(yè)學報,2012,31(6):5-7.
[13]王維娜,薛西峰,一類單調算子的新不動點定理[J].純粹數(shù)學與應用數(shù)學,2014,30(3):292-298.
[14]Khan M S,Swaleh M,Sessa S.Fixed point theorems by altering distances between the points[J].Bull. Aust.Math.Soc.,1984,30:1-9.
[15]郭大鈞.非線性分析中的半序方法[M].濟南:山東科學技術出版社,2000.
New fixed point theorems in ordered product spaces
Wang Fang1,Wang Ya2,Zhai Chengbo1
(1.School of Mathematics,Shanxi University,Taiyuan 030006,China;2.Information engineering school of Nanyang,Henan,Xichuan 474450,China)
By using partially ordering theory and some properties of h-ordering differences,altering distance function,a class of monotone operator without concavity or convexity has been discussed in ordered Banach product spaces.Some new theorems about uniquness and existence of fixed points have been obtained,which extend some related conclusions in literature.
product space,monotone operator,normal cone,h-ordering difference,altering distance function
O177.91
A
1008-5513(2016)03-0288-08
10.3969/j.issn.1008-5513.2016.03.007
2016-04-18.
國家青年科學基金(11201272);山西省自然科學基金(2015011005);2015山西省131人才項目.
王芳(1990-),碩士生,研究方向:非線性泛函分析.
翟成波.
2010 MSC:47H10